
Foundations and Trends R© in Programming
Languages

Progress of Concurrent Objects

Suggested Citation: Hongjin Liang and Xinyu Feng (2020), “Progress of Concurrent
Objects”, Foundations and Trends R© in Programming Languages: Vol. 5, No. 4, pp
282–414. DOI: 10.1561/2500000041.

Hongjin Liang
State Key Laboratory for Novel Software Technology

Nanjing University
China

hongjin@nju.edu.cn

Xinyu Feng
State Key Laboratory for Novel Software Technology

Nanjing University
China

xyfeng@nju.edu.cn

This article may be used only for the purpose of research, teaching,
and/or private study. Commercial use or systematic downloading
(by robots or other automatic processes) is prohibited without ex-
plicit Publisher approval. Boston — Delft

Contents

1 Introduction 284
1.1 General Motivation . 286
1.2 Overview . 289

2 Background 291
2.1 Linearizability . 291
2.2 Progress Properties . 293
2.3 Contextual Refinement and Abstraction Theorems 297
2.4 Verifying Progress Properties 303

3 Basic Technical Settings 313
3.1 The Language . 313
3.2 Execution Traces and Fairness of Scheduling 319

4 Linearizability and Contextual Refinement 322
4.1 Linearizability . 322
4.2 Contextual Refinement and Abstraction 324

5 Progress Properties 325
5.1 Progress for Objects with Total Methods Only 325
5.2 Progress for Objects with Partial Methods 327

6 Progress-Aware Abstraction 331
6.1 Overview of Our Results 331
6.2 Formalizing Progress-Aware Contextual Refinements 334
6.3 Abstraction for Wait-Free and Lock-Free Objects 337
6.4 Abstraction for Starvation-Free and Deadlock-Free Objects 341
6.5 Abstraction for PSF and PDF Objects 342

7 Verifying Progress of Concurrent Objects 349
7.1 Challenges and Key Ideas 349
7.2 The Program Logic LiLi 356
7.3 Soundness . 385
7.4 Examples . 387

8 Related Work 397
8.1 Progress Properties and Abstraction 397
8.2 Verification . 398
8.3 Comparison with TaDA-Live 401

9 Conclusion and Future Work 406

Acknowledgements 409

References 410

Progress of Concurrent Objects
Hongjin Liang1 and Xinyu Feng2

1State Key Laboratory for Novel Software Technology, Nanjing
University, China; hongjin@nju.edu.cn
2State Key Laboratory for Novel Software Technology, Nanjing
University, China; xyfeng@nju.edu.cn

ABSTRACT

Implementations of concurrent objects should guarantee lin-
earizability and a progress property such as wait-freedom,
lock-freedom, starvation-freedom, or deadlock-freedom. These
progress properties describe conditions under which a method
call is guaranteed to complete. However, they fail to describe
how clients are affected, making it difficult to utilize them
in layered and modular program verification. Also we lack
verification techniques for starvation-free or deadlock-free
objects. They are challenging to verify because the fair-
ness assumption introduces complicated interdependencies
among progress of threads. Even worse, none of the existing
results applies to concurrent objects with partial methods,
i.e., methods that are supposed not to return under cer-
tain circumstances. A typical example is the lock_acquire
method, which must not return when the lock has already
been acquired.

In this tutorial we examine the progress properties of concur-
rent objects. We formulate each progress property (together
with linearizability as a basic correctness requirement) in
terms of contextual refinement. This essentially gives us
progress-aware abstraction for concurrent objects. Thus,

Hongjin Liang and Xinyu Feng (2020), “Progress of Concurrent Objects”, Founda-
tions and TrendsR© in Programming Languages: Vol. 5, No. 4, pp 282–414. DOI:
10.1561/2500000041.

283

when verifying clients of the objects, we can soundly re-
place the concrete object implementations with their ab-
stractions, achieving modular verification. For concurrent
objects with partial methods, we formulate two new progress
properties, partial starvation-freedom (PSF) and partial
deadlock-freedom (PDF). We also design four patterns to
write abstractions for PSF or PDF objects under strongly or
weakly fair scheduling, so that these objects contextually re-
fine their abstractions. Finally, we introduce a rely-guarantee
style program logic LiLi for verifying linearizability and
progress together for concurrent objects. It unifies thread-
modular reasoning about all the six progress properties
(wait-freedom, lock-freedom, starvation-freedom, deadlock-
freedom, PSF and PDF) in one framework. We have
successfully applied LiLi to verify starvation-freedom or
deadlock-freedom of representative algorithms such as lock-
coupling lists, optimistic lists and lazy lists, and PSF or
PDF of lock algorithms.

1
Introduction

A concurrent object consists of shared data and a set of methods which
provide an interface for client threads to access the shared data. Lineariz-
ability (Herlihy and Wing, 1990) has been used as a standard definition
of the correctness of concurrent object implementations. It describes
safety and functionality, but has no requirement about termination of
object methods. Various progress properties, such as wait-freedom, lock-
freedom, starvation-freedom and deadlock-freedom, have been proposed
to specify termination of object methods. In their textbook Herlihy and
Shavit (2008) give a systematic introduction of these properties.

Although program termination has been an obvious notion for
sequential programs, it becomes much more complex in a concurrent
setting. Termination of a method call in a thread is affected not only
by the sequential behavior of the method code, but also by interference
from the environment. Different implementations of the concurrent
object methods have different tolerance of the interference. That’s why
we need these different progress properties.

We give two implementations of a simple counter object in Figure 1.1.
The variable x (line 0) is the object data implementing the counter.
Figure 1.1(a) and (b) are two different implementations of the inc

284

285

0 int x; //object data

1 inc(){
2 local t, done := false;
3 while(!done){
4 t := x;
5 done := cas(&x, t, t+1);
6 }
7 }

8 inc(){
9 lock();
10 x := x+1;
11 unlock();
12 }

(a) (b)

Figure 1.1: Implementations of the counter object.

method, which increments the counter. Figure 1.1(a) shows an optimistic
implementation. It takes a snapshot t of the counter (line 4). The atomic
compare-and-swap (cas) command (line 5) compares the current value
of x with t. If they are equal, it atomically sets x to t+1 and returns
true. Otherwise it does nothing and returns false, and the method
has to run another round of the loop to roll back and retry the process.
Figure 1.1(b) is a lock-based implementation, where the update of the
shared variable x is protected by a lock. Here we omit the implementation
of locks, which will be discussed later.

The different implementations of the inc method have different
progress properties. We can consider the following client program to
see their difference. The formal definitions of progress properties will
be discussed later in Section 5.

inc() ‖ while(true){ inc(); }

If we use the optimistic version in Figure 1.1(a), the call of inc() in the
left thread may never terminates because the cas command at line 5
may always fail due to the infinite number of calls of inc() in the
right thread. However, whenever we suspend the execution of the right
thread, the inc() in the left eventually terminates. Therefore we call
Figure 1.1(a) a non-blocking implementation. Also, since at least one of
the call of inc() in the whole program terminates, this is a lock-free
implementation.

286 Introduction

If we use the lock-based inc in Figure 1.1(b), whether the call of
inc() in the left thread terminates or not depends on the implemen-
tation of the lock. If the lock implementation is fair, the inc() on the
left always terminates, otherwise it may always fail to acquire the lock
and may never terminate. In both cases, if we suspend the right thread
when it is executing line 10, the inc() on the left cannot terminate
because it can never acquire the lock (which has been taken by the
suspended right thread). So we say the lock-based implementation of
inc is blocking. The termination of a method call relies on both the
lock algorithm and the fairness of scheduling.

The goal of this tutorial is to help the reader understand the
various progress properties of concurrent objects. We formulate each
progress property (together with linearizability as a basic correctness
requirement) in terms of contextual refinement. This essentially gives
us progress-aware abstraction for concurrent objects. We also introduce
a program logic LiLi to formally verify progress properties.

1.1 General Motivation

1.1.1 Progress-Aware Abstraction

Progress properties describe conditions under which method calls are
guaranteed to successfully complete in an execution. For example, lock-
freedom guarantees that “infinitely often some method call finishes in a
finite number of steps” (Herlihy and Shavit, 2008). They are difficult to
use in a modular and layered program verification because they fail to
describe how the progress properties affect clients.

In a modular verification of client threads, the concrete implemen-
tation Π of the object methods should be replaced by an abstraction
(or specification) Π′ that consists of equivalent methods. The progress
properties should then characterize whether and how the behaviors of
a client program will be affected if a client uses Π instead of Π′. In
particular, we are interested in systematically studying whether the
termination of a client using the abstract methods Π′ will be preserved
when using an implementation Π with some progress guarantee.

1.1. General Motivation 287

Previous work on verifying the safety of concurrent objects (e.g.,
Filipović et al., 2009; Liang and Feng, 2013) has shown that linearizabil-
ity—a standard safety criterion for concurrent objects—and contextual
refinement are equivalent. Informally, an implementation Π is a con-
textual refinement of a (more abstract) implementation Π′, if every
observable behavior of any client program using Π can also be observed
when the client uses Π′ instead. To obtain equivalence to linearizability,
the observable behaviors include I/O events but not divergence (i.e.,
non-termination). Recently, Gotsman and Yang (2011) showed that a
client program that diverges using a linearizable and lock-free object
must also diverge when using the abstract operations instead. Their
work reveals a connection between lock-freedom and a form of contex-
tual refinement which preserves termination as well as safety properties.
It is unclear how other progress guarantees affect termination of client
programs and how they are related to contextual refinements.

This tutorial studies four commonly used progress properties (wait-
freedom, lock-freedom, starvation-freedom and deadlock-freedom) and
their relationships to contextual refinements. We show that, when
progress properties are taken into account, one may have the corre-
sponding progress-aware contextual refinement to reestablish the equiv-
alence. We give different abstract specifications Π′ for different progress
properties. The equivalence results allow us to build abstractions for
linearizable objects so that safety and progress of the client code can
be reasoned about at a more abstract level.

1.1.2 Program Logic for Progress Verification

Recent program logics for verifying concurrent objects either prove only
linearizability and ignore the issue of termination (e.g., Derrick et al.,
2011; Liang and Feng, 2013; Turon et al., 2013a; Vafeiadis, 2008), or
aim for non-blocking progress properties (e.g., da Rocha Pinto et al.,
2016; Gotsman et al., 2009; Hoffmann et al., 2013; Liang et al., 2014),
which cannot be applied to blocking algorithms that progress only
under fair scheduling. The fairness assumption introduces complicated
interdependencies among progress properties of threads, making it
incredibly more challenging to verify the lock-based algorithms than

288 Introduction

their non-blocking counterparts. We will explain the challenges in detail
in Subsection 7.1.

It is important to note that, although there has been much work
on deadlock detection or deadlock-freedom verification (e.g., Boyapati
et al., 2002; Leino et al., 2010; Williams et al., 2005), deadlock-freedom
is often defined as a safety property, which ensures the lack of circular
waiting for locks. It does not prevent live-lock or non-termination
inside the critical section. Another limitation of this kind of work is
that it often assumes built-in lock primitives, and lacks support of
ad-hoc synchronization (e.g., mutual exclusion achieved using spin-locks
implemented by the programmers). The deadlock-freedom we discuss
in this tutorial is a liveness property and its definition does not rely
on built-in lock primitives. We discuss more related work on liveness
verification in Section 8.

In this tutorial we introduce LiLi, a new rely-guarantee style logic
for concurrent objects. It unifies verification of linearizability, wait-
freedom, lock-freedom, starvation-freedom and deadlock-freedom in
one framework (the name LiLi stands for Linearizability and Liveness).
In particular, it supports verification of both mutex-based pessimistic
algorithms (including fine-grained ones such as lock-coupling lists) and
optimistic ones such as optimistic lists and lazy lists. The unified
approach allows us to prove in the same logic, for instance, the lock-
coupling list algorithm is starvation-free if we use fair locks, e.g., ticket
locks (Mellor-Crummey and Scott, 1991), and is deadlock-free if regular
test-and-set based spin locks (Herlihy and Shavit, 2008) are used.

1.1.3 Concurrent Objects with Partial Methods

However, none of the aforementioned progress-related results applies
to concurrent objects with partial methods! A method is partial if it is
supposed not to return under certain circumstances. A typical example
is the lock_acquire method, which must not return when the lock has
already been acquired. Concurrent objects with partial methods simply
do not satisfy any of the aforementioned progress properties, and people
do not know how to give progress-aware abstract specifications for them
either. The existing studies on progress properties and progress-aware

1.2. Overview 289

contextual refinements have been limited to concurrent objects with
total specifications.

As an awkward consequence, we cannot treat lock implementations
as objects when we study progress of concurrent objects. Instead, we
have to treat lock_acquire and lock_release as internal functions
of other lock-based objects. Also, without a proper progress-aware
abstraction for locks, we have to redo the verification of lock_acquire
and lock_release when they are used in different contexts (Liang
and Feng, 2016), which makes the verification process complex and
painful. Note that locks are not the only objects with partial methods.
Concurrent sets, stacks and queues may also have methods that intend
to block. For instance, it may be sensible for a thread attempting to pop
from an empty stack to block, waiting until another thread pushes an
item. The reasoning about these objects suffers from the same problems
too when progress is concerned.

In this tutorial, we specify and verify progress of concurrent objects
with partial methods. We define partial starvation-freedom (PSF) and
partial deadlock-freedom (PDF) as progress properties for objects with
partial methods, and design abstraction patterns under strongly and
weakly fair scheduling. We prove that given a linearizable object imple-
mentation Π with partial methods, the contextual refinement between
Π and its abstraction Π′ under a certain kind of fair scheduling is
equivalent to PSF/PDF of Π. We also extend the program logic LiLi to
support partial specifications and to reason about blocking primitives.
It verifies the contextual refinement between Π and Π′, which ensures
linearizability and the progress property of Π.

1.2 Overview

The goal of this tutorial is to help the reader understand the various
progress properties of concurrent objects.

We start with an informal overview of the background in Section 2.
We informally describe the traditional four progress properties (wait-
freedom, lock-freedom, starvation-freedom and deadlock-freedom),
and analyze the challenges in supporting objects with partial
methods.

290 Introduction

In Section 3, we introduce the basic technical settings. We define a
simple object language, and the generation of execution traces from the
operational semantics. We also define fairness of scheduling over the
traces.

In Section 4, we define linearizability and the basic contextual
refinement which is equivalent to linearizability.

In Section 5, we formulate the four traditional progress properties
and the two new progress properties for objects with partial methods.

In Section 6, we give the progress-aware contextual refinement and
the abstraction theorems.

In Section 7, we present the program logic LiLi and show the
examples we have verified.

Finally, we discuss related work in Section 8 and conclude in
Section 9.

2
Background

A concurrent object usually satisfies linearizability, a standard safety cri-
terion, and certain progress property, describing when and how method
calls of the object are guaranteed to terminate.

In this section, we first give an overview of linearizability. We then
introduce the four traditional progress properties (wait-freedom, lock-
freedom, starvation-freedom and deadlock-freedom), and explain the
need for new progress properties. We also discuss the contextual refine-
ment and the Abstraction Theorems. Finally we introduce rely-guarantee
reasoning, explain how to encode linearizability verification and discuss
the challenges in progress verification.

2.1 Linearizability

A concurrent object is linearizable, if each method call appears to
take effect instantaneously at some moment between its invocation and
return (Herlihy and Wing, 1990). Intuitively, linearizability requires the
implementation of each method to have the same effect as an atomic
specification.

Consider the two implementations of the counter object in Fig-
ure 2.1(b) and (d). We assume that every primitive command is executed

291

292 Background

0 L_initialize(){ l := 0; }

1 L_acq(){
2 local b := false;
3 while(!b){
4 b := cas(&l, 0, cid);
5 }
6 }

7 L_rel(){
8 l := 0;
9 }

(a) test-and-set (TAS) lock impl.

10 inc(){
11 L_acq();
12 x:=x+1;
13 L_rel();
14 }

(b) counter with a TAS lock

15 tkL_initialize(){
16 owner := 0; next := 0; }

17 tkL_acq(){
18 local i, o;
19 i := getAndInc(&next);
20 o := owner;
21 while(i!=o){
22 o := owner;
23 }
24 }

25 tkL_rel(){
26 owner := owner + 1;
27 }

(c) ticket lock implementation

28 inc_tkL(){
29 tkL_acq();
30 x:=x+1;
31 tkL_rel();
32 }

(d) counter with a ticket lock

INC(){ x:=x+1; }

(e) atomic spec. INC

Figure 2.1: Counters with locks.

atomically. A counter provides a method inc for incrementing the shared
data x. Both implementations use locks to synchronize the increments.
Intuitively they have the same effect as the atomic specification INC()
in Figure 2.1(e), so they are linearizable.

2.2. Progress Properties 293

The locks themselves could also be viewed as standalone objects.
For instance, the test-and-set lock object in Figure 2.1(a) provides the
methods L_acq and L_rel for a thread to acquire and release the lock l.
Here cid represents the current thread’s ID, which is a positive integer.
The counter’s implementation code in Figure 2.1(b) can be viewed as a
client of this lock object. The lock object is linearizable, because L_acq
and L_rel both update l atomically (if they indeed return). They
produce the same effects as the atomic operations L_ACQ and L_REL
(defined below), respectively:

L_ACQ(){ l := cid; } L_REL(){ l := 0; } (2.1.1)

However, linearizability does not characterize progress properties of
the object implementations. For instance, the following counter object
is still linearizable, even if its method never terminates.

inc’(){ L_acq(); x:=x+1; L_rel(); while(true) skip; }

2.2 Progress Properties

Various progress properties have been proposed for concurrent objects,
such as wait-freedom and lock-freedom for non-blocking implemen-
tations, and starvation-freedom and deadlock-freedom for lock-based
implementations. These properties describe conditions under which a
method call is guaranteed to successfully finish in an execution. The
implementation of the counter in Figure 1.1(a) satisfy lock-freedom. The
two implementations in Figure 2.1(b) and (d) satisfy deadlock-freedom
and starvation-freedom respectively. We assume that every command is
executed atomically.

We use the definitions given by Herlihy and Shavit (2011). Infor-
mally, an object implementation is wait-free, if it guarantees that every
thread can complete any started operation of the data structure in a
finite number of steps. We can view that the atomic specification in
Figure 2.1(e) is an ideal wait-free implementation in which the incre-
ment is done atomically. It is obviously wait-free since it guarantees
termination of every method call regardless of interference from other
threads. Note that realistic implementations of wait-free counters are

294 Background

more complex and involve arrays and atomic snapshots (Aspnes and
Herlihy, 1990).

Lock-freedom is similar to wait-freedom but only guarantees that
some thread will complete an operation in a finite number of steps.
Typical lock-free implementations, such as the well-known Treiber
stack (Treiber, 1986), HSY elimination-backoff stack (Hendler et al.,
2004) and Harris-Michael lock-free list (Harris, 2001; Michael, 2002),
use the atomic compare-and-swap instruction cas in a loop to repeat-
edly attempt an update until it succeeds. Figure 1.1(a) shows such an
implementation of the counter object. It is lock-free, because whenever
inc operations are executed concurrently, there always exists some suc-
cessful update. Note that this object is not wait-free. For the following
program (2.2.1), the cas instruction in the method called by the left
thread may continuously fail due to the continuous updates of x made
by the right thread.

inc(); ‖ while(true) inc(); (2.2.1)

Wait-freedom and lock-freedom are progress properties for non-
blocking implementations, where a delay of a thread cannot prevent
other threads from making progress. In contrast, deadlock-freedom and
starvation-freedom are progress properties for lock-based implementa-
tions. A delay of a thread holding a lock will block other threads which
request the lock.

Informally people often state deadlock-freedom and starvation-
freedom in terms of locks and critical sections (a critical section is
the code segment between a lock-acquire and the matching lock-release).
For example, in their textbook, Herlihy and Shavit (2008) say deadlock-
freedom guarantees that some thread will succeed in acquiring the lock,
and starvation-freedom guarantees that every thread attempting to
acquire the lock will eventually succeed.

However, as noted by Herlihy and Shavit (2011), the above definitions
based on locks are unsatisfactory, because it is often difficult to identify
a particular field in the object as a lock and a particular code segment
as a critical section. Instead, they suggest defining them in terms of
method calls. They also notice that the above definitions implicitly
assume that every thread holding a lock will eventually release it. This

2.2. Progress Properties 295

assumption requires fair scheduling, i.e., every thread gets eventually
executed. Otherwise, a thread holding a lock may never be scheduled.
Then it has no chance to release the lock, even if the critical section
terminates (if executed). As a result, all the other threads trying to
acquire the lock are permanently blocked.

Following Herlihy and Shavit (2011), we say an object is deadlock-
free, if in each fair execution there always exists some method call
that can finish. Similarly, a starvation-free object guarantees that every
method call can finish in fair executions.

The counter in Figure 2.1(b) is deadlock-free, because the test-and-
set lock (see Figure 2.1(a)) guarantees that eventually some thread will
succeed in getting the lock via the cas instruction at line 4, and hence
the method call of inc in that thread will eventually finish. It is not
starvation-free, because there might be a thread that continuously fails
to acquire the lock. For the following client program (2.2.2), the cas
instruction executed by the left thread could always fail if the right
thread infinitely often acquires the lock.

inc(); print(1); || while(true) inc(); (2.2.2)

The counter in Figure 2.1(d) implemented with a ticket lock is
starvation-free. Figure 2.1(c) shows the details of the ticket lock imple-
mentation. It uses two shared variables owner and next, which are equal
initially. The threads attempting to acquire the lock form a waiting
queue. In tkL_acq, a thread first atomically increments next and reads
its old value to a local variable i (line 19). It waits until the lock’s
owner equals its ticket number i (lines 20-23), then it acquires the
lock. In tkL_rel, the thread releases the lock by incrementing owner
(line 26). Then the next waiting thread (the thread with ticket number
i+1, if there is one) can acquire the lock. We can see that the ticket
lock implementation ensures the first-come-first-served property, and
hence every thread calling inc_tkL can eventually acquire the lock and
finish its method call.

Progress properties of concurrent objects with partial methods. How-
ever, the aforementioned progress properties are all proposed for concur-
rent objects with total methods only, i.e., methods that should always

296 Background

return when executed sequentially. They do not apply to objects with
partial methods, such as the lock objects in Figure 2.1(a) and (c), which
intend to permanently block at certain situations.

Specifically, deadlock-freedom and starvation-freedom do not apply.
They allow permanent blocking but only if the scheduling is unfair.
Consider the following client program (2.2.3) using the TAS lock in
Figure 2.1(a). One of the method calls never finishes.

L_acq(); || L_acq(); (2.2.3)

It shows that the test-and-set lock object does not satisfy the traditional
deadlock-freedom or starvation-freedom property we just presented.
Neither does the ticket lock object in Figure 2.1(c).

The problem is that L_acq intends to block when the lock is not
available. The non-termination in the above example (2.2.3) is just the
intention of a correct lock implementation; otherwise the lock cannot
guarantee mutual exclusion.

As a result, we need new progress properties for objects with partial
methods. Moreover, the new progress properties should be able to
distinguish the TAS lock and the ticket lock. Consider the following
client program (2.2.4).

L_acq(); L_rel(); || while(true){ L_acq(); L_rel(); }
(2.2.4)

The call to L_acq() of the left thread may not return under fair schedul-
ing with the TAS lock, but it must return in fair executions with the
ticket lock. This shows that the TAS lock and the ticket lock have
different progress properties, which we will call partial deadlock-freedom
(PDF) and partial starvation-freedom (PSF) respectively (formally de-
fined in Section 5).

The relationships between the progress properties form a lattice
shown in Figure 2.2 (where the arrows represent implications). For
example, wait-freedom implies lock-freedom and starvation-freedom im-
plies deadlock-freedom. PSF and PDF are generalizations of starvation-
freedom and deadlock-freedom respectively.

2.3. Contextual Refinement and Abstraction Theorems 297

wait-freedom

lock-freedom starvation-freedom

deadlock-freedom PSF

PDF

Figure 2.2: Relationships between progress properties.

2.3 Contextual Refinement and Abstraction Theorems

It is difficult to use linearizability and progress properties directly in
modular verification of client programs of an object, because their
definitions fail to describe how the client behaviors are affected. To
verify clients, we would like to abstract away the details of the object
implementation. This requires a notion of object correctness, telling us
that the client behaviors will not change when we replace the object
methods’ implementations with the corresponding abstract operations
(as specifications).

Contextual refinement gives the desired notion of correctness. In-
formally, an object implementation Π is a contextual refinement of
another (more abstract) implementation Π′, written as ΠvΠ′, if every
observable behavior of any client program using Π can also be observed
when the client uses Π′ instead. That is,

ΠvΠ′ iff ∀C. O(let Π in C) ⊆ O(let Π′ in C)

Here (let Π in C) denotes the client program C using Π, and O returns
the set of observable behaviors of the program. Then, when verifying a
client of Π, we can soundly replace Π with its abstraction Π′.

Filipović et al. (2009) have proved the abstraction theorem, saying
that linearizability is equivalent to a contextual refinement Π vfin Γ
between Π and its atomic specification Γ. In this contextual refinement,
O returns the prefix-closed set of finite traces of I/O events. A trace
set is prefix-closed if, for any trace in the set, its prefix must also be in

298 Background

the set. The superscript in the refinement relation vfin means we only
observe finite prefixes of execution traces.

This basic contextual refinement can distinguish linearizable objects
from non-linearizable ones, but it cannot characterize progress properties
of objects. For the following example, although no concrete method call
of f could finish, f is a basic contextual refinement of F.

f(){ while(true) skip; } F(){ skip; }

The reason is that the basic contextual refinement considers a prefix-
closed set of event traces at the abstract side. For instance, consider the
following client (2.3.1).

print(1); f(); print(1); (2.3.1)

The prefix-closed set of externally observable event traces of the client
calling f is {ε, 1}, while the prefix-closed set produced by the same
client calling F is {ε, 1, 11}, where ε represents the empty trace. The
former is a subset of the latter. But if we consider only complete traces
instead of also taking prefixes, we will break the subset relation. The
client calling f produces a singleton set {1} of complete I/O traces,
while calling F produces {11}. The subset no longer holds, telling us
that f and F have different termination behaviors.

When taking progress properties into account, the corresponding
contextual refinement should be sensitive to termination or divergence
(non-termination). In particular, one should observe only complete
execution traces of I/O events instead of taking the prefix-closed set
of traces. Then, as we have seen, for the above example, the sets O of
observable behaviors of the client (2.3.1) calling f and F will be different.
The termination-sensitive contextual refinement does not hold.

But this is not the end of the story. To formulate a contextual refine-
ment ΠvΠ′, we need to fix at least three key aspects: the observable
behaviors O, the scheduling and the abstraction Π′.

• First, for multi-threaded client programs, do we observe per-thread
termination/divergence or whole-program termination/divergence?
Consider the lock-free counter inc in Figure 1.1(a) and the client
(2.2.1). If we observe per-thread termination/divergence, the client

2.3. Contextual Refinement and Abstraction Theorems 299

(2.2.1) using inc would have different observable behaviors from
the client calling the atomic INC, because the former may observe
the divergence of the left thread (i.e., the left thread calling inc
may execute infinitely many steps), while the latter cannot (i.e.,
the left thread calling INC always terminates if executed). How-
ever, the client has the same whole-program termination behaviors
when using inc and INC.

• Second, is the scheduling fair or not? Some of the progress proper-
ties assume fair scheduling, while others do not. Thus it might be
natural that the contextual refinement has the same assumption
on the scheduling as the corresponding progress property.

Actually different assumption of fairness may lead to different
contextual refinement results. Consider the deadlock-free counter
inc in Figure 2.1(b) and the atomic INC in Figure 2.1(e). The
contextual refinement incv INC does not hold if we assume fair
scheduling (no matter we observe whole-program termination or
per-thread termination), because the client (2.2.2) produces dif-
ferent output events using inc and INC in fair executions. Using
inc, it is possible that the left thread in (2.2.2) never prints 1
and the whole program generates an empty trace because the
lock acquire in the left thread may always fail, but it must print
out 1 if INC is called instead and the scheduling is fair — as
long as the left thread gets a chance to run, the atomic INC will
finish in one step. However, if we drop the fairness assumption
when the abstract atomic specification INC is called, we can use
an unfair scheduling that never schedules the left thread to sim-
ulate the execution of inc where the lock acquire always fails
(Liang et al., 2013).

• Finally, are the abstractions atomic or non-atomic? To characterize
linearizability, Π vfin Γ directly uses atomic specifications Γ as
the abstraction of Π. But to characterize progress properties, the
abstractions may have to be non-atomic to simulate the non-
terminating behaviors of the concrete implementations under
interleavings. As we explain above, the client (2.2.2) produces

300 Background

different output events using inc and INC in fair executions. One
way to re-establish the refinement is to allow unfair scheduling for
the right-hand side of the refinement (i.e., for clients calling INC).
Another way is to use a non-atomic specification while keeping
the assumption of fair scheduling. For instance, the client (2.2.2)
cannot distinguish inc and the following non-atomic INC_NA.

INC_NA(){
while (done) {};
< x := x + 1; done := true >;
done := false;

}

Here done is a newly introduced object variable whose initial value
is false, and 〈C〉 is an atomic block. When (2.2.2) uses INC_NA,
the left thread may not print 1 because the loop while(done){}
may always fail to terminate if the right thread infinitely often
sets done to true. So (2.2.2) using inc and INC_NA can produce
the same output traces in fair executions. In fact incv INC_NA
holds under fair scheduling.

Abstractions for objects with partial methods. The atomic specifi-
cations defined in (2.1.1) can characterize the atomic behaviors of lock
objects, but they fail to specify that L_ACQ should be partial in the
sense that it should be blocked when the lock is unavailable.

To address the problem, a natural way is to introduce the atomic
partial specification Γ, where each method specification is in the form
of await(B){C}. The execution of await(B){C} is blocked if B does
not hold, and C executes atomically if B holds (also the current thread
cannot be interrupted between the test showing B holds and the execu-
tion of C). When B holds, we say await(B){C} is enabled. Note that
await(B){C} is the only blocking primitive we introduce in this work.
All other primitive commands we have seen so far are non-blocking
and they are always enabled. We say a thread is enabled if the next
command to be executed by the thread is enabled.

2.3. Contextual Refinement and Abstraction Theorems 301

For the lock objects, we can define the atomic partial specification
Γ as follows.

L_ACQ’(){ await (l = 0) { l := cid }; }
L_REL(){ l := 0; }

(2.3.2)

The await block naturally specifies the atomicity of method function-
ality, just like the traditional atomic specification 〈C〉 (which can be
viewed as syntactic sugar for await(true){C}), therefore Γ may serve
as a specification for linearizable objects. It also shows the fact that
the object method is partial, with explicit specification of the enabling
condition B. Below we will use the atomic partial specification as the
starting point to characterize the progress of objects.

Although the atomic partial specification Γ describes the atomic
functionality and the enabling condition of each method, it is insufficient
to serve as a progress-aware abstraction for the following reasons.

First, the progress of the await command itself is affected by the
fairness of scheduling, such as strong fairness and weak fairness.

• Strong fairness: Every thread which is infinitely often enabled will
execute infinitely often. Then, await(B){C} is not executed only
if B is continuously false after some point in the execution trace.

• Weak fairness: Every thread which is eventually always enabled
will execute infinitely often. Then, await(B){C} may not be
executed when B is infinitely often false. This fairness notion is
weaker than strong fairness.

As a result, the choice of fair scheduling will affect the behaviors
of a program or a specification with await commands. To see this, we
consider the following client program (2.3.3).

[_]acq; [_]rel; print(1); || while(true){ [_]acq; [_]rel; }
(2.3.3)

where [_]acq and [_]rel represent holes to be filled with method calls
of lock acquire and release, respectively. Table 2.1 shows the behaviors
of the client with different locks.

If the client calls the abstract specifications in (2.3.2), it must
execute print(1) under strongly fair scheduling, but may not do so

302 Background

Table 2.1: Client (2.3.3) with different locks. “Yes” means it must print out 1, “No”
otherwise

Strong Fairness Weak Fairness

spec. (2.3.2) Yes No
ticket lock (Fig. 2.1(c)) Yes Yes
test-and-set lock (Fig. 2.1(a)) No No

under weakly fair scheduling. This is because the call of L_ACQ’ by
the left thread could be infinitely often enabled and infinitely often
disabled in an execution. In detail, whenever the lock is owned by the
right thread, L_ACQ’ on the left is disabled, and whenever the right
thread releases the lock, L_ACQ’ on the left is enabled. In a weakly
fair execution, it is possible that the left thread does not execute any
step since weak fairness guarantees a thread to execute only when it
is always enabled. However, such an execution does not satisfy strong
fairness, which requires the thread to execute infinitely often when it is
infinitely often enabled (instead of being always enabled). This example
also explains in what sense weak fairness is weaker than strong fairness.

Also note that the two fairness notions coincide when the program
does not contain blocking operations and is thus always enabled. Both
strong and weak fairness degrade to fairness (saying that every thread
executes infinitely often) for programs without await commands. There-
fore, as shown in Table 2.1, regardless of strongly or weakly fair schedul-
ing, the client (2.3.3) using a ticket lock always executes print(1), but
it may not do so if using a test-and-set lock instead. In detail, the ticket
lock implementation guarantees that the left thread eventually acquires
the lock. But with the test-and-set lock in Figure 2.1(a), it is possible
that the cas in the lock-acquire method L_acq() of the left thread
always fails and hence L_acq() does not return.

As a result, for the same object implementation, we may need
different abstractions under different scheduling. As shown in Table 2.1,
the specification (2.3.2) cannot serve as the specification of the test-
and-set locks under both strong fairness and weak fairness.

Second, even under the same scheduling, different implementations
demonstrate different progress, therefore need different abstractions.

2.4. Verifying Progress Properties 303

As shown in Table 2.1, the different lock implementations have different
behaviors, even under the same scheduling.

For the above two reasons, we need different abstractions for different
combinations of fairness and progress. For PSF and PDF under strong
and weak fairness respectively, we may need four different abstractions.
Can we generate all of them in a systematic approach?

2.4 Verifying Progress Properties

Below we first give an overview of the traditional rely-guarantee logic
for safety proofs (Jones, 1983), which serves as the basis of our concur-
rency reasoning. Then we show how it can be extended to do relational
reasoning and verify the contextual refinement equivalent to linearizabil-
ity. Our program logic LiLi actually further extends the idea to verify
different contextual refinements corresponding to different progress prop-
erties and linearizability. Finally we explain the challenges in supporting
progress verification, and give a quick look at our ideas of LiLi.

2.4.1 Rely-Guarantee Reasoning

In rely-guarantee reasoning (Jones, 1983), each thread is verified in
isolation under some assumptions on its environment (i.e., the other
threads in the system). The judgment is in the form of R,G ` {P}C{Q},
where the pre- and post-conditions P and Q are assertions over program
states and they specify the initial and final states of the program C

respectively. The rely condition R and the guarantee condition G are
assertions over state pairs (i.e., state transitions). The rely condition R
specifies the permitted state transitions that the environment threads
may have. The guarantee condition G specifies the possible transitions
made by the thread C itself. Informally, the judgment R,G ` {P}C{Q}
says that, starting from an initial state satisfying P , and assuming that
the environment’s state transitions all satisfy R, the execution of C is
safe, every state transition made by C satisfies G, and the final state
(if C terminates) satisfies Q.

304 Background

The key rule in rely-guarantee reasoning is the following (par) rule:

R1, G1 ` {P1}C1{Q1} G1 ⇒ R2
R2, G2 ` {P2}C2{Q2} G2 ⇒ R1

R1 ∧R2, G1 ∨G2 ` {P1 ∧ P2}C1 ‖C2{Q1 ∧Q2}
(par)

Here C1 ‖C2 is the parallel composition of the two threads C1 and C2.
The rule says that, we can verify C1 ‖C2 by separately verifying each
thread Ci, showing its behaviors under the rely condition Ri indeed
satisfy its guarantee Gi. To ensure that parallel threads can collaborate,
the guarantee of each thread needs to satisfy the rely of the other
(i.e., G1 ⇒ R2 and G2 ⇒ R1). After parallel composition, the threads
should be executed under their common environment (i.e., R1 ∧ R2)
and guarantee all the possible transitions made by them (i.e., G1 ∨G2).

2.4.2 Relational Reasoning and Linearizability Verification

Consider the counter object inc implemented with a test-and-set (TAS)
lock in Figure 2.1(b). Verifying linearizability of inc requires us to prove
that it has the same abstract behaviors as INC in Figure 2.1(e), which
increments the counter x atomically.

Following previous work (Liang and Feng, 2013; Liang et al., 2014;
Vafeiadis, 2008), one can extend the rely-guarantee logic to verify
contextual refinement between concurrent programs. Since linearizability
is equivalent to contextual refinement where the abstract specifications
are atomic operations, and, as explained in Subsection 2.3, we wish to
establish similar results for the different progress properties, a program
logic supporting contextual refinement verification can be applied to
verify linearizability and progress properties.

Using the counter object inc as an example, the judgment to verify
it is in the form of

R,G ` {P ∧ arem(INC)}inc{Q ∧ arem(skip)}.

It looks similar to the traditional rely-guarantee logic, but we want
to do relational reasoning here to show inc refines INC. The pre- and
post-conditions are now relational assertions specifying the consistency
relation between the program states at the concrete and the abstract

2.4. Verifying Progress Properties 305

sides. We also use an assertion arem(C) to specify as an auxiliary state
(also known as a ghost state) the abstract operation C to be refined by
the concrete program. So the precondition says inc needs to refine INC,
and the assertion arem(skip) in the postcondition says there is no more
abstract operations to be refined at the end of inc (so the execution of
inc indeed fulfills the action INC).

Similarly, the rely and guarantee conditions R and G are also lifted
to the relational setting. They now specify state transitions at both
the concrete and the abstract sides. That is, transitions are made over
state pairs consisting of the concrete and abstract states, so R and G
are relational assertions over pairs of state pairs.

Readers can refer to previous work (Liang and Feng, 2013; Liang
et al., 2014; Vafeiadis, 2008) for more details about relational rely-
guarantee logic. In LiLi we extend the relational reasoning to verify
contextual refinements equivalent to different progress properties. The
focus of this tutorial to address the challenges for progress reasoning,
which we first give an overview in the next subsection.

2.4.3 Challenges of Progress Verification

Progress properties of objects such as deadlock-freedom and starvation-
freedom have various termination requirements of object methods. They
must be satisfied with interference from other threads considered, which
makes the verification challenging.

Non-Termination Caused by Interference

In a concurrent setting, an object method may fail to terminate due
to interference from its environment. Below we point out there are two
different kinds of interference that may cause thread non-termination,
namely blocking and delay. Let’s first see a classic deadlocking example.

DL-12 : DL-21 :
lock L1; lock L2; lock L2; lock L1;
unlock L2; unlock L1; unlock L1; unlock L2;

The methods DL-12 and DL-21 may fail to terminate because of the cir-
cular dependency of locks. This non-termination is caused by permanent

306 Background

blocking. That is, when DL-12 tries to acquire L2, it could be blocked if
the lock has been acquired by DL-21.

The second example is the following client using the lock-free counter
in Figure 1.1(a).

inc(); while (true) inc();

The call of the inc method by the left thread may never terminate.
This is because, just before the left thread updates x at line 5, it could
be preempted by the right thread, who updates x ahead of the left.
Then the left thread would fail at the cas command and have to loop
at least one more round before termination. This may happen infinitely
many times, causing non-termination of the inc method on the left.
In this case we say the progress of the left method is delayed by its
environment’s successful cas.

The key difference between blocking and delay is that blocking is
caused by the absence of certain environment actions, e.g., releasing
a lock, while delay is caused by the occurrence of certain environment
actions, e.g., a successful cas. In other words, a blocked thread can
progress only if its environment progresses first, while a delayed thread
can progress if we suspend the execution of its environment.

Lock-free algorithms disallow blocking (thus they do not rely on
fair scheduling), although delay is common, especially in optimistic
algorithms. Starvation-free algorithms allow (limited) blocking, but not
delay. As the above example of inc shows, delay from non-terminating
clients may cause starvation. Deadlock-free algorithms allow both (but
with restrictions). For instance, consider the TAS lock based counter in
Figure 2.1(b) and the following client.

inc(); inc();

Suppose the lock is available, and the left thread tries to acquire the
lock and is just before the cas command in the code of L_acq in inc.
Then it might be delayed by the right thread who preempts and gets
the lock first. After the right thread acquires the lock, the left thread
becomes blocked and waits for the lock release by the right thread.

In some algorithms (such as the optimistic list), blocking and delay
can be intertwined by the combined use of blocking-based synchronization

2.4. Verifying Progress Properties 307

1 local b := false, p, c;
2 while (!b) {
3 (p, c) := find(e);
4 lock p; lock c;
5 b := validate(p, c);
6 if (!b) {
7 unlock c; unlock p; }
8 }
9 update(p, c, e);

10 unlock c; unlock p;

Figure 2.3: The optimistic list.

and optimistic concurrency, which makes the reasoning significantly
more challenging than reasoning about lock-free algorithms.

Figure 2.3 shows part of the optimistic list implementation. Each
node of the list is associated with a TAS lock. A thread first traverses
the list without acquiring any locks (line 3). The traversal find returns
two adjacent node pointers p and c, the position where the update
(adding or removing elements) to the list will take place. The thread
then locks the two nodes (line 4), and calls validate to check if the
two nodes are still valid list nodes (line 5). If validation succeeds, then
the thread performs the update (line 9). Otherwise it releases the two
node locks (line 7) and restarts the traversal. We can see that blocking
and delay are intertwined in this algorithm—a thread may be blocked
when acquiring a lock, and be delayed if the validation fails and the
thread has to release the acquired locks and restart the traversal.

How do we come up with general principles to allow blocking and/or
delay, but on the other hand to guarantee lock-freedom, starvation-
freedom or deadlock-freedom?

Avoid Circular Reasoning

Rely-guarantee style logics provide the power of thread-modular verifi-
cation by circular reasoning. When proving the behaviors of a thread t
guarantee G, we assume that the behaviors of the environment thread
t′ satisfy R. Conversely, the proof of thread t′ relies on the assumptions
on the behaviors of thread t.

308 Background

1 lock L1;
2 local r := L2;
3 while (r != 0) {
4 unlock L1;
5 lock L1;
6 r := L2;
7 }
8 lock L2;
9 unlock L2;

10 unlock L1;

11 lock L2;
12 local s := L1;
13 while (s != 0) {
14 unlock L2;
15 lock L2;
16 s := L1;
17 }
18 lock L1;
19 unlock L1;
20 unlock L2;

Figure 2.4: Rollback with two locks.

However, circular reasoning is usually unsound in liveness verifi-
cation (Abadi and Lamport, 1995). For instance, we could prove ter-
mination of each thread in the deadlocking example above, under the
assumption that each environment thread eventually releases the lock
it owns. How do we avoid the circular reasoning without sacrificing
rely-guarantee style thread-modular reasoning?

The deadlocking example shows that we should avoid circular rea-
soning to rule out circular dependency caused by blocking. Delay may
also cause circular dependency too. The left side of Figure 2.4 shows
a thread t using two locks. It first acquires L1 (line 1) and then tests
whether L2 is available (line 2). If the test fails, the thread rolls back. It
releases L1 (line 4), and then repeats the process of acquiring L1 (line 5)
and testing L2 (line 6). Suppose another thread t′ does the opposite
(see the right side of Figure 2.4): repeatedly acquiring L2 and testing
L1. In this example the acquirement of L2 by t′ may cause t to fail its
test of the availability of L2. The test could have succeeded if t′ did
not interfere, so t′ delays t. Conversely, the acquirement of L1 by t may
delay t′. Then the two threads can cause each other to continually roll
back, and neither method progresses.

Usually when delay is allowed, we need to make sure that the action
delaying other threads is a “good” one in that it makes the executing
thread progress (e.g., a step towards termination). This is the case with
the “benign delays” in the examples of the lock-free counter, the TAS

2.4. Verifying Progress Properties 309

lock-based counter and the optimistic list. But how do we tell if an
action is good or not? The acquirements of locks in Figure 2.4 do seem
to be good because they make the threads progress towards termination.
How do we prevent such lock acquirements from delaying each other,
which causes circular delay?

Ad-Hoc Synchronization and Dynamic Locks

One may argue that the circularity can be avoided by simply enforcing
certain orders of lock acquirements, which has been a standard way to
avoid “deadlock cycles” (note this is a safety property, as we explained
in Subsection 1.1). Although lock orders can help liveness reasoning, it
has many limitations in practice.

First, the approach cannot apply for ad-hoc synchronization. For
instance, there are no locks in the following deadlocking program.

x := 1;
while (y = 1) skip;
x := 0;

y := 1;
while (x = 1) skip;
y := 0;

Moreover, sometimes we need to look into the lock implementation
to prove starvation-freedom. For instance, the counter object in Fig-
ure 2.1(b) using a TAS lock is deadlock-free but not starvation-free.
If we replace the TAS lock with a ticket lock, as in Figure 2.1(d), the
counter becomes starvation-free. We may have to look into the lock
implementations to verify the counters. Again, there are actually no
locks in the programs if we work at a low abstraction level and look
into lock implementations.

Second, it can be difficult to enforce the ordering for fine-grained al-
gorithms on dynamic data structures (e.g., lock-coupling list). Since the
data structure is changing dynamically, the set of locks associated with
the nodes is dynamic too. To allow a thread to determine dynamically
the order of locks, we have to ensure its view of ordering is consistent
with all the other threads in the system, a challenge for thread-modular
verification. Although dynamic locks are supported in some previous
work treating deadlock-freedom as a safety property (e.g., Boyapati
et al., 2002; Leino and Müller, 2009), it is unclear how to apply the

310 Background

techniques for general progress reasoning, with possible combination of
locks, ad-hoc synchronization and rollbacks.

2.4.4 A Quick Look at Our Ideas

To conclude this section, we informally explain some of the key ideas
of our program logic LiLi. We illustrate the ideas by discussing how
to verify lock-freedom of the counter in Figure 1.1(a) and starvation-
freedom of the ticket lock-based counter in Figure 2.1(d).

Tokens for Delay

For the lock-free counter in Figure 1.1(a), the termination of the
loop (at lines 3-5) in the inc method could be delayed by an en-
vironment thread’s successful cas. The loop may even execute infinite
number of iterations in clients like (clt-lf). Nevertheless the counter
is lock-free because every successful cas in the environment corre-
sponds to a terminating method call of inc. So the overall system
progresses. The reasoning of the lock-free counter consists of two
parts.

1. The loop of the inc method must terminate if there are no pre-
emption and delaying actions (such as a successful cas in the
counter example) from the environment.

2. Every method performs only a finite number of delaying actions.
Thus executing one delaying action must make the method call
move towards termination.

In other words, either a method call is not delayed but progresses, or
its environment does delaying actions and progresses. In either case the
system as a whole must progress, so the object is lock-free.

In our logic LiLi, we formalize the second part of the above reasoning
by introducing tokens as ghost states. We assign a finite number of
tokens to each method call, and require that a token must be paid to
execute a delaying action (we can mark those delaying actions in the
rely and guarantee conditions R and G).

2.4. Verifying Progress Properties 311

The first part of the above reasoning is about loops. LiLi’s rule for
loops is in the following form to allow delays:

some well-founded metric decreases at each iteration, unless
delayed (i.e., interfered with a delaying action in R)

R,G ` {P}while B do C{Q} (l-d)

It simply says that the loop should terminate unless delayed. We prove
the termination by finding some well-founded metric M that decreases
at each round (like the loop variant in the Hoare logic total correctness
rule for loops). But if the environment preempts the execution of the
loop and performs a delaying action (indicated by the rely condition R),
the metric M is allowed to increase. Remember that the environment
would pay a token for the delaying action, so we make sure that the
overall system progresses.

Definite Actions for Blocking

Due to the use of a lock, the counter in Figure 2.1(d) can be blocked.
Nevertheless it is starvation-free because it uses ticket locks and there
is no permanent blocking under fair scheduling. The reasoning also has
two parts.

1. For the thread holding the lock, the lock release must eventually
happen because the critical section (i.e., the code at line 30 in
Figure 2.1(d)) terminates.

2. For a blocked thread, it must eventually acquire the lock (i.e., its
loop at lines 21-23 in Figure 2.1(c) must terminate) because it
waits for a finite sequence of lock release actions. The threads
requesting the lock form a queue. The thread holding the lock is
at the head of the queue, and it is dequeued when it releases the
lock. Then, for each blocked thread, the sequence of lock release
actions that it waits for gets shorter. Eventually the sequence
becomes empty and the thread gets the lock.

Our logic LiLi captures the ideas of the above reasoning. We in-
troduce a novel assertion called a “definite action” D, which models a

312 Background

thread action that, once enabled, must be eventually finished regardless
of environment interference. In the example of counter, the definite
action D is the lock release action after acquirement. It is enabled when
the lock is acquired. We should prove that D is indeed “definite”. This
can be done by showing that the critical section terminates (without
relying on the progress of any other threads), which is just the first part
of the above reasoning.

As in the second part of the above reasoning, we verify the loop
at lines 21-23 by showing that the current blocked thread waits for a
finite sequence of D-s. The first D in the sequence is enabled initially
(i.e., the head thread of the waiting queue acquires the lock). When the
first D is fulfilled, the next D in the sequence gets enabled (i.e., the
next thread in the waiting queue acquires the lock) and the length of
the D-sequence decreases. When the sequence becomes empty, we prove
that the current thread can progress and terminate its loop, by finding
some well-founded metric that decreases at each round (as in the above
rule l-d). We formalize the reasoning in LiLi using a while-rule in the
following form:

some well-founded metric decreases at each round, unless
blocked but the length of the D-sequence decreases

D, R,G ` {P}while B do C{Q} (l-b)

Since the fulfillment of definite actions does not rely on the progress
of other threads, and each thread waits for a finite sequence of defi-
nite actions only, we break the circular dependency in rely-guarantee
style reasoning of progress properties in the presence of blocking be-
haviors. Also, the definite actions are semantically specified (just like
the rely/guarantee conditions), so we can support ad-hoc synchroniza-
tion and do not rely on built-in synchronization primitives to enforce
ordering of events.

We will present the actual LiLi in detail in Section 7. In particular,
we will combine the ideas of definite actions and tokens to support both
blocking and delay, and address other challenges.

3
Basic Technical Settings

In this section, we describe the concurrent programming language we
use throughout the tutorial. We also define the generations of execution
traces and fair traces, which will be used in later sections to formulate
linearizability, progress properties and contextual refinement.

3.1 The Language

3.1.1 Syntax

Figure 3.1 shows the syntax of the language. A program W consists
of an object declaration Π and n parallel threads Ĉ as clients sharing
the object. To simplify the language, we assume there is only one
object in each program. Each Π maps method names fi to annotated
method implementations (Pi, xi, Ci), where xi and Ci are the formal
parameter and the method body respectively, and the assertion Pi is
an annotated precondition over the object state to ensure the safe
execution of the method. It is defined in Figure 3.2 and is used in
the operational semantics explained below. A thread Ĉ is either a
command C, or an end flag marking termination of the thread. The
commands include the standard ones used in separation logic, where

313

314 Basic Technical Settings

(MName) f, g . . . (PVar) x, y, z . . .

(Expr) E ::= x | n | E + E | . . .
(BExp) B ::= true | false | E = E | ¬B | . . .
(Stmt) C ::= x := E | x := [E] | [E] := E | print(E)

| x := cons(E, . . . , E) | dispose(E) | skip
| x := f(E) | return E | C;C
| if (B) C else C | while (B){C}
| await(B){C}

(ODecl) Π,Γ ::= {f1 ; (P1, x1, C1), . . . , fn ; (Pn, xn, Cn)}

(Prog) W ::= let Π in Ĉ1 ‖ . . .‖ Ĉn
(Thrd) Ĉ ::= C | end

Figure 3.1: Syntax of the programming language.

x := [E] and [E] := E′ read and write the heap at the location E

respectively, and x := cons(E, . . . , E) and dispose(E) allocate and free
memory cells respectively. In addition, we have method call (x := f(E))
and return (return E) commands. The print(E) command generates
externally observable events, which are used to define trace refinements in
Section 4. The await(B){C} command is the only blocking primitive in
the language. It blocks the current thread if B does not hold, otherwise
C is executed atomically together with the testing of B. We define the
syntactic sugar 〈C〉 for await(true){C}.

Assumptions. We make the following assumptions to simplify the
technical setting. There are no regular function calls in either clients or
objects. Therefore x := f(E) can only be executed in client code to call
object methods, and return E always returns from object methods to
clients. Each object method takes only one argument and each method
body ends with a return command. Object methods never execute
the print(E) command and therefore do not generate external events.
The command C in await(B){C} cannot contain await, print, and
method calls and returns. It cannot contain loops either so that it always
terminates.

3.1. The Language 315

(ThrdID) t ∈ Nat (Store) s, s ∈ PVar⇀ Val
(Heap) h,h ∈ Nat⇀ Val (Data) σ,Σ ::= (s, h)

(CallStk) κ, k ::= ◦ | (sl, x, C)
(ThrdPool) K,K ::= {t1 ; κ1, . . . , tn ; κn}

(PState) S,S ::= (σc, σo,K) (LState) ς, δ ::= (σc, σo, κ)

(ExecCtxt) E ::= [] | E;C
(Pre) P ∈ P(Data) (AbsFun) ϕ ∈ Data⇀ Data

(Event) e ::= (t, f, n) | (t, ret, n) | (t,obj) | (t,obj,abort)
| (t,out, n)(t, clt) | (t, clt,abort) | (t, term)
| (spawn, n)

(BIdSet) ∆ ∈ P(ThrdID) (PEvent) ι ::= (e,∆c,∆o)
(ETrace) E ::= ε | e ::E (co-inductive)
(PTrace) T ::= ε | ι ::T (co-inductive)

en(Ĉ) def=
{
B if ∃E, C ′. Ĉ = E[await(B){C ′}]
true otherwise

(σo, κ) |= B iff JBK((σo.s)](κ.sl)) = true ∧ κ 6= ◦
σc |= B iff JBKσc.s = true
btids(let Π in Ĉ1 ‖ . . .‖ Ĉn, (σc, σo,K)) def=

({t | K(t) = ◦ ∧ ¬(σc |= en(Ĉt))},
{t | K(t) 6= ◦ ∧ ¬((σo,K(t)) |= en(Ĉt))})

Figure 3.2: States and event traces.

3.1.2 Operational Semantics

Before describing the operational semantics rules, we first define program
states S in Figure 3.2. We use two sets of notations to represent states
at the concrete and the abstract levels respectively.

To ensure that the client code does not touch the object data, in S
we separate the data accessed by clients (σc) and by object methods (σo).
Each σ consists of a store s and a heap h, which map variables and
memory locations to values respectively. S also contains a thread pool
K mapping thread IDs t to the corresponding method call stacks κ.
Recall that the only function call allowed in the language is the method

316 Basic Technical Settings

(Ĉi, (σc, σo,K(i))) e−→ i,Π (Ĉ ′i, (σ′c, σ′o, κ′))) K′ = K{i ; κ′}
btids(let Π in Ĉ1 ‖ . . . Ĉ ′i . . .‖ Ĉn, (σ′c, σ′o,K′)) = (∆c,∆o)

(let Π in Ĉ1 ‖ . . . Ĉi . . .‖ Ĉn, (σc, σo,K))
p(e,∆c,∆o)−−−−−−→ (let Π in Ĉ1 ‖ . . . Ĉ ′i . . .‖ Ĉn, (σ′c, σ′o,K′))

Ĉi = skip K(i) = ◦ Ĉ ′i = end e = (i, term)
btids(let Π in Ĉ1 ‖ . . . Ĉi . . .‖ Ĉn, (σc, σo,K)) = (∆c,∆o)

(let Π in Ĉ1 ‖ . . . Ĉi . . .‖ Ĉn, (σc, σo,K))
p(e,∆c,∆o)−−−−−−→ (let Π in Ĉ1 ‖ . . . Ĉ ′i . . .‖ Ĉn, (σc, σo,K))

(Ĉi, (σc, σo,K(i))) e−→ i,Π abort

(let Π in Ĉ1 ‖ . . . Ĉi . . .‖ Ĉn, (σc, σo,K)) p(e,∅,∅)−−−−→ abort

Figure 3.3: Operational semantics rules—program transitions.

invocation made by a client and there are no nested function calls,
therefore each κ is either empty (◦, which means the thread is executing
the client code), or contains only one stack frame (sl, x, C), where sl
is the local store for the local variables of the method, x is the (client)
variable recording the return value, and C is the continuation (the
remaining client code to be executed after the return of the method).

The operational semantics rules consist of three parts, including
state transitions made by the whole program (Figure 3.3), by individual
threads (Figure 3.4), and by clients or object methods (Figure 3.5).

Figure 3.3 shows that the execution of the program W follows the
non-deterministic interleaving semantics, which is defined based on
thread transitions defined in Figure 3.4. Each transition over program
configurations is labelled with a program event ι, a triple in the form of
(e,∆c,∆o). The event e is generated by thread transitions. As defined
in Figure 3.2, (t, f, n) records the invocation of the method f with the
argument n in the thread t, and (t, ret, n) is for a method return with
the return value n. (t,obj) and (t, clt) record a regular object step and a
regular client step respectively, while (t,obj,abort) and (t, clt,abort)
are for aborting of the thread in the object and client code respectively.

3.1. The Language 317

Π(f) = (P , y, C) σo ∈ P JEKsc
= n

x ∈ dom(sc) κ = ({y ; n}, x,E[skip])

(E[x := f(E)], ((sc, hc), σo, ◦))
(t,f,n)−−−−→ t,Π (C, ((sc, hc), σo, κ))

f 6∈ dom(Π) or σo 6∈ Π(f).P or JEKsc undefined or x 6∈ dom(sc)

(E[x := f(E)], ((sc, hc), σo, ◦))
(t,clt,abort)−−−−−−−−→ t,Π abort

κ = (sl, x, C) JEKsl
= n s′c = sc{x ; n}

(E[return E], ((sc, hc), σo, κ)) (t,ret,n)−−−−−→ t,Π (C, ((s′c, hc), σo, ◦))

κ = (sl, x, C) JEKsl
undefined

(E[return E], ((sc, hc), σo, κ)) (t,obj,abort)−−−−−−−−→ t,Π abort

JEKsc
= n

(E[print(E)], ((sc, hc), σo, ◦))
(t,out,n)−−−−−−→ t,Π (E[skip], ((sc, hc), σo, ◦))

(C, (so] sl, ho)) −_ t (C ′, (s′o] s′l, h′o)) dom(sl) = dom(s′l)

(C, (σc, (so, ho), (sl, x, C1))) (t,obj)−−−−→ t,Π (C ′, (σc, (s′o, h′o), (s′l, x, C1)))

(C, σc) −_ t (C ′, σ′c)

(C, (σc, σo, ◦))
(t,clt)−−−−→ t,Π (C ′, (σ′c, σo, ◦))

(C, (so] sl, ho)) −_ t abort

(C, (σc, (so, ho), (sl, x, C1))) (t,obj,abort)−−−−−−−−→ t,Π abort

(C, σc) −_ t abort

(C, (σc, σo, ◦))
(t,clt,abort)−−−−−−−−→ t,Π abort

Figure 3.4: Selected operational semantics rules—thread transitions.

The output event (t,out, n) is generated by the print(E) command.
(t, term) records the termination of the thread t. We also introduce
a special event (spawn, n), which is inserted at the beginning of each
event trace to record the creation of n threads at the beginning of

318 Basic Technical Settings

JBKs = true (C, (s, h)) −_∗
t (skip, (s′, h′))

(E[await(B){C}], (s, h))−_t (E[skip], (s′, h′))

JBKs = true (C, (s, h)) −_∗
t abort

(E[await(B){C}], (s, h))−_t abort

Figure 3.5: Selected operational semantics rules—local thread transitions.

the whole program execution. It will be used for defining fairness of
scheduling in Subsection 3.2.

The sets ∆c and ∆o in the label record the IDs of threads that
are blocked in the client code and object methods respectively. They
are generated by the function btids defined in Figure 3.2. Recall that
a thread t is executing the client code if its call stack is empty, i.e.,
K(t) = ◦. We also define en(Ĉ) as the enabling condition for Ĉ, which
ensures that Ĉ can execute at least one step unless it has terminated.
Here the execution context E defines the position of the command to
be executed next.

The second rule in Figure 3.3 shows that end is used as a flag
marking the termination of a thread. A termination event (t, term) is
generated correspondingly.

The first two rules in Figure 3.4 show that method calls can only
be executed in the client code (i.e., when the stack κ is empty), and it
is the clients’ responsibility to ensure that the precondition P (defined
in Figure 3.2) of the method holds over the object data. If P does not
hold, the method invocation step aborts. Similarly, as shown in the
subsequent rules, the return command can only be executed in the
object method, and the print command can only be in the client code.
Other commands can be executed either in the client or in the object,
and the transitions are made over σc and σo respectively.

In Figure 3.5 we show the operational semantics for await(B){C}.
It tests B and execute C atomically if B holds. Note that there is no
transition rule when B is false, which means that the thread is blocked.
Transition rules of other commands are standard and omitted here.

3.2. Execution Traces and Fairness of Scheduling 319

More discussions about partial methods. There are actually two
reasons that make a method partial. The first is due to non-termination
when the method is called under certain conditions. The second is due
to abnormal termination, i.e., the method aborts or terminates with
incorrect states or return values. Since the goal of this tutorial is to
study progress, we focus on the first kind of partial methods.

In our language, we specify the two kinds of partial methods
differently. For the first kind, we use the enabling condition B in
await(B){C} to specify when the method should not be blocked. For
the second kind, we use the annotated precondition P to specify the
condition needed for the method to execute safely and to generate
correct results. For instance, although the lock’s release method L_REL
in specification (2.3.2) always terminates, it needs an annotated pre-
condition l=cid to prevent client threads not owning the lock from
releasing it.

3.2 Execution Traces and Fairness of Scheduling

An event trace E is a (possibly infinite) sequence of events, and a
program trace T is a (possibly infinite) sequence of labels ι. We use ++
to concatenate two traces, and write [e1, . . . , en] (or [ι1, . . . , ιn]) for a
trace consisting of a sequence of elements.

In Figure 3.6, we define T JW,SK as the prefix closed set of fi-
nite traces T generated during the execution of (W,S). The trace
set TωJW,SK contains the (possibly infinite) whole execution traces T
generated by (W,S) but with a special label ((spawn, |W |),∆c,∆o)
inserted at the beginning. Here we use |W | to represent the number
of threads in W . The event (spawn, |W |) is used to define fairness, as
explained below. ∆c and ∆o records the threads blocked in clients and
object methods respectively (see the definition of btids in Figure 3.2). At
the beginning of an execution, ∆o must be an empty set since no threads
are in method calls. The whole execution trace T may be generated
under three cases, i.e., the execution of (W,S) diverges, aborts or gets
stuck (terminates or is blocked). We write (W,S) T7−→ω · for an infinite
execution. In this case, the length of T must be infinite, written as
|T | = ω.

320 Basic Technical Settings

T JW,SK def= {T | ∃W ′,S ′. (W,S) T7−→∗ (W ′,S ′) ∨ (W,S) T7−→∗ abort}

HJW,SK def= {E | ∃T. E = get_hist(T) ∧ T ∈ T JW,SK }

OJW,SK def= {E | ∃T. E = get_obsv(T) ∧ T ∈ T JW,SK }

TωJW,SK def=
{((spawn, |W |),∆c,∆o) ::T | btids(W,S) = (∆c,∆o) ∧

(((W,S) T7−→ω ·) ∨ ((W,S) T7−→∗ abort)
∨∃W ′,S ′. ((W,S) T7−→∗ (W ′,S ′)) ∧ ¬(∃ι. (W ′,S ′) ι7−→ _)) }

|let Π in C1 ‖ . . . ‖ Cn|
def= n tnum(((spawn, n),∆c,∆o) ::T) def= n

evt(ι) def= e if ι = (e,∆c,∆o) bset(ι) def= ∆c ∪∆o if ι = (e,∆c,∆o)

i-o-enabled(t, T) iff ∀i. ∃j ≥ i. t 6∈ bset(T (j)) “infinitely often”
e-a-enabled(t, T) iff ∃i. ∀j ≥ i. t 6∈ bset(T (j)) “eventually always”

fair(T) iff
|T |=ω =⇒ ∀t ∈ [1..tnum(T)].

evt(last(T |t)) = (t, term) ∨ |(T |t)| = ω

sfair(T) iff
|T |=ω =⇒ ∀t ∈ [1..tnum(T)].

evt(last(T |t)) = (t, term) ∨ (i-o-enabled(t, T) =⇒ |(T |t)| = ω)
wfair(T) iff

|T |=ω =⇒ ∀t ∈ [1..tnum(T)].
evt(last(T |t)) = (t, term) ∨ (e-a-enabled(t, T) =⇒ |(T |t)| = ω)

Figure 3.6: Trace generation and fairness.

Histories and externally observable event traces. Linearizability and
contextual refinement are defined using traces of history events and
externally observable events, respectively. We call (t, f, n), (t, ret, n)
and (t,obj,abort) history events, and (t,out, n), (t,obj,abort) and
(t, clt,abort) externally observable events. As defined in Figure 3.6,
HJW,SK contains the set of histories projected from traces in T JW,SK.
Here get_hist(T) returns a subsequence E consisting of the history
events projected from the corresponding labels in T . Similarly OJW,SK

3.2. Execution Traces and Fairness of Scheduling 321

contains the set of externally observable event traces projected from
traces in T JW,SK, where get_obsv(T) is a subsequence E consisting of
externally observable events only.

Fair traces. We define three kinds of fairness in Figure 3.6. For a trace
in which no thread ever blocks, we can define fair(T), saying that each
thread either terminates, or is executed infinitely many times.

A trace T is strongly fair, represented as sfair(T), if each thread
either terminates, or is executed infinitely many times if it is infinitely
often enabled (i-o-enabled). We know a thread is enabled if it is not in
the blocked sets ∆c and ∆o. T (j) represents the j-th element in the
trace T . Similarly, wfair(T) says that T is a weakly fair trace. It requires
that each thread either terminates, or is executed infinitely many times
if it is always enabled after certain step on the trace (e-a-enabled). It is
easy to see that sfair is stronger than wfair, and they both coincide with
fair for a trace in which no thread ever blocks, as shown in Lemma 3.1.

Lemma 3.1. For any T , both the following hold:

1. sfair(T) =⇒ wfair(T).

2. if ∀i. T (i) = (_, ∅, ∅), then fair(T) ⇐⇒ sfair(T) ⇐⇒ wfair(T).

4
Linearizability and Contextual Refinement

In this section we formally define linearizability (Herlihy and Wing,
1990) of an object Π with respect to its abstract specification Γ. To
support partial methods, Γ is an atomic partial specification for Π. It
has the same syntax with Π (see Figure 3.1), but each method body
in Γ is always an await block await(B){C} (followed by a return E

command). Besides, we assume that the methods in Γ are safe, i.e., they
never abort.

We also discuss the Abstraction Theorem for linearizability, i.e.,
linearizability is equivalent to a contextual refinement which relates the
externally observable event traces of Π to those of Γ.

4.1 Linearizability

Linearizability is defined using histories. As defined in Subsection 3.2,
histories are special event traces only consisting of method invocation,
method return, and object faults.

Definition 4.1 formulates linearizable histories. We say a history
E is linearizable with respect to E ′, i.e., E �lin E ′, if they have the
same sub-trace when projected over individual threads (projection
represented as E|t), and E is a permutation of E ′ but preserves the

322

4.1. Linearizability 323

match(e1, e2) def= is_inv(e1) ∧ is_ret(e2) ∧ (tid(e1) = tid(e2))

seq(ε)
is_inv(e)
seq(e :: ε)

match(e1, e2) seq(E)
seq(e1 :: e2 :: E)

∀t. seq(E|t)
well_formed(E)

well_formed(E)
E ∈ extensions(E)

E ′ ∈ extensions(E) is_ret(e) well_formed(E ′++[e])
E ′++[e] ∈ extensions(E)

truncate(ε) def= ε

truncate(e ::E) def=
{
e :: truncate(E) if is_ret(e) or ∃i. match(e, E(i))
truncate(E) otherwise

completions(E) def= {truncate(E ′) | E ′ ∈ extensions(E)}

}
def= {t1 ; ◦, . . . , tn ; ◦}

Γ B (Σ, E) iff ∃n,C1, . . . , Cn, σc.
(E ∈HJ(let Γ in C1 ‖ . . .‖Cn), (σc,Σ,})K) ∧ seq(E)

Figure 4.1: Auxiliary definitions for linearizability.

order of non-overlapping method calls in E ′. Here we use is_inv(e) (or
is_ret(e2)) to represent that e is in the form of (t, f, n) (or (t, ret, n)).

Definition 4.1 (Linearizable Histories). E �lin E ′ iff the following hold.

1. ∀t. E|t = E ′|t.

2. There exists a bijection π : {1, . . . , |E|} → {1, . . . , |E ′|} such that
∀i. E(i) = E ′(π(i)) and

∀i, j. i < j ∧ is_ret(E(i)) ∧ is_inv(E(j)) =⇒ π(i) < π(j).

Definition 4.2 says Π is linearizable with respect to Γ and the state
abstraction function ϕ (see Figure 3.2) if, for any history E generated
by Π with the initial object data σ, the corresponding complete history
Ec is always linearizable with some sequential history E ′ generated by
Γ with initial object data Σ such that ϕ(σ) = Σ. The set HJW,SK
contains histories generated from finite executions, which is defined in
Figure 3.6. Other key notations are defined in Figure 4.1. We use } to
represent the initial thread pool where each thread has an empty call
stack. completions(E) appends matching return events for some pending

324 Linearizability and Contextual Refinement

invocations in E , and discards the other pending invocations, so that
in the resulting trace every invocation has a matching return. We use
tid(e) for the thread ID in e.

Definition 4.2 (Linearizability of Objects). The object implementation
Π is linearizable with respect to Γ, written as Π �lin

ϕ Γ, iff
∀n,C1, . . . , Cn, σc, σ,Σ, E .
E ∈ HJ(let Π in C1 ‖ . . .‖Cn), (σc, σ,})K ∧ (ϕ(σ) = Σ)

=⇒ ∃Ec, E ′. (Ec ∈ completions(E)) ∧ (Γ B (Σ, E ′)) ∧ (Ec �lin E ′)

4.2 Contextual Refinement and Abstraction

Filipović et al. (2009) showed that linearizability is equivalent to a
contextual refinement. As defined below, Π contextually refines Γ under
the state abstraction function ϕ if, for any clients C1 . . . Cn as the
execution context, and for any initial object data related by ϕ, executing
Π generates no more externally observable event traces than executing Γ.
Here OJW,SK contains the externally observable event traces generated
from finite executions, which is defined in Figure 3.6.

Definition 4.3 (Basic Contextual Refinement). Π vfin
ϕ Γ iff

∀n,C1, . . . , Cn, σc, σ,Σ. (ϕ(σ) = Σ) =⇒
OJ(let Π in C1 ‖ . . .‖Cn), (σc, σ,})K

⊆ OJ(let Γ in C1 ‖ . . .‖Cn), (σc,Σ,})K.

Theorem 4.1 shows the equivalence between linearizability and the
contextual refinement. Its proof follows Filipović et al. (2009).

Theorem 4.1 (Abstraction for Linearizability).
Π �lin

ϕ Γ ⇐⇒ Π vfin
ϕ Γ.

Theorem 4.1 allows us to use Π vfin
ϕ Γ to identify linearizable objects.

However, as we have explained in Subsection 2.3, we cannot use it to
characterize progress properties of objects, because Π vfin

ϕ Γ considers
prefix-closed sets of event traces.

5
Progress Properties

In this section we discuss progress properties. We first formulate the
four traditional progress properties, wait-freedom (WF), lock-freedom
(LF), starvation-freedom (SF) and deadlock-freedom (DF), for objects
whose methods are all total. Then we define the new progress properties,
partial starvation-freedom (PSF) and partial deadlock-freedom (PDF),
for objects with partial methods.

5.1 Progress for Objects with Total Methods Only

We define progress as properties over both event traces T and object
implementations Π. In this subsection, we assume that the code of Π does
not contain blocking primitives. As a result, the code is always enabled.

Definition 5.1 (Progress of Objects). The object Π satisfies the progress
property Prog, written as Progϕ(Π), iff

∀n,C1,. . . ,Cn, σ, T. T ∈ TωJ(let Π in C1‖. . .‖Cn), σK ∧ (σ∈dom(ϕ))
=⇒ Prog(T).
In Definition 5.1, we say an object implementation Π has a progress

property Prog (Prog ∈ {WF, LF,SF,DF}) if all its event traces have the
property. Here we use Tω to generate the event traces (see Figure 3.6).

325

326 Progress Properties

pend_inv(T) def=
{e | ∃i. e = evt(T (i)) ∧ is_inv(e) ∧ ¬∃j > i.match(e, evt(T (j))) }

abt(T) iff ∃i. is_abt(evt(T (i)))
prog-t(T) iff pend_inv(T) = ∅
prog-p(T) iff ∀i, e. e ∈ pend_inv(T (1..i)) =⇒ ∃j > i. is_ret(evt(T (j)))
sched(T) iff

|T | = ω ∧ pend_inv(T) 6= ∅ =⇒ ∃e. e ∈ pend_inv(T) ∧ |(T |tid(e))| = ω

WF iff sched =⇒ prog-t ∨ abt LF iff sched =⇒ prog-p ∨ abt
SF iff fair =⇒ prog-t ∨ abt DF iff fair =⇒ prog-p ∨ abt

Figure 5.1: Formalizing WF, LF, SF and DF.

Before formulating each progress property over event traces, we first
define some auxiliary properties in Figure 5.1.

Thread progress and program progress. We use prog-t(T) in Fig-
ure 5.1 to say that every method call in T eventually finishes. It en-
sures that each individual thread calling a method eventually returns.
prog-p(T) says that there is always at least one method call that finishes.
It ensures that the whole program is making progress. Note that the
return event T (j) in prog-p does not have to be a matching return of the
pending invocation e. Here pend_inv(T) represents the set of method
invocation events that do not have matching returns. T (1..i) represents
the prefix of T with length i.

Scheduling. The basic requirement for a good schedule is sched. If T
is infinite and there exist pending calls, then at least one pending thread
should be scheduled infinitely often. In the case when no thread ever
blocks, there are two possible reasons causing a method call of thread t
to pend. Either t is no longer scheduled, or it is always scheduled but
the method call never finishes. sched rules out the bad schedule where
no thread with an invoked method is active. For instance, the following
infinite trace does not satisfy sched.

5.2. Progress for Objects with Partial Methods 327

LF ⇐⇒ WF ∨ prog-p
SF ⇐⇒ WF ∨ ¬fair
DF ⇐⇒ LF ∨ ¬fair

WF

LF SF

DF

Figure 5.2: Relationships between WF, LF, SF and DF.

(t1, f1, n1) :: (t2, f2, n2) :: (t1,obj) :: (t3, clt) :: (t3, clt) :: (t3, clt) :: . . .

The fairness of scheduling is defined as fair(T), sfair(T) and wfair(T)
in Figure 3.6. We can see fair⇒ sched, that is, a fair schedule is a good
schedule satisfying sched.

Progress properties. At the bottom of Figure 5.1 we define the
progress properties over event traces. We omit the parameter T in
the formulae to simplify the presentation. An event trace T is wait-free
(i.e., WF(T) holds) if under the good schedule sched, it guarantees prog-t
unless it ends with a fault. LF(T) is similar except that it guarantees
prog-p. Starvation-freedom and deadlock-freedom guarantee prog-t and
prog-p under fair scheduling.

Figure 5.2 contains lemmas that relate progress properties. For
instance, an event trace is starvation-free, iff it is wait-free or not fair.
These lemmas give us the relationship lattice at the right-hand side of
the figure, where the arrows represent implications.

5.2 Progress for Objects with Partial Methods

We want to define PSF and PDF as generalizations of starvation-freedom
and deadlock-freedom respectively. We say an object Π is partially
starvation-free if, under fair scheduling (with strong or weak fairness),
each method call eventually returns (as required in starvation-freedom),
unless it is eventually always disabled (i.e., it is not supposed to return in
this particular execution context). In the latter case the non-termination
is caused by inappropriate invocations of the methods in the client code
and the object implementation should not be blamed. Similarly, PDF

328 Progress Properties

requires that in each fair execution trace by any client with the object Π,
either there always exists a method invocation that eventually returns
(as in deadlock-freedom), or each pending method invocation must be
continuously disabled.

Although the idea is intuitive, it is challenging to formalize it.
This is because when we say a method is disabled we are thinking
at an abstract level. We actually refer to the enabling condition B in
await(B){C} in the object’s atomic partial specification Γ. However,
such a condition cannot be syntactically inferred based on the low-level
object implementation Π. For instance, the lock implementations in
Figure 2.1 use non-blocking commands only, so they are always enabled
to execute one more step at this level, although we intend to say at a
more abstract level that the L_acq() operation is disabled when the
lock is unavailable.

To address this problem, we refer to the abstract object specification
Γ when defining the progress of a concrete object Π. Recall that method
specifications in Γ are in the form of await(B){C}, so we know that
the method is disabled when B does not hold.

We formalize the idea as Definition 5.2. Under the scheduling fairness
χ (where χ ∈ {sfair,wfair}), we say the object Π is PSF with respect
to an abstract specification Γ and a state abstraction function ϕ, i.e.,
PSFχϕ,Γ(Π), if any χ-fair trace T generated by ((let Π in C1 ‖ . . . ‖
Cn), (σc, σ,})) either aborts, or satisfies prog-t, or we could blame the
client for the blocking of each pending invocation.

In the last case, we must be able to find a trace Ta generated by
the execution of the abstract object Γ (with the abstract object state Σ
related to σ by ϕ) such that it has the same method invocation and
return history with T , and every pending invocation in this abstract
trace Ta is eventually always disabled. See the definition of well-blocked
in Figure 5.3 for the formal details.

Definition 5.2 (Partially Starvation-Free Objects). PSFχϕ,Γ(Π) iff

∀n,C1, . . . , Cn, σc, σ,Σ, T.
T ∈ TωJ(let Π in C1 ‖ . . .‖Cn), (σc, σ,})K ∧ (ϕ(σ) = Σ) ∧ χ(T)
=⇒ abt(T) ∨ prog-t(T)

∨ well-blocked(T, ((let Γ in C1 ‖ . . .‖Cn), (σc,Σ,}))).

5.2. Progress for Objects with Partial Methods 329

e-a-disabled(t, T) iff ∃i. ∀j ≥ i, ι = T (j). t ∈ bset(ι) “eventually always”
well-blocked(T, (Wa,Sa)) iff

∃Ta. Ta ∈ TωJWa,SaK ∧ (get_hist(T) = get_hist(Ta))
∧ (∀e. e ∈ pend_inv(Ta) =⇒ e-a-disabled(tid(e), Ta))

Figure 5.3: Auxiliary definitions for PSF and PDF.

We also define PDF in Definition 5.3. It is similar to PSF, but
requires prog-p instead of prog-t.

Definition 5.3 (Partially Deadlock-Free Objects). PDFχϕ,Γ(Π) iff

∀n,C1, . . . , Cn, σc, σ,Σ, T.
T ∈ TωJ(let Π in C1 ‖ . . .‖Cn), (σc, σ,})K ∧ (ϕ(σ) = Σ) ∧ χ(T)
=⇒ abt(T) ∨ prog-p(T)

∨ well-blocked(T, ((let Γ in C1 ‖ . . .‖Cn), (σc,Σ,}))).

The above definitions consider the three factors that may affect
the termination of a method call: the scheduling fairness χ, the object
implementation Π which determines whether its traces satisfy prog-t
or prog-p, and the execution context C1 ‖ . . . ‖ Cn which may make
inappropriate method invocations so that well-blocked holds. Consider
the lock objects in Figure 2.1(a) and (c) and the following client program
(5.2.1). The initial value of the shared variable x is 0.

[_]acq; print(0); [_]rel;
x:=1;
[_]acq; print(1); [_]rel;

[_]acq; print(2);
while(x=1){

[_]rel; [_]acq; print(3);
}

(5.2.1)
The client can produce a trace satisfying prog-t when it uses the ticket
lock. It first executes the left thread until termination and then executes
the right thread. Then every method call terminates, printing out 0, 1, 2
and an infinite number of 3. Thus prog-t holds. When the test-and-set
lock is used instead, the same client can produce a trace satisfying
prog-p but not prog-t. In the execution, the second call to L_acq in
the left thread never finishes. It prints out 0, 2 and an infinite number

330 Progress Properties

of 3, but not 1. Such an execution is not possible when the client uses
the ticket lock, under fair scheduling. This shows how different object
implementations affect termination of method calls. Note that neither
of the two execution traces satisfies well-blocked, because every method
call in the traces either terminates or is enabled infinitely often.

On the other hand, the client (5.2.1) can produce a well-blocked trace
no matter it uses the ticket lock or the test-and-set lock. It executes the
right thread first until termination and then executes the left thread.
Then the first call to lock acquire of the left thread is always blocked,
and only 2 is printed during the execution. The non-termination of the
method call is caused by the particular execution context, in which
the method call is not supposed to return, regardless of the object
implementations. This is why the same well-blocked condition is used
in both definitions of PSF and PDF for both strongly and weakly fair
executions of the object implementation.

PSF (or PDF) and starvation-freedom (or deadlock-freedom) co-
incide if we require each await block in Γ is in the special form
of await(true){C} —Since the methods in Γ are always enabled,
well-blocked(T, ((let Γ in C1 ‖ . . . ‖ Cn),Sa)) now requires that there
is no pending invocation in T . This is stronger than both prog-t(T)
and prog-p(T). Therefore we can remove the disjunction branch about
well-blocked in Definitions 5.2 and 5.3, resulting in definitions equivalent
to starvation-freedom and deadlock-freedom respectively.

6
Progress-Aware Abstraction

In this section we study the abstraction of linearizable objects with
the progress properties. Similar to Theorem 4.1, we want theorems
showing that linearizability along with a progress property of an object
Π is equivalent to a contextual refinement between Π and some ab-
stract object Π′, where Π′ can be syntactically derived from the atomic
specification Γ.

6.1 Overview of Our Results

Contextual refinements for objects with total methods only. Ta-
ble 6.1 summarizes our results. As we explained in Subsection 2.3,
we need to consider three dimensions: the observable behaviors, the
scheduling, and the abstractions.

Wait-freedom of linearizable objects is equivalent to a contextual re-
finement between Π and the atomic specification Γ, where the observable
behaviors include the divergence of each individual thread (represented
by “(t, Div.)” in Table 6.1) as well as I/O events of (possibly infinite)
full executions. The executions can be either fair or unfair (i.e., the
scheduling can be “Any” as shown in Table 6.1). As a consequence, if a
thread t of a client program diverges when the client uses a linearizable

331

332 Progress-Aware Abstraction

Table 6.1: Characterizing WF, LF, SF and DF via contextual refinements

Wait-Free Lock-Free Starvation-Free Deadlock-Free

Observable (t, Div.) (t, Div.) Div. Div.
Scheduling Any Any Fair Fair
Abstraction Atom Non-Atom Atom Non-Atom

and wait-free object Π, then t must also diverge when using the atomic
specification Γ instead. We say that the abstraction for a wait-free
object is atomic (“Atom” in Table 6.1).

Lock-freedom can be characterized by the same contextual refine-
ment except that the abstraction has to be non-atomic (represented by
“Non-Atom” in Table 6.1). For instance, such a progress-aware contextual
refinement does not hold between the lock-free counter implementation
inc() in Figure 1.1(a) and the atomic counter INC in Figure 2.1(e).
The reason is, the left thread of the client program (2.2.1) may diverge
if using inc() in Figure 1.1(a), but cannot diverge if using the atomic
INC instead.

Deadlock-freedom or starvation-freedom of linearizable objects is
shown equivalent to a contextual refinement which observes divergence
(represented by “Div.” in Table 6.1) and I/O events of fair executions.
Then, a client which diverges with Π in a fair execution must also have
a diverging execution when using the abstraction Π′ in a fair execution.
Deadlock-free and starvation-free objects could be distinguished by
different abstractions. The abstraction for starvation-free objects is the
atomic specification Γ, while for deadlock-free ones the abstraction has
to be non-atomic.

The starvation-free counter inc_tkL() in Figure 2.1(d) is a progress-
aware contextual refinement of the atomic counter INC in Figure 2.1(e),
but the deadlock-free inc() in Figure 2.1(b) is not. To see the differ-
ence, consider the client program (2.2.2). Under fair scheduling, the
client calling inc() may generate an empty I/O event trace because
it may not print out 1. However, the empty trace cannot be generated
when replacing inc() with inc_tkL() or INC(), because the resulting
program must print out 1.

6.1. Overview of Our Results 333

Table 6.2: Wrappers on atomic specifications for PSF and PDF

PSF PDF

Strong Fairness wrsfairPSF(await(B){C}) wrsfairPDF(await(B){C})
Weak Fairness wrwfairPSF (await(B){C}) wrwfairPDF (await(B){C})

Contextual refinements for objects with partial methods. As we
have explained in Subsection 2.3, for PSF and PDF under strong and
weak fairness respectively, we may need four different abstractions. We
define code wrappers over the basic blocking primitive await(B){C}
to generate the abstractions. The code wrappers are syntactic transfor-
mations that transform await(B){C} into possibly non-atomic object
specifications which can be refined by the object implementations in
the progress-aware contextual refinement. As shown in Table 6.2, the
four wrappers correspond to all combinations of fairness and progress.
The formal definitions are explained in Subsection 6.5. Here we only
give some high-level intuitions using the lock objects as examples.

First, we observe that the lock specification (2.3.2) can already
serve as an abstraction for ticket locks under strong fairness, or for
test-and-set locks under weak fairness. In general, the wrapper wrsfairPSF
can be an identity function, i.e., the atomic partial specifications are
already proper abstractions for PSF objects (not only for locks) under
strong fairness. But wrwfairPDF is subtle. The atomic partial specifications
are insufficient as abstractions for general PDF objects under weak
fairness, which we will explain in detail in Subsection 6.5.

Second, as we have seen from Table 2.1, the lock specification (2.3.2)
does not work for PSF locks under weak fairness nor for PDF locks
under strong fairness. Then the role of the wrapper wrwfairPSF (or wrsfairPDF) is
to generate the same PSF (or PDF) behaviors even though the fairness
of scheduling is weaker (or stronger).

To guarantee PSF, the idea is to create some kind of “fairness” on
termination, i.e., every method call can get the chance to terminate.
Given weakly fair scheduling, this requires the enabling condition of
the abstraction to continuously remain true. As a result, a possible way
to define wrwfairPSF (L_ACQ’) is to keep a queue of threads requesting the

334 Progress-Aware Abstraction

lock, and a thread can acquire the lock only when it is at the head of
the queue.

To support PDF under strongly fair scheduling, we have to allow
non-termination even if the enabling condition is infinitely often true.
For the client (2.3.3), the call of L_ACQ’ in the specification (2.3.2)
under strongly fair scheduling always terminates. Then wrsfairPDF needs
to incorporate with some kind of delaying mechanisms, so that the
termination of L_ACQ’ of the left thread could be delayed every time
when the right thread succeeds in acquiring the lock.

The abstraction theorem. We prove the abstraction theorem, saying
that each progress property P (together with linearizability) is equivalent
to a contextual refinement where the abstraction is generated by the
corresponding wrapper. On the one hand, the theorem justifies the
abstractions generated by our wrappers, showing that they are refined
by linearizable object implementations satisfying P . On the other hand,
it also justifies our formulation of progress properties (in particular the
two new ones, PSF and PDF) by showing that they imply progress-aware
contextual refinements.

The abstraction theorem also allows us to verify safety and progress
properties of whole programs (consisting of clients and objects) in a
modular way. That is, after proving linearizability and progress P of
an object Π with respect to its atomic partial specification Γ, we can
replace Π with the abstraction generated by applying the corresponding
wrapper over Γ, and then reason about properties of the whole program
at the high abstraction level.

6.2 Formalizing Progress-Aware Contextual Refinements

We first extend the basic contextual refinement in Definition 4.3 to
observe progress as well as linearizability.

Definition 6.1 shows three kinds of progress-aware contextual re-
finements. The first two, Π vtω

ϕ Π′ and Π vωϕ Π′, define contextual
refinement under arbitrary scheduling. Π contextually refines Π′ if,
in any execution context, Π generates no more observable behaviors
than Π′. The sets of observable behaviors OtωJW,SK and OωJW,SK

6.2. Formalizing Progress-Aware Contextual Refinements 335

are defined in Figure 6.1. OωJW,SK collects the externally observable
event traces E extracted from the full execution traces T in TωJW,SK.
OtωJW,SK observes the divergence of individual threads as well as the
externally observable event traces. We use div_tids(T) to collect the set
of threads that diverge in the trace T . These two contextual refinements
will be used to characterize wait-free and lock-free objects.

The last kind of contextual refinement in Definition 6.1, Π vχϕ Π′,
defines the contextual refinement for objects under different fairness χ
of scheduling (χ ∈ {fair, sfair,wfair}). The set of event traces OχJW,SK
is defined at the bottom of Figure 6.1, where each event trace E is
extracted from the χ-fair trace T in TωJW,SK. This kind of contextual
refinement will be used to characterize SF and DF (χ = fair), and PSF
and PDF (χ ∈ {sfair,wfair}).

Definition 6.1 (Progress-Aware Contextual Refinement).

Π vtω
ϕ Π′ iff
∀n,C1, . . . , Cn, σc, σ,Σ. ϕ(σ) = Σ =⇒

OtωJ(let Π in C1 ‖ . . .‖Cn), (σc, σ,})K
⊆ OtωJ(let Π′ in C1 ‖ . . .‖Cn), (σc,Σ,})K

Π vωϕ Π′ iff
∀n,C1, . . . , Cn, σc, σ,Σ. ϕ(σ) = Σ =⇒
OωJ(let Π in C1 ‖ . . .‖Cn), (σc, σ,})K

⊆ OωJ(let Π′ in C1 ‖ . . .‖Cn), (σc,Σ,})K

Π vχϕ Π′ iff
∀n,C1, . . . , Cn, σc, σ,Σ. ϕ(σ) = Σ =⇒

OχJ(let Π in C1 ‖ . . .‖Cn), (σc, σ,})K
⊆ OχJ(let Π′ in C1 ‖ . . .‖Cn), (σc,Σ,})K

Here χ ∈ {sfair,wfair, fair}.

The refinements in Definition 6.1 are progress-aware because we use
the whole execution trace T here, from which we can tell whether the
corresponding execution terminates or not.

Below we discuss the Abstraction Theorem for each progress property.
As explained in Subsection 6.1, we define wrappers for atomic (possibly
partial) specifications Γ, which transform the method specification

336 Progress-Aware Abstraction

div_tids(T) def= {t | (|(T |t)| = ω)}

OtωJW,SK def=
{(E , ts) | ∃T. T ∈ TωJW,SK ∧ get_obsv(T) = E ∧ div_tids(T) = ts}

OωJW,SK def= {E | ∃T. T ∈ TωJW,SK ∧ get_obsv(T) = E}

OχJW,SK def= {E | ∃T. T ∈ TωJW,SK ∧ χ(T) ∧ get_obsv(T) = E}
where χ ∈ {fair, sfair,wfair}

Figure 6.1: Observable behaviors.

await(B){C} in Γ into a (possibly non-atomic) abstract specification
for each traditional progress property (WF, LF, SF and DF), and for
each combination of the two new progress property (PSF or PDF) and
fairness (sfair or wfair).

Before introducing the definition of the wrappers in Figures 6.2
and 6.3, we first show our abstraction theorem (Theorem 6.1). It estab-
lishes the equivalence between the progress-aware contextual refinement
and linearizability with each progress property.

Theorem 6.1 (Abstraction Theorem).

• Let Prog ∈ {WF, LF}. Then,

Π �lin
ϕ Γ ∧ Progϕ(Π) ⇐⇒ Π vtω

ϕ̂
wrProg(Γ).

• Let Prog ∈ {SF,DF}. Then,

Π �lin
ϕ Γ ∧ Progϕ(Π) ⇐⇒ Π vfair

ϕ̂
wrProg(Γ).

• Let Prog ∈ {PSF,PDF} and χ ∈ {sfair,wfair}, then

Π �lin
ϕ Γ ∧ Progχϕ,Γ(Π) ⇐⇒ Π vχ

ϕ̂
wrχProg(Γ).

Here ϕ̂ = wrProg(ϕ) if Prog ∈ {WF, LF, SF,DF}, and ϕ̂ = wrχProg(ϕ) if
Prog ∈ {PSF,PDF}. The wrappers for Γ and ϕ are defined in Figures 6.2

6.3. Abstraction for Wait-Free and Lock-Free Objects 337

wrProg(Γ)(f) def= (P , x, wrProg(〈C〉); return E)
if Γ(f) = (P , x, 〈C〉; return E)

wrWF(〈C〉) def= 〈C〉

wrLF(〈C〉) def= flip; 〈C〉; flip;

flip def= local tmp, b := false;
while (!b) {

tmp := flag;
b := cas(&flag, tmp, !tmp);

}

wrSF(〈C〉) def= 〈C〉

wrDF(〈C〉) def= while (done){};
〈C; done := true;〉; done := false;
while (done){};

wrWF(ϕ) def= ϕ

wrLF(ϕ)(σ) def=
{
σ′] {flag ; false} if ϕ(σ) = σ′

undefined if σ 6∈ dom(ϕ)
wrSF(ϕ) def= ϕ

wrDF(ϕ)(σ) def=
{
σ′] {done ; false} if ϕ(σ) = σ′

undefined if σ 6∈ dom(ϕ)

Figure 6.2: Definition of wrappers for WF, LF, SF and DF.

and 6.3. We also assume that the variables flag, listid and done
introduced in the wrapper code are fresh, i.e., flag, listid, done 6∈
FV({Π,Γ, ϕ}).

In the following subsections, we discuss the abstraction for each
progress property by introducing the definitions of the wrappers in
detail.

6.3 Abstraction for Wait-Free and Lock-Free Objects

The contextual refinement for wait-free and lock-free objects takes Otω
at both the concrete and the abstract sides, where the divergence of

338 Progress-Aware Abstraction

wrχProg(Γ)(f) def= (P , x, wrχProg(await(B){C}); return E)
if Γ(f) = (P , x, await(B){C}; return E)

wrsfairPSF(await(B){C}) def= await(B){C}

wrwfairPSF (await(B){C}) def= listid := listid++[(cid, ‘B’)];
await(B ∧ cid = enhd(listid)){

C; listid := listid\cid;
}

wrsfairPDF(await(B){C}) def= while (done){};
await(B ∧ ¬done){C; done := true; };
done := false;
while (done){};

wrwfairPDF (await(B){C}) def= await(B ∧ ¬done){C; done := true; };
done := false;
await(¬done){}

wrsfairPSF(ϕ) def= ϕ

wrwfairPSF (ϕ)(σ) def=
{
σ′] {listid ; ε} if ϕ(σ) = σ′

undefined if σ 6∈ dom(ϕ)

wrχPDF(ϕ)(σ) def=
{
σ′] {done ; false} if ϕ(σ) = σ′

undefined if σ 6∈ dom(ϕ)

Figure 6.3: Definition of wrappers for PSF and PDF.

individual threads as well as observable events are treated as observable
behaviors. The abstract specifications are generated using the wrappers
wrWF and wrLF in Figure 6.2.

Wrapper for WF. The wrapper wrWF is simply an identity function. It
maps the atomic (total) specification 〈C〉 to itself. Thus the abstraction
for wait-free objects is the atomic Γ itself. Since a wait-free object Π
guarantees that every method call finishes, it behaves just like an atomic
object. In particular, the sets div_tids of diverging threads are the same
when the client uses Π and Γ. The reason is, we have to blame the
client code itself for the divergence of a thread using Π. Thus, even if
the thread uses the abstract object Γ, it must still diverge.

6.3. Abstraction for Wait-Free and Lock-Free Objects 339

As an example, consider the client program (6.3.1).

inc(); ‖ while(true) inc(); (6.3.1)

Intuitively, for any execution in which the client uses the abstract
atomic operation INC, only the right thread t2 diverges. Thus Otω of the
abstract program is a singleton set {(ε, {t2})}. When the client uses a
wait-free object, its Otω set is still {(ε, {t2})}. It does not produce more
observable behaviors. But if it uses a non-wait-free object (such as the
lock-free one in Figure 1.1(a)), the left thread t1 does not necessarily
finish. The Otω set becomes {(ε, {t2}), (ε, {t1, t2})}. It produces more
observable behaviors than the abstract client, breaking the contextual
refinement. Thanks to observing div_tids that collects the diverging
threads, we can rule out non-wait-free objects which may cause more
threads to diverge.

Wrapper for LF. As the example (6.3.1) shows, the set div_tids of
diverging threads when the client uses a lock-free object Π may be larger
than the set div_tids when the client uses Γ. To address the problem, we
need the wrapper wrLF to delay the termination of the abstract atomic
operations.

Our first attempt is to introduce a new object variable flag and let
the wrapper wrLF transform 〈C〉 into:

flip; 〈C〉; (6.3.2)

Here the code snippet flip is defined in Figure 6.2. It is implemented
in a similar way as the lock-free counter (Figure 1.1(a)), using the cas
command. Therefore the execution of wrLF(〈C〉) may not terminate,
because flag can be flipped infinitely often when other threads con-
tinuously finish the wrapped abstract operations. As a result, the set
div_tids of diverging threads in such an execution can be the same
as div_tids in the corresponding execution when the client uses the
lock-free object. For instance, when the client (6.3.1) uses wrLF(INC),
the Otω set is {(ε, {t2}), (ε, {t1, t2})}, which is the same as the client
using the lock-free counter.

Note that if the code (6.3.2) fails to terminate, C must not be
executed and no effects (over the object data) are generated. However,

340 Progress-Aware Abstraction

it is possible for lock-free methods to finish C and make the effects
visible to other threads but fail to terminate. For instance, we define
inc’ in (6.3.3) as a new implementation of the counter.

inc’(){ inc(); flip; } (6.3.3)

It calls the lock-free inc method and then execute flip defined in
Figure 6.2. It is easy to see that inc’ is still lock-free. The code of flip
does not change the object variable x of the original counter. Its only
purpose is to allow the method to diverge after inc takes effects.

To simulate this kind of divergence, we insert the code snippet
flip after the atomic operation 〈C〉 as well as before it. The resulting
wrapper wrLF(〈C〉) is shown in Figure 6.2.

Additional Abstraction Theorem for LF. The atomic specification Γ
can serve as the abstraction for lock-free objects Π, if we do not observe
divergence of individual threads in the contextual refinement. That is,
Π vωϕ Γ is equivalent to linearizability and lock-freedom of Π, as shown
in the following Theorem 6.2.

Theorem 6.2 (Additional Abstraction Theorem for LF).

Π �lin
ϕ Γ ∧ LFϕ(Π) ⇐⇒ Π vωϕ Γ

The contextual refinement vω (see Definition 6.1) takes coarser
observable behaviors than vtω. It observes the divergence of the whole
client program by using Oω at both the concrete and the abstract levels.
Then the behaviors of Π correspond to those of Γ directly (i.e., we no
longer need wrappers). Intuitively, a lock-free object Π ensures that
some method call will finish, thus the client using Π diverges only if
there are an infinite number of method calls. Then it must also diverge
when using the abstract atomic object Γ.

For example, consider the client (6.3.1). The whole client program
diverges in every execution both when it uses the lock-free object in
Figure 1.1(a) and when it uses the abstract atomic one. The Oω set
of observable behaviors is {ε} at both levels. On the other hand, the
following client must terminate and print out both 1 and 2 in every
execution. The Oω set is {1::2 ::ε, 2::1 ::ε} at both levels.

inc(); print(1); ‖ dec(); print(2); (6.3.4)

6.4. Abstraction for Starvation-Free and Deadlock-Free Objects 341

Instead, if the client (6.3.4) uses the non-lock-free object in Figure 2.1(b),
it may diverge and nothing is printed out (when the scheduling is unfair).
The Oω set becomes {ε, 1::2 ::ε, 2::1 ::ε}, which contains more behaviors
than the abstract side. Thus Π vωϕ Γ fails.

More on divergence. In general, divergence means non-termination.
For example, we could say that the following two-threaded program
(6.3.5) must diverge since it never terminates.

x := x + 1; ‖ while(true) skip; (6.3.5)

But for individual threads, divergence is not equivalent to non-termina-
tion, since a non-terminating thread may either have an infinite ex-
ecution or simply be not scheduled from some point due to unfair
scheduling. We view only the former case as divergence. For instance,
in an unfair execution, the left thread of (6.3.5) may never be scheduled
and hence it has no chance to terminate. It does not diverge. Similarly,
for the following program (6.3.6),

while(true) skip; ‖ while(true) skip; (6.3.6)

the whole program must diverge, but it is possible that a single thread
does not diverge in an execution.

6.4 Abstraction for Starvation-Free and Deadlock-Free Objects

The contextual refinement for starvation-free and deadlock-free objects,
Π vfair

ϕ Π′, uses Ofair at both the concrete and the abstract sides, ruling
out undesired divergence caused by unfair scheduling. The abstract
specifications Π′ are generated by applying the wrappers wrSF and wrDF
(in Figure 6.2) to the atomic specification Γ.

Wrapper for SF. Just like the wrapper wrWF for wait-freedom, the
wrapper wrSF for starvation-freedom is an identity function. Under fair
scheduling, a starvation-free object Π behaves just like an atomic object,
both of which guarantee that every method call finishes.

As an example, consider the client program (6.4.1).

inc(); print(1); ‖ while(true) inc(); (6.4.1)

342 Progress-Aware Abstraction

Intuitively, when the client uses the abstract atomic operation INC, any
fair execution must print out 1. Thus Ofair of the abstract program
is a singleton set {1 :: ε}. When the client uses the starvation-free
object in Figure 2.1(d), its Ofair set is still {1::ε}. It does not produce
more observable behaviors. But if it uses a non-starvation-free object
(such as the deadlock-free one in Figure 2.1(b)), the left call to inc
does not necessarily finish. The Ofair set becomes {ε, 1::ε}. It produces
more observable behaviors than the abstract client, so the contextual
refinement fails.

Wrapper for DF. As the example (6.4.1) shows, vfair does not hold
between a deadlock-free object Π and its atomic specification Γ. The
reason is that deadlock-freedom does not guarantee thread progress,
i.e., some method calls to Π may not finish, in fair executions. To
re-establish the contextual refinement, we need the wrapper wrDF to
delay the termination of the abstract atomic operations.

In wrDF(〈C〉), we introduce a new object variable done (initial-
ize to false), and use while-loops to allow the method to be delayed
when other threads continuously finish the atomic block (in this case,
done is infinitely often true). Also note done is reset to false at the
end of the atomic block. Therefore, the while-loops eventually ter-
minate in fair executions if other threads no longer sets done to
true. This ensures whole program progress in fair executions, so DF
holds.

Consider the example (6.4.1). When the client uses wrDF(INC), the
Ofair set is {ε, 1 :: ε}. It is the same as the Ofair set of the client using
the deadlock-free counter.

As in wrLF, we insert the while-loops both before and after the
atomic operation. Thus a method is allowed to diverge either before or
after its effects are visible to other threads.

6.5 Abstraction for PSF and PDF Objects

We define the wrapper in Figure 6.3 for each combination of progress
(PSF or PDF) and fairness (sfair or wfair).

6.5. Abstraction for PSF and PDF Objects 343

Wrapper for PSF under strongly fair scheduling. The wrapper wrsfairPSF
is simply an identity function. It maps the atomic partial specification
await(B){C} to itself. This is because under strongly fair scheduling
await(B){C} will eventually be executed unless it is eventually always
disabled. This is exactly what we need for PSF of linearizable objects,
which requires that the invocation of each method eventually returns,
unless the corresponding high-level atomic operation await(B){C} is
eventually always disabled (as specified by well-blocked in Figure 5.3).

Wrapper for PSF under weakly fair scheduling. Under weakly fair
scheduling, however, we cannot guarantee that await(B){C} is eventu-
ally executed even if B holds infinitely often. Therefore it alone cannot
satisfy PSF. That’s why we define wrwfairPSF (await(B){C}), which guaran-
tees that the atomic operation is eventually executed if B holds infinitely
often. We introduce a blocking queue listid in the object state, which
is a sequence of (t, ‘B’) pairs, showing that the thread t requests to exe-
cute an atomic operation with the enabling condition B. Note that the
enabling condition B is recorded syntactically in listid, represented
as ‘B’. The operator enhd(listid) returns the first thread on the list
whose enabling condition is true. It evaluates the syntactic enabling
conditions ‘B’ recorded in listid on the fly. Note that different pairs in
listid may have different enabling conditions B. In the code generated
by wrwfairPSF (await(B){C}), we first append the current thread ID and the
enabling condition ‘B’ at the end of the list. In the subsequent command
the thread waits until both B holds and cid = enhd(listid).1 Then
it atomically executes C and deletes the current thread in the queue.

This wrapper guarantees that C is eventually executed when B

becomes infinitely often true because we know B∧cid = enhd(listid)
will be eventually always true, and then the weakly fair scheduling
guarantees the execution of C. This is because, whenever B becomes
true, either cid = enhd(listid) holds or there is a pair (t′, B′) such
that B′ ∧ t′ = enhd(listid) holds. In the first case, other threads
trying to execute the object methods must be blocked at the await

1Actually the conjunct B in the await condition in the wrapper could be omitted,
because B must be true when cid = enhd(listid) holds.

344 Progress-Aware Abstraction

command. Therefore B cannot be changed to false by other threads.
Therefore B ∧ cid = enhd(listid) is always true until the current
thread executes the atomic block. In the second case t′ must be able to
finish its method, following the same argument above. Therefore there
will be one less thread waiting in front of the current thread cid. Since
B becomes true infinitely often, we eventually reach the first case.

As a result, the wrapper does not terminate in a weakly fair execution
only if B is eventually always false. In that case the execution trace is
well-blocked (see Figure 5.3), still satisfying PSF.

One may argue that the abstraction generated by the wrapper is
not very useful because it may not be much simpler than the object
implementation. For instance, if we consider the acquire method of
locks, the abstraction is almost the same as queue locks or ticket locks.
But we want to emphasize that our wrapper is a general one that works
for any object method implementation with an atomic specification in
the form of await(B){C}. Therefore we know the method’s progress-
aware abstraction can always be in this form, no matter how complex
its implementation is.

Wrapper for PDF under weakly fair scheduling. For the right column
in Table 6.2, we first introduce the wrapper at the bottom right corner.
The definition of PDF says a method can be non-terminating if (1) it is
eventually always disabled, as specified by well-blocked (see Figure 5.3);
or (2) there are always other method calls terminating, as specified
by prog-p. Note that the second condition allows the method to be
non-terminating even if it is eventually always enabled under weakly
fair scheduling. As an example, the Treiber stack with a partial pop in
Figure 6.4 demonstrates one such scenario. The pop method is blocked
when the stack is empty. It is linearizable with respect to the following
specification

await(S 6= nil){tmp := head(S); S := tail(S); }; return tmp;
(6.5.1)

where S is the abstraction of the stack and tmp is a thread-local tempo-
rary variable.

6.5. Abstraction for PSF and PDF Objects 345

initialize(){ Top := null; }

push(v){
1 local x, b, t;
2 b := false;
3 x := cons(v, null);
4 while (!b) {
5 t := Top;
6 x.next := t;
7 b := cas(&Top, t, x);
8 }

}

pop(){
9 local x, b, t, v;

10 b := false;
11 while (!b) {
12 t := Top;
13 if (t != null) {
14 v := t.data;
15 x := t.next;
16 b := cas(&Top, t, x);
17 }
18 }
19 return v;
}

initialize’(){ initialize(); done := false;}

push’(v){ push(v); DLY_NOOP}

pop’(v){ tmp := pop(); DLY_NOOP; return tmp}

DLY_NOOP def= await(¬done){done := true}; done := false;

r0 := pop’();
print(r0);

push’(1);
push’(2);
r1 := pop’();
print(r1);
while(true}{ push’(0) };

Figure 6.4: Treiber stacks with partial pops.

In the following execution context (6.5.2),

pop(); || while(true){ push(0); } (6.5.2)

the call of the concrete method pop may never terminate because its
cas command may always fail, although the enabling condition at
the abstract level (S 6= nil) is eventually always true. However, if
we replace the method implementation with the specification (6.5.1),
pop must terminate under weakly fair scheduling. This shows that
the concrete implementation cannot contextually refine this simple
specification (6.5.1).

346 Progress-Aware Abstraction

Our first attempt to address this problem is to introduce a new
object variable done (initialized to false), and let the wrapper wrwfairPDF
transform await(B){C} into:

await(B ∧ ¬done){C; done := true}; done := false; (6.5.3)

Therefore the resulting await command may not be executed even
if B is always true, because done can be set to true infinitely often
when other threads finish the atomic block. Also note done is reset
to false at the end of each await command, therefore the condition
¬done cannot always disable the await command, which may cause
deadlock. As a result, there is always some thread that can finish the
wrapper (i.e., prog-p holds) unless the B-s of all the pending invocations
are eventually always false (i.e., well-blocked holds), thus PDF holds.

However, this is not the end of the story. If the code (6.5.3) fails
to terminate, C must not be executed and no effects (over the object
data) are generated. However, it is possible for PDF methods to finish
C and make the effects visible to other threads but fail to terminate.
As an example we define the push’ and pop’ methods in Figure 6.4
as a new implementation of the Treiber stack. They call the push and
pop methods respectively and then execute the code snippet DLY_NOOP
before they return. DLY_NOOP simply waits until done becomes false
and then atomically sets it to true, and finally resets it to false. The
only purpose of DLY_NOOP is to allow the methods to be delayed by
other threads or to delay others.

Then we consider the client code shown at the bottom of Figure 6.4.
Under weakly fair scheduling it is possible that the call of pop’() by
the left thread never terminates but the thread on the right prints out 1.
That is, although the pop’() on the left does not terminate, it does
generate effects over the stack and the effects happen before the pop’()
on the right. Such an external event trace cannot be generated if we
replace the concrete push’() and pop’() methods with the abstract
method code generated using the wrapper (6.5.3) defined above. Thus
the contextual refinement between the concrete code and the wrapped
specification does not hold.

6.5. Abstraction for PSF and PDF Objects 347

Our solution is to append an await command at the end of (6.5.3),
so that the resulting code wrwfairPDF (await(B){C}) (see Figure 6.3) may
finish C but still be blocked at the end.

Wrapper for PDF under strongly fair scheduling. Much of the effort
to define wrwfairPDF (await(B){C}) is to allow the resulting code to be
non-terminating even if B is eventually always true. We need to do the
same to define wrsfairPDF(await(B){C}), but it is more challenging with
strongly fair scheduling because await(¬done){} cannot be blocked
under strongly fair scheduling if done is infinitely often true. Therefore
we use while-loops in wrsfairPDF(await(B){C}) to allow the method to be
delayed when done is infinitely often true.2 Note that while (done){}
terminates when done is false. We can see the similarity between wrwfairPDF
and wrDF (defined in Figure 6.2).

Wrappers for the state abstraction function. Since the program
transformations by the wrappers introduce new object variables such as
listid and done, we need to change the state abstraction function ϕ
accordingly, which is defined as wrχProg(ϕ) in Figure 6.3 (χ ∈ {sfair,wfair}
and Prog ∈ {PSF,PDF}).

More discussions. There could be different ways to define the wrappers
to validate the Abstraction Theorem 6.1. We do not intend to claim
that our definitions are the simplest ones (and it is unclear how to
formally compare the complexity of different wrappers), but we would
like to point out that, although some of the wrappers look complex,
the complexity is partly due to the effort to have general wrappers that
work for any atomic specifications in the form of await(B){C}. It is
possible to have simpler wrappers for specific objects. For instance, the
lock specification Γ in (2.3.2) defined in Subsection 2.3 can already serve

2Actually the conjunct ¬done in the await condition in the wrapper could
be removed, because the loop while (done){} before the await block can already
produce the non-terminating behaviors when other threads finish the method infinitely
often (i.e., done is infinitely often true). Here we keep the conjunct ¬done to make
the wrapper more intuitive.

348 Progress-Aware Abstraction

as an abstraction for the test-and-set lock object Πtas (which is a PDF
lock) under weakly fair scheduling, i.e., Πtas vwfair

ϕ Γ holds.

7
Verifying Progress of Concurrent Objects

In this section, we explain the program logic LiLi. It is a rely-guarantee
style program logic to verify linearizability and all the six progress
properties. It also establishes progress-aware contextual refinements
between concrete object implementations and abstract specifications.

We first analyze the challenges and explain our approach informally.
Then we present the assertion language, the inference rules and the logic
soundness theorem. In particular, we focus on the definite actions and
the delaying actions that we introduced to support blocking and delay
respectively. We start with the rules to reason about starvation-free
and deadlock-free objects, which can be degenerated to reason about
wait-free and lock-free objects. Then we generalize the rules to also
support partial methods. Along with the explanations of the rules, we
show some small examples. Finally we discuss the soundness theorem
and show more applications of LiLi.

7.1 Challenges and Key Ideas

In Subsection 2.4 we have given an overview of the traditional rely-
guarantee logic for safety proofs (Jones, 1983), and the way to encode
linearizability verification in the logic. We have also explained the
challenges in supporting progress verification, as outlined below:

349

350 Verifying Progress of Concurrent Objects

• Non-termination caused by interference. There are two different
kinds of interference that may cause thread non-termination,
namely blocking and delay. In some algorithms (e.g., the optimistic
list), blocking and delay can be intertwined, makes the reasoning
significantly challenging.

• Avoid circular reasoning. Rely-guarantee-style logics relies on
circular reasoning to support thread-modular verification, but
circular reasoning is usually unsound in liveness verification. Both
blocking and delay may cause circular dependency of progress. We
need to distinguish “good” blocking and delay from “bad” ones.

• Ad-hoc synchronization and dynamic locks. Enforcing lock orders
is a natural way to avoid circularity, but it is sometimes difficult
to identify certain object fields as locks. Also, many objects with
explicit lock fields are dynamic (e.g., the lock-coupling list), so
the lock orders need to be determined dynamically, making the
verification challenging.

To address these problems, our logic enforces the following principles
to permit restricted forms of blocking and delay, but prevent circular
reasoning and non-termination.

First, if a thread is blocked, the events it waits for must eventually
occur. To avoid circular reasoning, we find “definite actions” of each
thread, which under fair scheduling will definitely happen once enabled,
regardless of the interference from the environment. Then each blocked
thread needs to show it waits for only a finite number of definite actions
from the environment threads. They form an acyclic queue, and there
is always at least one of them enabled. This is what we call “definite
progress”, which is crucial for proving starvation-freedom.

Second, actions of a thread can delay others only if they are making
the executing object method to move towards termination. Each object
method can only execute a finite number of such delaying actions to
avoid indefinite delay. This is enforced by assigning a finite number of
tokens to each method. A token must be paid to execute a delaying
action.

7.1. Challenges and Key Ideas 351

Third, we divide actions of a thread into normal ones (which do not
delay others) and delaying ones, and further stratify delaying actions
into multiple levels. When a thread is delayed by a level-k action from its
environment, it is allowed to execute not only more normal actions, but
also more delaying actions at lower levels. Allowing one delaying action
to trigger more steps of other delaying actions is necessary for verifying
algorithms with nested locks and rollbacks, such as the optimistic lists in
Figure 2.3. The stratification prevents the circular delay in the example
of Figure 2.4.

Fourth, our delaying actions and definite actions are all semantically
specified as part of object specifications, therefore we can support ad-hoc
synchronization and do not rely on built-in synchronization primitives
to enforce ordering of events. Moreover, since the specifications are
all parametrized over states, they are expressive enough to support
dynamic locks as in lock-coupling lists. Also our “definite progress”
condition allows each blocked thread to decide locally and dynamically
a queue of definite actions it waits for. There is no need to enforce a
global ordering of blocking dependencies agreed by every thread. This
also provides thread-modular support of dynamic locks.

Below we give more details about some of these key ideas.

7.1.1 Using Tokens to Prevent Infinite Loops

The key to ensuring termination is to require each loop to terminate.
Earlier work (Hoffmann et al., 2013; Liang et al., 2014) requires each
round of the loop to consume resources called tokens. The rule for loops
is in the following form:

P ∧B ⇒ P ′ ∗ ♦ R,G ` {P ′}C{P}
R,G ` {P}while (B) C{P ∧ ¬B}

(term)

Here ♦ represents one token, and “∗” is the normal separating conjunc-
tion in separation logic. The premise says the precondition P ′ of the
loop body C has one less token than P , showing that one token needs
to be consumed to start this new round of loop. Since the number of
tokens strictly decreases, we know the loop must terminate when the
thread has no token.

352 Verifying Progress of Concurrent Objects

We use this simple idea to enforce termination of loops, and extend
it to handle blocking and delay in a concurrent setting.

7.1.2 Using Tokens to Prevent Indefinite Delays

To support delay, we first identify the delaying actions in each method.
We explicitly specify in the rely/guarantee conditions which steps could
delay the progress of other threads.

To prohibit unlimited delays without making progress, we assign a
finite number m of �-tokens to an object method, and require that a
thread can do at most m delaying actions before the method finishes.
Whenever a step of thread t′ delays the progress of thread t, we require
t′ to consume one �-token. At the same time, thread t could increase
its ♦-tokens (see the term rule above) so that it can loop more rounds.
In a sense the thread t′ transfers its �-token to thread t which is
then converted to one or more ♦-tokens upon receipt. Similar token
transfer ideas have been used to verify lock-free algorithms in earlier
work (Hoffmann et al., 2013; Liang et al., 2014).

7.1.3 Definite Actions and Definite Progress

Our approach to cut the blocking-caused circular dependency is in-
spired by the implementation of ticket locks, which is used to implement
the starvation-free counter inc_tkL in Figure 2.1(d). We can see that
inc_tkL is not concerned with the circular dependency problem. Intu-
itively the ticket lock algorithm in Figure 2.1(c) ensures that the threads
requesting the lock always constitute a queue t1, t2, . . . , tn. The head
thread, t1, gets the ticket number which equals owner and can immedi-
ately acquire the lock. Once it releases the lock (by increasing owner),
t1 is dequeued. Moreover, for any thread t in this queue, the number of
threads ahead of t never increases. Thus t must eventually become the
head of the queue and acquire the lock. Here the dependencies among
progress of the threads are in concert with the queue.

Following this queue principle, we explicitly specify the queue of
progress dependencies in our logic to avoid circular reasoning.

7.1. Challenges and Key Ideas 353

Definite actions. First, we introduce a novel notion called a “definite
action” D, which models a thread action that, once enabled, must be
eventually finished regardless of what the environment does. In detail, D
is in the form of Pd ; Qd. It requires in every execution that Qd should
eventually hold if Pd holds, and Pd should be preserved (by both the
current thread and the environment) until Qd holds. For inc_tkL, the
definite action Pd ; Qd of a thread can be defined as follows. Pd says
that owner equals the thread’s ticket number i, and Qd says that owner
has been increased to i + 1. That is, a thread definitely releases the
lock when acquiring it. Of course we have to ensure in our logic that D
is indeed definite. We will explain in detail the logic rule that enforces
it in Subsection 7.2.2.

Definite progress. Then we use definite actions to prove termination
of loops. We need to first find an assertion Q specifying the condition
when the thread t can progress on its own, i.e., it is not blocked. Then
we enforce the following principles:

1. If Q is continuously true, we need to prove the loop terminates
following the idea of the term rule;

2. If Q is false, the following must always be true:

(a) There is a finite queue of definite actions of other threads
that the thread t is waiting for, among which there is at least
one (from a certain thread t′) enabled. The length of the
queue is E.

(b) E decreases whenever one of these definite actions is finished;
(c) The expression E is never increased by any threads (no

matter whether Q holds or not); and it is non-negative.

We can see E serves as a well-founded metric. By induction over E we
know eventually Q holds, which implies the termination of the loop by
the above condition 1.

These conditions are enforced in our new inference rule for loops,
which extends the term rule (in Subsection 7.1.1) and is presented in

354 Verifying Progress of Concurrent Objects

Subsection 7.2.2. The condition 2 shows the use of definite actions in our
reasoning about progress. We call it the “definite progress” condition.

The reasoning above implicitly makes use of the fairness assumption.
The fair scheduling ensures that the environment thread t′ mentioned
in the condition 2(a) is scheduled infinitely often, therefore its definite
action will definitely happen. By conditions 2(b) and 2(c) we know
E will become smaller. In this way E keeps decreasing until Q holds
eventually.

For inc_tkL, Q is defined as (i = owner) and the metric E is
(i − owner). Whenever an environment thread t′ finishes a definite
action by releasing the lock, it increases owner, so E decreases. When
E is decreased to 0, the current thread is unblocked. Its loop terminates
and it succeeds in acquiring the lock.

7.1.4 Allowing Queue Jumps for Deadlock-Free Objects

The method inc in Figure 2.1(b) implements a deadlock-free counter
using the TAS lock. If the current thread t waits for the lock, we know
the queue of definite actions it waits for is of length one because it is
possible for the thread to acquire the lock immediately after the lock is
released. However, another thread t′ may preempt t and do a successful
cas. Then thread t is blocked and waits for a queue of definite actions
again. This delay caused by thread t′ can be viewed as a queue jump
in our definite-progress-based reasoning. Actually inc cannot satisfy
the definite progress requirement because we cannot find a strictly
decreasing queue size E. It is not starvation-free.

However, the queue jump here is acceptable when verifying deadlock-
freedom. This is because thread t′ delays t only if t′ successfully acquires
the lock, which allows it to eventually finish the inc method. Thus the
system as a whole progresses.

Nevertheless, as explained in Subsection 2.4.3, we have to make sure
the queue jump (which is a special form of delay) is a “good” one.

The token-transfer ideas we explained in Subsection 7.1.2 can be
used to support disciplined queue jumps. As in Subsection 7.1.2, we
assign a finite number m of �-tokens to an object method. When a
step of thread t′ delays the progress of thread t (including jumping

7.1. Challenges and Key Ideas 355

its queue), thread t′ should consume one �-token, but thread t could
increase its ♦-tokens to loop more rounds. Similarly, we also redefine
the definite progress condition to allow the metric E (about the length
of the queue) to be increased when an environment thread jumps the
queue at the cost of a �-token.

7.1.5 Allowing Rollbacks for Optimistic Locking

The ideas we just explained already support simple deadlock-free objects
such as inc in Figure 2.1(b), but they cannot be applied to objects with
optimistic synchronization, such as optimistic lists (Herlihy and Shavit,
2008) and lazy lists (Heller et al., 2005).

Figure 2.3 shows part of the optimistic list implementation, which we
have explained in Subsection 2.4.3. For this object, when the validation
fails, a thread will release the locks it has acquired and roll back. Thus
the thread may acquire the locks for an unbounded number of times.
Since each lock acquirement will delay other threads requesting the
same lock and each delaying action should consume one �-token, it
seems that the thread would need an infinite number of �-tokens, which
we prohibit in the preceding subsection to ensure deadlock-freedom,
even though this list object is indeed deadlock-free.

We generalize the token-transfer ideas to allow rollbacks in order to
verify this kind of optimistic algorithms, but still have to be careful to
avoid the circular delay caused by the “bad” rollbacks in Figure 2.4, as
we explain in Subsection 2.4.3.

Our solution is to stratify the delaying actions. Each action is now
labeled with a level k. The normal actions which cannot delay other
threads are at the lowest level 0. The �-tokens are stratified accordingly.
A thread can roll back and do more actions at level k only when
its environment does an action at a higher level k′, at the cost of a
k′-level �-token. Note that the �-tokens at the highest level are strictly
decreasing, which means a thread cannot roll back its actions of the
highest level. In fact, the numbers of �-tokens at all levels constitute
a tuple (mk, . . . ,m2,m1). It is strictly descending along the dictionary
order.

356 Verifying Progress of Concurrent Objects

The stratified �-tokens naturally prohibit the circular delay problem
discussed in Subsection 2.4.3 with the object in Figure 2.4. The deadlock-
free optimistic list in Figure 2.3 can now be verified. We classify its
delaying actions into two levels. Actions at level 2 (the highest level)
update the list, which correspond to line 9 in Figure 2.3, and each
method can do only one such action. Lock acquirements are classified
at level 1, so a thread is allowed to roll back and re-acquire the locks
when its environment updates the list.

7.2 The Program Logic LiLi

LiLi verifies the linearizability of objects by proving the method imple-
mentations refine abstract atomic operations. The top level judgment is
in the form of D, R,G ` {P}Π : Γ. (The obj rule for this judgment is
given in Figure 7.4 and will be explained later.) To verify an object Π,
we give a corresponding object specification Γ (see Figure 3.1), which
maps method names to atomic commands. In addition, we need to
provide an object invariant (P) and rely/guarantee conditions (R and
G) for the refinement reasoning in a concurrent setting. Here P is a
relational assertion that specifies the consistency relation between the
concrete data representation and the abstract value. Similarly, R and G
lift regular rely and guarantee conditions to the binary setting, which
now specify transitions of states at both the concrete level and the ab-
stract level. The definite actions D is a special form of state transitions
used for progress reasoning. The definitions of P , R, G and D are shown
in Subsection 7.2.1.

Note LiLi is a logic for concurrent objects Π only. We do not provide
logic rules for clients. See Subsection 7.3 for more discussions.

To simplify the presentation in this tutorial, we describe LiLi based
on the plain Rely-Guarantee Logic (Jones, 1983). Also, to avoid “vari-
ables as resources” (Parkinson et al., 2006), we assume program variables
are either thread-local or read-only. The full version of LiLi (Liang and
Feng, 2018b) extends the more advanced Rely-Guarantee-based logic
LRG (Feng, 2009) to support dynamic allocation and ownership transfer.
It also drops the assumption about program variables.

7.2. The Program Logic LiLi 357

(RelAssn) P,Q, J ::= B | emp | E 7→ E | E Z⇒ E
| TpU | P ∗Q | P ∧Q | P ∨Q | . . .

(RelAct) R,G ::= P nk Q | [P] | D
| bGc0 | G ∧G | G ∨G | . . .

(DAct) D ::= P ; Q | ∀x.D | D ∧ D
(FullAssn) p, q ::= P | arem(C) | ♦(E) | �(Ek, . . . , E1)

| bpca | bpc♦ | p ∗ q | p ∧ q | p ∨ q | . . .

Figure 7.1: Syntax of the assertion language.

7.2.1 Assertions

We define assertions in Figure 7.1. The relational state assertions P and
Q specify the relationship between the concrete state σ and the abstract
state Σ. Here we use s and h for the store and the heap at the abstract
level (see Figure 3.2). For simplicity, we assume the program variables
used in the concrete code are different from those in the abstract code
(e.g., we use x and X at the concrete and abstract levels respectively).
We use the relational state S to represent the pair of states (σ,Σ), as
defined in Figure 7.2.

Figure 7.2(a) defines semantics of state assertions. The boolean
expression B holds if it evaluates to true at the combined store of s
and s. emp describes empty heaps. The assertion E1 7→ E2 specifies a
singleton heap at the concrete level with the value of the expression E2
stored at the location E1. Its counterpart for an abstract level heap is
represented as E1 Z⇒ E2. Semantics of separating conjunction P ∗Q is
similar as in separation logic, except that it is now lifted to relational
states S. The disjoint union of two relational states is defined at the
top of the figure. Semantics of the assertion TpU will be defined latter
(see Figure 7.2(c)).

Rely/guarantee assertions R and G specify the transitions over
the relational states S. Their semantics is defined in Figure 7.2(b).
The action P nk Q says that the initial relational states satisfy P

and the resulting states satisfy Q. We can ignore the index k for now,
which is used to stratify actions that may delay the progress of other
threads and will be explained in Subsection 7.2.3. [P] specifies identity

358 Verifying Progress of Concurrent Objects

S ::= (σ,Σ) (σ,Σ)] (σ′,Σ′) def= (σ] σ′,Σ] Σ′)
where (s, h)](s′, h′) def= (s, h]h′) , if s=s′

((s, h), (s,h)) |= B iff JBKs]s = true
((s, h), (s,h)) |= emp iff dom(h) = dom(h) = ∅
((s, h), (s,h)) |= E1 7→ E2 iff h = {JE1Ks]s ; JE2Ks]s}
((s, h), (s,h)) |= E1 Z⇒ E2 iff h = {JE1Ks]s ; JE2Ks]s}
S |= P ∗Q iff ∃S1,S2.S = S1]S2

∧(S1 |= P) ∧ (S2 |= Q)

(a) Semantics of relational state assertions P and Q.

(S,S′) |= P nk′ Q iff (S |= P) ∧ (S′ |= Q)
(S,S′) |= [P] iff (S′ = S) ∧ (S |= P)

(b) Semantics of relational rely/guarantee assertions R and G.

(S, (u,w), C) |= P iff S |= P

(S, (u,w), C) |= arem(C ′) iff C = C ′

(S, (u,w), C) |= ♦(E) iff ∃n. (JEKS.s = n) ∧ (n ≤ w)
(S, (u,w), C) |= �(Ek, . . . , E1) iff (JEkKS.s, . . . , JE1KS.s) ≤ u
(S, (u,w), C) |= bpc♦ iff ∃w′. (S, (u,w′), C) |= p

(S, (u,w), C) |= bpca iff ∃C ′. (S, (u,w), C ′) |= p

S |= TpU iff ∃u,w,C. (S, (u,w), C) |= p

C] C ′ def=
{
C ′ if C = skip
C if C ′ = skip

(S, (u,w), C)] (S′, (u′, w′), C ′) def= (S]S′, (u+u′, w+w′), C]C ′)

(c) Semantics of full assertions p and q.

Figure 7.2: Semantics of assertions.

transitions with the initial states satisfying P . Semantics of bGc0 is
defined in Subsection 7.2.3 too (see Figure 7.8). Below we use P nQ

as a shorthand for P n0 Q. We also use Id for [true], which represents
arbitrary identity transitions.

7.2. The Program Logic LiLi 359

We further instrument the relational state assertions with the speci-
fications of the abstract level code and various tokens. The resulting
full assertions p and q are defined in Figure 7.1, whose semantics is
given in Figure 7.2(c). The assertion p is interpreted over (S, (u,w), C).
C is the abstract-level code that remains to be refined. It is specified by
the assertion arem(C). Since our logic verifies linearizability of objects,
C is always in the form of atomic commands 〈C ′〉 (ahead of return
commands). The pair (u,w) records the numbers of various tokens �
and ♦. It serves as a well-founded metric for our progress reasoning.
Informally w specifies the upper bound of the round of loops that the
current thread can execute if it is neither blocked nor delayed by its
environment. The assertion ♦(E) says the number w of ♦-tokens is
no less than E. Therefore ♦(0) always holds, and ♦(n + 1) implies
♦(n) for any n. We postpone the explanation of u and the assertion
�(Ek, . . . , E1) to Subsection 7.2.3. Below we use ♦ as the shorthand for
♦(1). We use bpc♦ to ignore the descriptions in p about the number of
tokens. TpU converts p back to a relational state assertion.

Separating conjunction p ∗ q has the standard meaning as in separa-
tion logic, which says p and q hold over disjoint parts of (S, (u,w), C)
respectively (the formal definition elided here). The disjoint union is
defined in Figure 7.2(c). The disjoint union of the numbers of tokens is
the sum of them. The disjoint union of C1 and C2 is defined only if at
least one of them is skip. Therefore we know the following holds (for
any P and C):

(P ∧ arem(C) ∧ ♦) ∗ (♦ ∧ emp) ⇔ (P ∧ arem(C) ∧ ♦(2))

Definite actions. Figure 7.1 also defines definite actions D, whose
semantics is given in Figure 7.3(a). P ; Q specifies the transitions
where the final states satisfy Q if the initial states satisfy P . It is
different from P nQ in that P ; Q does not restrict the transitions if
initially P does not hold. Consider the following example Dx.

Dx
def= ∀n. ((x 7→ n) ∧ (n > 0)) ; (x 7→ n+ 1)

Dx describes the state transitions which increment x if x is positive
initially. It is satisfied by any transitions where initially x is not positive.

360 Verifying Progress of Concurrent Objects

(S,S′) |= P ; Q iff (S |= P) =⇒ (S′ |= Q)
(S,S′) |= ∀x.D iff ∀n. (S{x ; n},S′{x ; n}) |= D
(S,S′) |= D1 ∧ D2 iff ((S,S′) |= D1) ∧ ((S,S′) |= D2)

(a) Semantics of D.

Enabled(P ; Q) def= P

Enabled(∀x.D) def= ∃x. Enabled(D)
Enabled(D1 ∧ D2) def= Enabled(D1) ∨ Enabled(D2)

〈D〉 def= D ∧ (Enabled(D) n true)

[D] def= Enabled(D) ; Enabled(D)

D′ 6 D iff (Enabled(D′)⇒ Enabled(D)) ∧ (D ⇒ D′)

(b) Useful syntactic sugars.

Figure 7.3: Semantics of definite actions.

The conjunction D1 ∧ D2 is useful for enumerating definite actions. For
instance, when the program uses two locks L1 and L2, the definite action
D of the whole program is usually in the form of D1 ∧ D2, where D1
and D2 specify L1 and L2 respectively.

We define some useful syntactic sugars in Figure 7.3(b). The state
assertion Enabled(D) takes the guard condition of D. We use 〈D〉 to
represent the state transitions of D when it is enabled at the initial state.
Intuitively 〈D〉 gives us the corresponding “n” actions. For instance,
〈P ; Q〉 is equivalent to P n Q. For the example Dx defined above,
〈Dx〉 is equivalent to the following:

∃n. ((x 7→ n) ∧ (n > 0)) n (x 7→ n+ 1)

In addition, we define the syntactic sugar [D] as a definite action
describing the preservation of Enabled(D). For the example Dx above,
[Dx] represents the following definite action:

(∃n. (x 7→ n) ∧ (n > 0)) ; (∃n. (x 7→ n) ∧ (n > 0))

It specifies the transitions which keep x positive if it is positive initially.
The notation D′ 6 D will be explained later in Subsection 7.2.2. Since

7.2. The Program Logic LiLi 361

D is a special rely/guarantee assertion, the semantics of D ⇒ D′ follows
the standard meaning of R⇒ R′ (Feng, 2009) (or see the definition in
Figure 7.8).

Thread IDs as implicit assertion parameters. All the assertions in
our logic, including state assertions, rely/guarantee conditions and
definite actions, are implicitly parametrized over thread IDs. Although
our logic does modular reasoning about the object code without any
knowledge about clients, it is useful for assertions to refer to thread IDs.
For instance, we may use L 7→ t to represent that the lock L is acquired
by the thread t. We use Pt to represent the instantiation of the thread
ID parameter in P with t, which means P holds on thread t. Then P
alone can also be understood as ∀t.Pt, and P ⇒ Q can be viewed as
∀t.Pt ⇒ Qt. The same convention applies to rely/guarantee conditions
and definite actions.

7.2.2 Verifying Starvation-Freedom with Definite Actions

Figures 7.4, 7.5 and 7.14 present the inference rules of LiLi. We explain
the logic in three steps. In this subsection we explain the use of definite
actions to reason about starvation-freedom. Then we explain the delay
mechanism for deadlock-freedom in Subsection 7.2.3. Finally we explain
the supports for partial methods in Subsection 7.2.4.

The obj Rule

As the top rule of the logic, the obj rule says that, to verify Π satisfies
its specification Γ with the object invariant P , one needs to specify the
rely/guarantee conditions R and G, and the definite actions D, and
then prove that each individual object method implementation refines
its specification. In general Γ must be an atomic partial specification.
For objects with total methods, Γ must be total, written as total(Γ).

For each method, we take the object invariant P and the annotated
preconditions P (in Π) as preconditions. The object invariant P should
ensure that the annotated pre-conditions P and P ′ (in Γ) are either
both true or both false. That is, whenever P holds, it is either safe to

362 Verifying Progress of Concurrent Objects

for all f ∈ dom(Π) : Π(f) = (P , x, C) Γ(f) = (P ′, y, C ′)
P ⇒ (P ∧ P ′) ∨ (¬P ∧ ¬P ′)

D, R,G ` {P ∧ P ∧ (x = y) ∧ arem(C ′) ∧ �(~E)}C {P ∧ arem(skip)}
∀t, t′. t 6= t′ =⇒ Gt ⇒ Rt′ wffAct(R,D) P ⇒ ¬Enabled(D)

D, R,G ` {P}Π : Γ
(obj)

p∧B ⇒ p′ p∧B∧(Enabled(D)∨Q)⇒ p′∗(♦∧emp)
D, R,G ` {p′}C{p} p ∧B ⇒ J ∧ arem(await(B′){C ′})

Sta(J,R∨G) J ⇒ (R,G : D′ f−−→(Q,B′)) D′6D wffAct(R,D′)
D, R,G ` {p}while (B){C}{p ∧ ¬B}

(whl)

` [p]C[q′] q′ Vk q (TpU nk TqU)⇒ G

D, Id, G ` {p}〈C〉{q}
(atom)

D, Id, G ` {p}〈C〉{q} Sta({p, q}, R)
D, R,G ` {p}〈C〉{q}

(atom-r)

p⇒ (E = E′) Sta(p,R)
D, R,G ` {bpca ∧ arem(return E′)}return E{bpca ∧ arem(skip)}

(ret)

Figure 7.4: Inference rules (I).

call the methods at both the concrete and abstract levels, or unsafe to
do so at both levels.

Starting from the initial concrete and abstract object states related
by P and P , and with the equivalent method arguments x and y at the
concrete and the abstract levels, the method body C must fulfil the
abstract atomic operation C ′. arem(C ′) says that the high-level code
which remains to be refined at this point is C ′. At the end we need
to re-establish the object invariant P , and show that there is no more
high-level code that needs to be refined (i.e., arem(skip)), which means
the method body indeed refines the specification C ′. We can temporarily
ignore the assertion �(Ek, . . . , E1) for deadlock-freedom verification.

The last three premises of the obj rule checks the well-formedness of
the specifications. The first one says the guarantee of one thread must
implies the rely of all others, a standard requirement in rely/guarantee

7.2. The Program Logic LiLi 363

D, R,G ` {p}C1{r} D, R,G ` {r}C2{q}
D, R,G ` {p}C1;C2{q}

(seq)

D, R,G ` {p ∧B}C1{q} D, R,G ` {p ∧ ¬B}C2{q}
D, R,G ` {p}if (B) C1 else C2{q}

(if)

D, R,G ` {p}C{q}
D, R,G ` {bpc♦}C{bqc♦}

(hide-♦)

D, R,G ` {bpca ∧ arem(C1)}C{bpca ∧ arem(C2)}
D, R,G ` {bpca ∧ arem(C1;C3)}C{bpca ∧ arem(C2;C3)}

(arem)

D, R,G ` {p}C{q} R′ ⇒ R G⇒ G′

p′ ⇒ p q ⇒ q′ Sta({p′, q′}, R) wffAct(R,D)
D, R′, G′ ` {p′}C{q′}

(csq)

D, R,G ` {p}C{q} x 6∈ fv(D, R,G)
D, R,G ` {∃x. p}C{∃x. q}

(ex)

D, R,G ` {p1}C{q1} D, R,G ` {p2}C{q2}
D, R,G ` {p1 ∧ p2}C{q1 ∧ q2}

(conj)

D, R,G ` {p1}C{q1} D, R,G ` {p2}C{q2}
D, R,G ` {p1 ∨ p2}C{q1 ∨ q2}

(disj)

Figure 7.5: Inference rules (II).

reasoning. In Figure 7.6 we give a simplified definition of wffAct used
in the second premise. Its complete definition is given in Figure 7.9,
which will be explained later when we introduce stratified actions and
�-tokens. wffAct(R,D) says once a definite action Dt of a thread t is
enabled it cannot be disabled by an environment step in Rt. Also such
an environment step either fulfils a definite action Dt′ of some thread
t′ different from t, or preserves Enabled(Dt′) too. Together with the
previous premise Gt′ ⇒ Rt, this condition implies ∀t′. Gt′ ⇒ [Dt′] ∨ Dt′ .

364 Verifying Progress of Concurrent Objects

wffAct(R,D) iff ∀t. Rt ⇒ [Dt] ∧ (∀t′ 6= t. [Dt′] ∨ Dt′)
Sta(p,R) iff ∀S,S′, u, w,C.

((S, (u,w), C) |= p) ∧ ((S,S′) |= R) =⇒ (S′, (u,w), C) |= p

pV q iff ∀t, σ,Σ, u, w,C,ΣF .
(((σ,Σ), (u,w), C) |= p) ∧ (Σ⊥ΣF) =⇒ ∃C ′,Σ′.

((C,Σ]ΣF) −_∗t (C ′,Σ′]ΣF)) ∧ ((σ,Σ′), (u,w), C ′) |=q

Figure 7.6: Auxiliary defs. used in logic rules (simplified version).

Therefore, once Dt is enabled, the only way to disable it is to let the
thread t finish the action. As an example, consider the following Dt:

Dt
def= (L 7→ t) ; (L 7→ 0)

It says that whenever a thread t acquires the lock L, it will finally release
the lock. Then, wffAct(R,D) require that when t acquires L, every step
in the system either keeps L unchanged or releases L. In particular, Rt
keeps L unchanged, that is, the environment cannot update the lock
when L 7→ t.

The last premise (P ⇒ ¬Enabled(D)) says there cannot be enabled
but unfinished definite actions when the method terminates and the
object invariant P is true.

The judgment D, R,G ` {p ∧ arem(C ′)}C{q ∧ arem(skip)} estab-
lishes a simulation relation between C and C ′, which ensures the preser-
vation of termination when the environment guarantees the definite
action D. It also ensures the execution of C guarantees D too. We
explain the key rules for the judgment below.

The whl Rule for Loops in Total Methods

The whl rule, shown in Figure 7.4, is the most important rule of
the logic. In this subsection, we focus on the special case when the
abstract specification is total, i.e., B′ in the rule is true. We will defer
the explanation of the general case to Subsection 7.2.4.

When B′ is true, the whl rule establishes both of the following
properties of the loop:

(1) it cannot loop forever with D continuously enabled;

7.2. The Program Logic LiLi 365

(2) it cannot loop forever unless the current thread is waiting for
some definite actions of its environment.

The former guarantees a definite action of the current thread is definite
to happen once it is enabled. The latter is crucial to establish the
starvation-freedom.

Why definite actions are definite. The whl verifies the loop body
with a precondition p′, which can be derived from the loop invariant p
if B holds. Moreover, we require each iteration to consume a ♦-token
if Enabled(D) holds at the beginning, as shown by the second premise
(ignore the assertion Q for now). Since each thread has only a finite num-
ber of ♦-tokens, the loop must terminate if Enabled(D) is continuously
true.

However, the last premise of the obj rule says Enabled(D) cannot
be true if the method terminates. Therefore, Enabled(D) cannot be
continuously true. Also recall the other two side conditions (wffAct(R,D)
and Gt ⇒ Rt′) of the obj rule guarantee that, once Enabled(D) holds,
the only way to make it false is to let the current thread finish the
action.

Putting all these together, we know D will be finished once it is
enabled, even with the interference R.

Starvation-freedom. To establish starvation-freedom, we need to find
a condition Q saying the current thread is not blocked by others. Then
the second premise requires each iteration to consume a ♦-token if Q
holds at the beginning. Since the number of tokens is finite, the loop
must terminate if Q always holds.

If Q is false, the current thread is blocked by others. Then the
premise (R,G : D′ f−−→(Q, true)) requires the thread must be waiting for
its environment to perform a finite number of definite actions. Defini-
tion 7.1 shows the specialized case (R,G : D f−−→(Q, true)). We defer the
definition of the general case (R,G : D f−−→(Q,Bh)) to Subsection 7.2.4.

366 Verifying Progress of Concurrent Objects

Definition 7.1 (Definite Progress for Total Methods).
S |= (R,G : D f−−→(Q, true)) iff the following hold for all t:

(1) either S |= Qt,
or there exists t′ such that t′ 6= t and S |= Enabled(Dt′);

(2) for any t′ 6= t and S′, if (S,S′, 0) |= Rt ∧ 〈Dt′〉, then
ft(S′) < ft(S);

(3) for any S′, if (S,S′, 0) |= Rt ∨Gt, then ft(S′) ≤ ft(S).

Here f is a function that maps the relational states S to some metrics
over which there is a well-founded order <.

Ignoring the index 0 above, the definition says either Q holds over
S or the definite action Dt′ of some environment thread t′ is enabled.
Also we require the metric f(S) to decrease when a definite action is
performed. Besides, the metric should never increase at any step of the
execution.

To ensure that the metric f decreases regardless of the time when the
environment’s definite actions take place, the definite progress should
always hold. This is enforced by finding a stronger assertion J such that
p ∧B ⇒ J and Sta(J,R ∨G) hold, that is, J is an invariant that holds
at every program point of the loop. If (R,G : D f−−→(Q, true)) happens
to satisfy the two premises, we can use (R,G : D f−−→(Q, true)) directly
as J , but in practice it could be easier to prove the stability requirement
by finding a stronger J . The definition of stability Sta(p,R) is given in
Figure 7.6.

Notice in (R,G : D′ f−−→ (Q, true)) we can use D′ instead of D to
simplify the proof, as long as D′ 6 D and wffAct(R,D′) are satisfied.
The premise D′ 6 D, defined in Figure 7.3, says D′ specifies a subset
of definite actions in D. For instance, if D consists of multiple definite
actions and is in the form of D1∧· · ·∧Dn, D′ may contain only a subset
of these Dk (1 ≤ k ≤ n). The way to exclude in D′ irrelevant definite
actions can simplify the proof of the condition (2) of definite progress
(see Definition 7.1).

Given the definite progress condition, we know Q will be eventually
true because each definite action is definite to happen. Then the loop

7.2. The Program Logic LiLi 367

starts to consume ♦-tokens and needs to finally terminate, following
our argument at the beginning.

More Inference Rules

Other rules in Figures 7.4 and 7.5 are mostly standard. Below we discuss
the rules hide-♦, atom and atom-r. The rules in Figure 7.14 are for
the await commands, which will be explained in Subsection 7.2.4.

The hide-♦ rule allows us to discard the tokens (by using b_c♦)
when the termination of code C is already established, which is useful
for modular verification of nested loops.

Atom rules for refinement reasoning. The atom rule allows us to
logically execute the abstract atomic code simultaneously with every
concrete step (let’s first ignore the index k in the premises of the rule).
We use ` [p]C[q] to represent the total correctness of C in sequential
separation logic. The corresponding rules are standard and elided here.
We use pV q for the zero or multiple-step executions from the abstract
code specified by p to the code specified by q, which is defined in
Figure 7.6. Then, the atom rule allows us to execute zero-or-more
steps of the abstract code with the execution of C, as long as the
overall transition (including the abstract steps and the concrete steps)
satisfies the relational guarantee G. We can lift C’s total correctness to
the concurrent setting as long as the environment consists of identity
transitions only. To allow a weaker R, we can apply the atom-r rule
later, which requires that the pre- and post-conditions be stable with
respect to R.

Example: Ticket Locks

We prove the starvation-freedom of the ticket lock implementation in
Figure 7.7 using our logic rules. We have informally discussed in Subsec-
tion 7.1 the verification of the counter using a ticket lock (inc_tkL in
Figure 2.1(d)). To simplify the presentation, here we erase the increment
in the critical section and focus on the progress property of the code in
Figure 7.7. With an empty critical section, the code functions just as

368 Verifying Progress of Concurrent Objects

1 local i, o;
2 <i := getAndInc(&next); ticket[i] := cid >;
3 o := owner; while (i != o) { o := owner; }
4 owner := i + 1;

lock(tl, n1, n2) def=
((owner = n1) ∗ (next = n2) ∧ (n1 ≤ n2)) ∗ tickets(tl, n1, n2)

lockIrrt(tl, n1, n2) def= lock(tl, n1, n2) ∧ (t 6∈ tl)
Pt

def= ∃tl, n1, n2. lockIrrt(tl, n1, n2)
Gt

def= Lock t ∨ Unlock t Rt
def=
∨

t′ 6=tGt′

Lock t
def= ∃tl, n1, n2. lockIrrt(tl, n1, n2) n lock(tl++[t], n1, n2 + 1)

Unlock t
def= ∃tl, n1, n2. lock(t :: tl, n1, n2) n lockIrrt(tl, n1 + 1, n2)

Dt
def= ∀tl, n1, n2. lock(t :: tl, n1, n2) ; lockIrrt(tl, n1 + 1, n2)

Jt
def= ∃n1, n2, tl1, tl2. tlockedtl1,t,tl2(n1, i, n2) ∧ (o ≤ n1)

Qt
def= ∃n2, tl2. lock(t :: tl2, i, n2) ∧ (o ≤ i) G′

def= Id
f(S) = k iff S |= (i− owner = k)

Figure 7.7: Proofs for the ticket lock (with auxiliary code in gray).

skip, so Figure 7.7 proves it is linearizable with respect to skip. The
proofs of inc_tkL (including its starvation-freedom and linearizability
with respect to the atomic INC in Figure 2.1(e)) are given in Liang and
Feng (2018b).

To help specify the queue of the threads requesting the lock, we
introduce an auxiliary array ticket. As shown in Figure 7.7, each array
cell ticket[i] records the ID of the unique thread which gets the ticket
number i. Here we use cid for the current thread ID.

We then define lock(tl, n1, n2). It says that n1 and n2 are the values
of owner and next respectively, and tl is the list of the threads recorded
in ticket[n1], ticket[n1 + 1],. . . ,ticket[n2 − 1] (as specified by
tickets(tl, n1, n2)). We write lockIrrt(tl, n1, n2) short for lock(tl, n1, n2)∧
(t 6∈ tl). That is, the thread t is “irrelevant” to the lock: it is not request-
ing the lock. The object invariant P (see the obj rule in Figure 7.4) is
defined as lockIrr.

Figure 7.7 also defines the guarantee conditionG of the code.Gt spec-
ifies the possible atomic actions of a thread t. Lockt appends the thread

7.2. The Program Logic LiLi 369

t at the end of tl of the threads requesting the lock and increments next.
It corresponds to the code at line 2 of Figure 7.7. Unlockt releases the
lock by incrementing owner and dequeuing the thread t which currently
holds the lock. It corresponds to the code at line 4 of Figure 7.7. The rely
condition Rt includes all the Gt′ made by the environment threads t′.

Next we define the definite action D. As we explained in Subsec-
tion 7.1, Dt requires that whenever the thread t holds a lock with
owner = n1, it should eventually release the lock by incrementing owner
to n1 + 1. We can prove the side conditions about well-formedness of
specifications in the obj rule hold.

The key to verifying the loop at line 3 is to find a metric function f
and prove definite progress J ⇒ (R,G′ : D f−−→(Q, true)) for a stable J .
As shown in Figure 7.7, we define Jt to say that the thread t is requesting
the lock. The predicate tlockedtl1,t,tl2(n1, i, n2) has similar meanings as
lock(tl1++[t]++tl2, n1, n2), but also says that the thread t takes the ticket
number i. Qt specifies the case when tl1 is empty (thus owner = i).
We also strengthen the guarantee condition G′ of the loop to Id, the
identity transitions.

The metric function f maps each state S to the difference between
i and owner at that state, which describes the number of threads
ahead of t in the waiting queue. We use the usual < order on natural
numbers as the associated well-founded order. Then, we can verify
J ⇒ (R,G′ : D f−−→(Q, true)), due to the following reasons:

(1) Either Q holds, or some environment thread t′ acquires the lock.

(2) The environment thread t′ releases the lock in its hand by incre-
menting owner. Thus the metric f(S) decreases after a definite
action made by the environment.

(3) Each action in R or G′ either increases owner or keeps owner
unchanged, so f(S) never increases during the loop execution.

Finally, we prove that the loop terminates with one ♦-token when
Q holds or D is enabled. Then we can conclude linearizability and
starvation-freedom of the ticket lock implementation in Figure 7.7.

370 Verifying Progress of Concurrent Objects

7.2.3 Adding Delay for Deadlock-Free Objects

As we explained in Subsection 7.1, deadlock-free objects allow the
progress of a thread to be delayed by its environment, as long as the
whole system makes progress. Correspondingly, to verify deadlock-free
objects, we extend our logic with a delay mechanism. First we find out
the delaying actions and stratify them for objects with rollbacks where a
delaying action may trigger more steps of other delaying actions. Then,
we introduce �-tokens (we use � here to distinguish them from ♦-tokens
for loops) to bound the number of delaying actions in each method, so
we avoid infinite delays without whole-system progress.

Multi-level rely/guarantee assertions. As shown in Figure 7.1, we
index the rely/guarantee assertion P nk Q with a natural number k
and call it a level-k action. We require 0 ≤ k < maxL, where maxL is
a predefined upper bound of all levels. Intuitively, P nk Q could make
other threads do more actions at a level k′ < k. Thus P n0 Q cannot
make other threads do any more actions, i.e., it cannot delay other
threads. P n1Q could make other threads do more actions at level 0 but
no more at level 1, thus we avoid the problem of delay-caused circular
dependency discussed in Subsection 2.4.3.

To interpret the level numbers in the assertion semantics, we define
L((S,S′), R) in Figure 7.8 which assigns a level to the transition (S,S′),
given the specification R. That is, if L((S,S′), R) = k, we say R views
(S,S′) as a level-k transition. We let k = maxL if the transition does
not satisfy R. Given the level function, we can now define the semantics
of bRc0, which picks out the transitions that R views as level-0 ones.
For the following example R,

R
def= (P n0 Q) ∨ (P ′ n1 Q

′)

bRc0 is equivalent to P n0Q. Besides, R⇒ bRc0 means that R views all
state transitions as level-0 ones, thus any state transitions of R should
not delay the progress of other threads.

We use (S,S′, k) |= R as a shorthand for L((S,S′), R) = k (k <
maxL). Then the implication R ⇒ R′ is redefined under this new
interpretation, as shown in Figure 7.8.

7.2. The Program Logic LiLi 371

L((S,S′), P nk Q) def=
{
k if (S,S′) |= P nk Q
maxL otherwise

L((S,S′), [P]) def=
{

0 if (S,S′) |= [P]
maxL otherwise

L((S,S′),D) def=
{

0 if (S,S′) |= D
maxL otherwise

L((S,S′), R ∧R′) def= max(L((S,S′), R),L((S,S′), R′))

L((S,S′), R ∨R′) def= min(L((S,S′), R),L((S,S′), R′))

L((S,S′), bRc0)
def=
{

0 if L((S,S′), R) = 0
maxL otherwise

(S,S′) |= bRc0 iff L((S,S′), R) = 0
(S,S′, k) |= R iff L((S,S′), R) = k and k < maxL
R⇒ R′ iff ∀S,S′, k. ((S,S′, k) |= R) =⇒ (S,S′, k) |= R′

u ::= (nk, . . . , n1) (1 ≤ k < maxL)

(n′m, . . . , n′1) <k (nm, . . . , n1) iff (∀i > k. (n′i = ni)) ∧ (n′k < nk)
(n′m, . . . , n′1) ≈k (nm, . . . , n1) iff (∀i ≥ k. (n′i = ni))
u < u′ iff ∃k. u <k u′ u ≤ u′ iff u < u′ ∨ u = u′

(u,w) <k (u′, w′) iff (u <k u′) ∨ (k = 0 ∧ u = u′ ∧ w = w′)
(u,w) ≈k (u′, w′) iff u ≈k u′ ∧ (k = 0 =⇒ w = w′)

Figure 7.8: Levels of state transitions and tokens.

�-tokens in assertions. To ensure the progress of the whole system,
we require the steps of delaying actions to pay �-tokens. Since we allow
multi-levels of transitions to delay other threads, the �-tokens are strat-
ified accordingly. Thus we introduce the new assertion �(Ek, . . . , E1)
in Figure 7.1, whose semantics is defined in Figure 7.2. It says the
number of each level-j �-tokens is no less than Ej . Here u is a sequence
(nk, . . . , n1) recording the numbers of �-tokens at different levels, as
defined in Figure 7.8. We overload < as the dictionary order for the
sequence of natural numbers. The ordering over u and other related
definitions are also given in Figure 7.8.

372 Verifying Progress of Concurrent Objects

Inference Rules Revisited

To use the logic to verify deadlock-free objects, we need to first find in
each object method the actions that may delay the progress of others.
Since some of these actions may be further delayed by others, we assign
levels to them to ensure each action can only be delayed by ones at higher
levels. We specify the actions and their levels in the rely/guarantee
conditions. We also need to decide an upper bound of these execution
steps at each level and specify them as the number of �-tokens in the
precondition of each method.

Below we revisit the inference rules in Figure 7.4 and explain their
use of multi-level actions and �-tokens. In the obj rule, we specify in
the precondition the number of �-tokens needed for each object method.
The side condition wffAct(R,D) is also redefined in Figure 7.9, which is
explained below.

Decreasing �-tokens at the atom rule. The thread loses �-tokens
when it performs an action that may delay other threads. This is required
by the atom rule. Depending on whether the atomic command may
delay others or not, we assign a level k in the premise q′ Vk q, which is
redefined in Figure 7.9. Similar to pV q in Figure 7.6, it allows us to
execute the abstract code. Now it also requires the number of �-tokens
at level k to be decreased if k ≥ 1.

Note k cannot be arbitrarily chosen. The assignment of the level k
to the atomic operation must be consistent with the level specification
in G, as required by the third premise.

Being delayed: Increasing tokens at stability checking. When the
progress of the thread t is delayed by a level-k (k ≥ 1) action from its
environment thread t′, thread t could gain more ♦-tokens to do more
loop iterations. It could also gain more level-k′ (k′ < k) �-tokens to
execute more level-k′ actions. Here increasing tokens would not affect
the soundness of our logic because the environment thread t′ must pay a
higher-level token for its higher-level delaying action. As we explained in
Subsection 7.1.5, the �-tokens at all levels in the whole system actually
form a tuple which strictly descends along the dictionary order, ensuring
the whole-system progress.

7.2. The Program Logic LiLi 373

We re-define the stability Sta(p,R) in Figure 7.9 to reflect the
possible increasing of tokens for the thread t. We could reset w and the
number at level k′ < k in u after the environment step R if this step is
associated with a level k (k ≥ 1).

Allowing queue jumps at definite progress and wffAct. As we ex-
plained in Subsection 7.1.4, for deadlock-free objects, the environment
steps could cause queue jumps to delay the progress of the thread t. Like
starvation-free objects, the thread t using deadlock-free objects may wait
for a queue of definite actions made by its environment. A queue jump
would make the thread t wait for a longer queue of the environment’s
definite actions.

As Definition 7.1 for definite progress shows, (R,G : D f−−→(Q, true))
allows the thread to reset its metric f(S) for a queue jump when the
environment step is associated with level k ≥ 1 (i.e., it is a delaying
action). In this case, although the current thread may be blocked for a
longer time, the whole system must progress since a �-token is paid by
the environment thread for the delaying action.

Also the requirement wffAct(R,D) (used at the obj rule and the
whl rule) should be revised to allow queue jumps. The new definition is
shown in Figure 7.9. Here we allow a queue jump to disable the definite
action D of the thread at the head of the queue, so it is not necessary
to require Enabled(D) to be preserved when the environment step is
associated with level k ≥ 1.

Example: Test-and-Set Locks

In Figure 7.10, we verify the test-and-set lock implementation explained
in Subsection 7.1. Like the ticket lock proofs in Subsection 7.2.2, we
simplify the code and prove it is linearizable with respect to skip. Here
we omit the assertion arem(skip) at each line in the proof, and focus
on proving deadlock-freedom of the code.

As defined at the top of Figure 7.10, the action Lockt (corresponding
to the successful cas at line 3) is at level 1, which may delay other
threads trying to acquire the lock. The Unlockt action is at level 0, which

374 Verifying Progress of Concurrent Objects

wffAct(R,D) iff ∀t. bRtc0 ⇒ [Dt] ∧ (∀t′ 6= t. [Dt′] ∨ Dt′)
pVk q iff ∀t, σ,Σ, u, w,C,ΣF .

(((σ,Σ), (u,w), C) |= p) ∧ (Σ⊥ΣF) =⇒ ∃u′, w′, C ′,Σ′.
((C,Σ]ΣF) −_∗t (C ′,Σ′]ΣF)) ∧ (((σ,Σ′), (u′, w′), C ′) |= q)
∧ (u′, w′) <k (u,w) (<k defined in Figure 7.8)

Sta(p,R) iff ∀S,S′, u, w,C, k.
((S, (u,w), C) |= p) ∧ ((S,S′, k) |= R) =⇒ ∃u′, w′.
((S′, (u′, w′), C) |= p) ∧ ((u′, w′) ≈k (u,w))

where ≈k is defined in Figure 7.8.

Figure 7.9: Key auxiliary definitions for inference rules (final version that supersedes
definitions in Figure 7.6).

lockedt
def= (L = t) envLockedt

def= ∃t′. lockedt′ ∧ (t′ 6= t)
unlocked def= (L = 0) notOwnt

def= unlocked ∨ envLockedt
Gt

def= Lock t ∨ Unlock t
Lock t

def= unlocked n1 lockedt Unlock t
def= lockedt n0 unlocked

Dt
def= lockedt ; unlocked Jt

def= notOwnt ∨ lockedt

Qt
def= unlocked ∨ lockedt ft(S) =

{
1 if S |= envLockedt
0 if S |= Qt{

notOwncid ∧ �
}

1 local b := false;{
((¬b) ∧ notOwncid ∧ � ∧ ♦) ∨ (b ∧ lockedcid)

}
2 while (!b) {{

(unlocked ∧ �) ∨ (envLockedcid ∧ � ∧ ♦)
}

3 b := cas(&L, 0, cid);{
(b ∧ lockedcid) ∨ ((¬b) ∧ notOwncid ∧ � ∧ ♦)

}
4 }{

lockedcid
}

5 L := 0;{
notOwncid

}
Figure 7.10: Proofs for the TAS lock.

cannot delay other threads. Also the precondition is given a �-token,
which is required to pay for the Lockt action.

The definite action D simply says that the thread t would eventually
release the lock when it acquires the lock. It is easy to check that the

7.2. The Program Logic LiLi 375

side conditions about R, G and D in the obj rule, e.g., wffAct(R,D),
are satisfied.

(R,G : D f−−→(Q, true)) specifies the queue of definite actions which
now contains at most one environment thread. That is, the metric f(S)
is 1 if the lock is not available, and is 0 otherwise. When an environment
thread t′ cuts in line by acquiring the lock when the lock is free, the
current thread t has to wait for Dt′ before t itself progresses. Thus in
(R,G : D f−−→(Q, true)) the current thread t can reset its metric f(S)
when its environment acquires the lock.

The detailed proof at the bottom of Figure 7.10 shows the changes of
tokens. We give the current thread one ♦-token (using the hide-♦ rule)
to do its loop at lines 2-4. It consumes this ♦-token at the beginning of
the loop body when Q holds, as shown in the left branch of the assertion
p before line 3. When Q does not hold, as shown in p’s right branch,
the loop does not consume the ♦-token.

Next we stabilize p. For the left branch, if an environment thread t′
acquires the lock, which is a delaying action Lockt′ , we let the current
thread regain a ♦-token. The resulting state just satisfies the right
branch of p. Thus p is already stable.

The current thread pays its �-token when its cas at line 3 succeeds
(i.e., it acquires the lock), as shown in the left branch of the assertion
after line 3. If the cas fails, the thread still has � to acquire the lock in
the future and ♦ to try one more iteration.

Another Example: Nested Locks with Rollback

To demonstrate the use of action levels, we correct the rollback code of
Figure 2.4 and verify it. We assume all the methods of the object either
acquire L1 before L2 (as in the left side of Figure 2.4), or acquire only
one lock.

Stratified delaying actions. As in the TAS lock example in Subsec-
tion 7.2.3, lock acquirements are delaying actions. Here we have two
locks L1 and L2, and a thread may roll back and re-acquire L1 if its
environment owns L2. To support the rollbacks, we stratify the delaying
actions and �-tokens in two levels. Acquirements of L2 are at level 2,

376 Verifying Progress of Concurrent Objects

Gt
def= Lock2 t ∨ Lock1 t ∨ Lock0 t ∨ Unlock2 t ∨ Unlock1 t

Lock2 t
def= (unlocked(L2) n2 lockedt(L2)) ∗ [L1 = _]

Lock1 t
def= (unlocked(L1) n1 lockedt(L1)) ∗ [unlocked(L2)]

Lock0 t
def= (unlocked(L1) n0 lockedt(L1)) ∗ [envLockedt(L2)]

Unlock2 t
def= (lockedt(L2) n0 unlocked(L2)) ∗ [L1 = _]

Unlock1 t
def= (lockedt(L1) n0 unlocked(L1)) ∗ [L2 = _]

Dt
def= D2t ∧ D1t

D2t
def= ∀s. lockedt(L2) ∗ (L1 = s) ; unlocked(L2) ∗ (L1 = s)

D1t
def= lockedt(L1) ∗ unlocked(L2) ; unlocked(L1) ∗ unlocked(L2)

Figure 7.11: Multi-level actions for the corrected code in Figure 2.4.

defined as Lock2 in Figure 7.11, which may trigger rollbacks and more
acquirements of L1. Acquirements of L1 at level 1 may delay other
threads requesting L1, causing them to do more non-delaying actions,
but cannot reversely trigger more level-2 actions. Thus we avoid the
circular delay problem.

However, acquirements of L1 in some special cases cannot be viewed
as delaying actions. Suppose L2 is acquired by an environment thread t′
before the current thread t starts the method. Then t would continuously
roll back until t′ releases L2. It may acquire L1 infinitely often. In this
case, viewing all acquirements of L1 as delaying actions would require t
to pay �-tokens infinitely often, and consequently require an infinite
number of �-tokens be assigned to the method at the beginning, which
is impossible. To address the problem, we define in Figure 7.11 that
acquiring L1 is a level-1 action Lock1 only if L2 is free. When L2 is
acquired by the environment, we say the current thread is “blocked”,
and we view its acquirement of L1 as a non-delaying action Lock0 at
level 0.

To simplify the presentation, the definitions in Figure 7.11 follow
the notations in LRG (Feng, 2009), using “∗ [P]” to mean that the
actions on the irrelevant part P of the states are identity transitions.

Definite actions. There are two kinds of definite actions, which release
the two locks respectively. As shown in Figure 7.11, D2 says a thread

7.2. The Program Logic LiLi 377

{
notOwncid(L1) ∗ notOwncid(L2) ∧ �(1, 1)

}
1 lock L1;

p1
def=
{
lockedcid(L1) ∗ (unlocked(L2) ∧ �(1, 0)

∨ envLockedcid(L2) ∧ �(1, 1))

}
2 local r := L2;{

lockedcid(L1) ∗ notOwncid(L2)
∧ ((r = 0) ∧ �(1, 0) ∨ (r 6= 0) ∧ �(1, 1) ∧ ♦)

}
3 while (r != 0) {

p2
def=
{
lockedcid(L1)
∗ (unlocked(L2) ∨ envLockedcid(L2) ∧ ♦) ∧ �(1, 1)

}
4 unlock L1;
5 lock L1;{

lockedcid(L1) ∗ (unlocked(L2) ∧ �(1, 0)
∨ envLockedcid(L2) ∧ �(1, 1) ∧ ♦)

}
6 r := L2;{

lockedcid(L1) ∗ notOwncid(L2)
∧ ((r = 0) ∧ �(1, 0) ∨ (r = 1) ∧ �(1, 1) ∧ ♦)

}
7 }{

lockedcid(L1) ∗ notOwncid(L2) ∧ �(1, 0)
}

8 lock L2;{
lockedcid(L1) ∗ lockedcid(L2)

}
9 unlock L2;

10 unlock L1;{
notOwncid(L1) ∗ notOwncid(L2)

}
Qt

def= (lockedt(L1) ∨ unlocked(L1)) ∗ unlocked(L2)

Figure 7.12: Proof outline for the corrected rollback example in Figure 2.4.

holding L2 eventually releases it, regardless of the status of the lock
L1. D1 says L1 will be definitely released when L2 is free. Note that
a thread holding L1 may not be able to release the lock if it cannot
acquire L2.

Proof outline for the rollback. As shown in Figure 7.12, when thread
t starts the method, it is given �(1, 1), where the level-2 �-token is
for doing Lock2 and the level-1 �-token is for Lock1 . The assertions
notOwn is defined similarly as in Figure 7.10.

lock L1 at line 1 is implemented using the TAS lock, and its detailed
proof is in Figure 7.13, which will be explained later. The acquirement
of L1 may or may not consume a level-1 �-token, depending on whether

378 Verifying Progress of Concurrent Objects

p01
def= unlocked(L1) ∗ unlocked(L2)

p02
def= (unlocked(L1) ∗ envLockedcid(L2)) ∧ ♦

p03
def= (envLockedcid(L1) ∗ notOwncid(L2)) ∧ ♦{
notOwncid(L1) ∗ notOwncid(L2) ∧ �(1, 1)

}
1 local b := false;{

(¬b) ∧ (notOwncid(L1) ∗ notOwncid(L2)) ∧ �(1, 1) ∧ ♦
∨ b ∧ p1

}
2 while (!b) {{

(p01 ∨ p02 ∨ p03) ∧ �(1, 1)
}

3 b := cas(&L1, 0, cid);
b ∧ lockedcid(L1)
∗ (unlocked(L2) ∧ �(1, 0) ∨ envLockedcid(L2) ∧ �(1, 1))
∨ (¬b) ∧ ((unlocked(L1) ∨ envLockedcid(L1))

∗ notOwncid(L2)) ∧ �(1, 1) ∧ ♦


4 }{

p1
}

Figure 7.13: Proof outline for lock L1 in the rollback example.

L2 is free or not (see p1 in Figure 7.12). If L2 is free, line 1 is a Lock1
action, which consumes a token. Otherwise it is a Lock0 action and
the token is not consumed, allowing the thread t to roll back and do
Lock1 later. Then we stabilize the assertion. For the left branch, when
an environment thread acquires L2, i.e., the interference is at level 2,
the thread t could re-gain the level-1 �-token, resulting in the right
branch of the assertion. Stabilizing the right branch gives us the whole
p1 too. Thus p1 is stable.

Then thread t tests L2 at line 2 in Figure 7.12. When r is not 0,
thread t goes into the loop at line 3. The Q for the loop is defined at
the bottom of Figure 7.12, which says that thread t could terminate
the loop when L1 is not acquired by the environment and L2 is free.
Before line 3, we give the thread one ♦-token for the loop (applying the
hide-♦ rule). The token is consumed at the beginning of an iteration
when the above Q holds. Thus, the loop body (from line 4 to line 6) is
verified with the precondition p2. Note the thread still has one ♦-token
if L2 is not available, because the loop does not consume the token if
Q does not hold. The token will be consumed at the next round when
L2 is free. On the other hand, stabilizing the left branch of the above

7.2. The Program Logic LiLi 379

assertion p2 just gives us the whole p2: When an environment thread
acquires L2, thread t could re-gain a ♦-token.

Besides, the definite progress (R,G : D f−−→(Q, true)) is verified as
follows. When thread t is blocked (i.e., Q does not hold), there is a
queue of definite actions of the environment threads. The length of the
queue is at most 2, as shown by f defined below:

ft(S) def=

2 if S |= envLockedt(L2) ∗ true
1 if S |= envLockedt(L1) ∗ unlocked(L2)
0 if S |= Q

When the environment thread t′ holding L2 releases the lock (i.e., it
does D2t′), the queue becomes shorter. Thread t only needs to wait for
the environment thread to release L1.

Acquirements of L1 in the rollback example. Finally we discuss the
proof of the implementation of lock L1 in Figure 7.13. Here we use the
same Q in Figure 7.12 to verify the loop. That is, we think the thread is
“blocked” if L2 is not available. Initially we give one ♦-token for the loop.
Depending on whether Q holds or not, there are three cases (p01, p02
and p03) when we enter the loop. For the case p01, the loop consumes
the ♦-token because Q holds. For the other two cases (p02 and p03), Q
does not hold and the token is kept. Note that stabilizing p01 results in
p03 when the environment acquires L1: Since L2 is free, the environment
action is a level-1 delaying action Lock1 , allowing the thread to re-gain
the ♦-token.

For line 3, if b is true, we know p01 or p02 holds before the line.
Depending on whether L2 is available or not, the action may or may
not consume a level-1 �-token, following the same argument as in line 1
in Figure 7.12. If b is false, then p03 holds before the line. Stabilizing
this case results in the right branch of the postcondition of line 3, with
a ♦-token for the next round of loop.

It may seem strange that for the loop we do not use a Q′ def=
lockedt(L1)∨unlocked(L1), i.e., the same Q as in Figure 7.10. If we use Q′

instead, then the case p02 before line 3 cannot have the ♦-token because
Q′ is true in this case and the ♦-token needs to be consumed by the loop.
Thus p02 needs to be changed to p′

02
def= envLockedcid(L1)∗notOwncid(L2).

380 Verifying Progress of Concurrent Objects

Stabilizing p′
02 can no longer give us p03 when the environment acquires

L1, because the acquirement action is Lock0 instead of Lock1 (since L2
is not free in this case). The thread cannot re-gain the ♦-token in p03,
so p03 cannot have the ♦-token either. As a result, we no longer have a
♦-token to pay for the next round of loop if the cas in line 3 fails.

7.2.4 Supporting Partial Methods

To summarize, the key ideas of LiLi to verify progress are the following:

• A thread can be blocked, relying on the actions of other threads
(i.e., its environment) to make progress. To ensure it eventually
progresses, we must guarantee that the environment actions that
the thread waits for eventually occur.

• To avoid circularity in rely-guarantee reasoning, each thread speci-
fies a set of definite actions D, which are state transitions specified
in the form of P ; Q. The thread guarantees that, whenever a
definite action P ; Q is “enabled” (i.e., the assertion P holds),
the transition must occur so that Q eventually holds, regardless
of the environment behaviors.

• A blocked thread must wait for a set of definite actions of other
threads, and the size of the set must be decreasing (so that the
thread is eventually unblocked).

• A thread may delay the progress of others, i.e., to make other
threads to execute more steps than they need when executed in
isolation. To ensure deadlock-freedom, LiLi disallows a thread to
be delayed infinitely often without whole system progress. This is
achieved by using tokens as resources and each delaying action
must consume a token.

These ideas to reason about blocking and delay are general enough for
verifying objects with partial methods, but we have to first generalize
the previous rules for total methods in the following two aspects:

• Previously there was no rule for await commands. There while-
loops are the only commands that affect progress. Now we have

7.2. The Program Logic LiLi 381

to reason about await in object code, which may affect progress
as well. It is interesting to see that await can be reasoned about
similarly as while-loops.

• We also have await(B){C} as partial specifications. Since we
want termination-preserving refinement, we do not have to guar-
antee progress of the concrete object methods when the partial
specification is disabled.

We show the new rules for await commands in Figure 7.14. Before
discussing them, we first explain the general version of the whl rule in
Figure 7.4.

The whl Rule for Loops in Partial Methods

As discussed in Subsection 7.2.2, we verify the loop body with a pre-
condition p′, which needs to be derived from the loop invariant p and
the loop condition B. In two cases we must ensure that there are no
infinite loops:

• the definite action D is enabled (see Figure 7.1 for the definition
of Enabled(D)). Then the loop must terminate to guarantee that
the definite action D definitely occurs.

• the current thread is not blocked. Here we need to find a condition
Q that ensures the current thread can make progress without
waiting for actions of other threads.

The second premise of the rule says, in either of the two cases above we
must consume a ♦-token for each round of the loop, as p′ has one less
token than p ∧B.

On the other hand, if the current thread is blocked (Q does not
hold) and it is not in the middle of a definite action, the loop can run
an indefinite number of rounds to wait for the environment actions.
It does not have to consume tokens. However, we must ensure the
thread cannot be blocked forever, i.e., Q cannot be always false. This
is achieved by the definite progress condition. We have explained the
definite progress condition for total methods in Definition 7.1. Below

382 Verifying Progress of Concurrent Objects

p ∧ Enabled(D)⇒ B D, Id, G ` {p ∧B}〈C〉{q}
Sta({p, q}, R) D′ 6 D wffAct(R,D′)

p⇒ ∃B′, C ′. arem(await(B′){C ′}) ∧ (R : D′◦ f−→(B,B′))
D, R,G `wfair {p}await(B){C}{q}

(await-w)

p ∧ Enabled(D)⇒ B D, Id, G ` {p ∧B}〈C〉{q}
Sta({p, q}, R) D′ 6 D wffAct(R,D′)

p⇒ ∃B′, C ′. arem(await(B′){C ′}) ∧ (R : D′• f−→(B,B′))
D, R,G `sfair {p}await(B){C}{q}

(await-s)

Figure 7.14: Inference rules (III).

we show the generalized definition for partial methods in Definition 7.2,
with the changes highlighted in gray boxes.

Definition 7.2 (Definite Progress). S |= (R,G : D f−→ (Q,Bh)) iff the
following hold for any t:

(1) either S |= Qt, or S |= ¬Bh, or there exists t′ such that t′ 6= t
and S |= Enabled(Dt′);

(2) for any t′ 6= t and S′, if (S,S′, 0) |= Rt ∧ (〈Dt′〉 ∨((¬Bh) nBh)),
then ft(S′) < ft(S);

(3) for any S′, if (S,S′, 0) |= Rt ∨Gt, then ft(S′) ≤ ft(S).

Here f is a function that maps the relational states S to some metrics
over which there is a well-founded order <.

The definite progress condition (R,G : D f−→(Q,Bh)) tries to ensure
Q is eventually always true, unless Bh is eventually always false. It
requires the following conditions to hold:

(1) Either Q holds, which means that the low-level code is no longer
blocked; or the high-level specification await(Bh){C ′} is disabled,
so that the low-level code does not have to progress to refine the
high-level code; or one of the definite actions in D that the current
thread t waits for is enabled in some thread t′. Here D can be

7.2. The Program Logic LiLi 383

viewed as a set of n definite actions in the form of D1 ∧ · · · ∧ Dn
parameterized with thread IDs.

(2) There is a well-founded metric f that becomes strictly smaller
whenever (a) an environment thread t′ executes a definite action
in D, or (b) an environment action has turned the high-level
command from disabled to enabled. Case (a) requires that the
number of definite actions waited by the current thread must
be strictly decreasing. Therefore eventually there are no enabled
definite actions. By condition (1) we know eventually either Q
or ¬Bh is true. Case (b) further requires that the high-level
command cannot be infinitely often disabled and then enabled
during the loop. Therefore either Bh is eventually always true
or it is eventually always false. In the former case we know Q

must be eventually always true by the above condition (1). In the
latter the loop does not have to terminate because the execution
is well-blocked (see Figure 5.3).

(3) The value of f over program states cannot be increased by any
level-0 actions (i.e., non-delaying actions).

Note that the last two conditions do not prevent delaying actions (level-k
actions where k > 0) from increasing the value of f , but such an increase
can only occur a finite number of times because each delaying action
consumes a �-token. The effects of delaying actions are shown in the
atom rule in Figure 7.4, which has been discussed in Subsection 7.2.3.

As explained in Subsection 7.2.2, to ensure the definite progress
condition always holds, we need to find an invariant J which is preserved
by any program step (by the current thread or by the environment), and
require that J implies definite progress, given the currently remaining
high-level command await(B′){C ′}. Note that to simplify the presen-
tation we treat arem(skip) as arem(await(true){skip}) so that it can
be reasoned about in the same way.

Rules for await Commands

Now we introduce the two new rules, await-w and await-s, to verify
await commands in the object implementation under weakly fair and

384 Verifying Progress of Concurrent Objects

strongly fair scheduling. We use the subscripts of the judgment to
distinguish the scheduling.

Naturally the await-w rule combines the atom rule and the whl
rule. If await(B){C} is enabled, we can simply treat C as an atomic
block 〈C〉 and apply the atom rule to verify it. In this case we do
not need to consider the interference and take Id as the rely condition
(remember that Id is a shorthand notation for [true], which specifies
arbitrary identity transitions).

Similar to the whl rule, if the definite action D is enabled, then
await(B){C} must be enabled at this point (see the first premise of
the await-w rule). This is because we require that, when enabled, the
definite action D must be fulfilled regardless of environment behaviors.
Therefore the current thread cannot be blocked.

Finally, we require that, even if the command is blocked, it must be
eventually enabled unless the corresponding high-level specification is
blocked too. So if we view the enabling condition B the same as the
condition Q we use in the whl rule, we require the same definite progress
condition, except that things are simpler here because await(B){C}
finishes in one step once enabled, unlike loops which take multiple
steps to finish even if Q holds. Therefore we do not need the invariant
J used in the whl rule, and we do not need to consider actions in
G in the definite progress condition. We can use a simpler condition
(R : D′◦ f−→(B,B′)) defined below, which simply instantiates G with Id
and Q with B in (R,G : D′ f−→(Q,B′)) (see Definition 7.2).

Definition 7.3 (Definite Progress for Await).

• S |= (R : D◦ f−→(Bl, Bh)) iff S |= (R, Id : D f−→(Bl, Bh)).

• S |= (R : D• f−→(Bl, Bh)) iff the following hold for any t:

(1) either S |= Bl, or S |= ¬Bh, or there exists t′ such that
t′ 6= t and S |= Enabled(Dt′);

(2) for any t′ 6= t and S′, if (S,S′, 0) |= Rt ∧ (〈Dt′〉 ∨ ((¬Bh) n
Bh)), then ft(S′) < ft(S);

(3) for any S′, if (S,S′, 0) |= Rt ∧((¬Bl) n (¬Bl)), then ft(S′)
≤ ft(S).

7.3. Soundness 385

The await-s rule for strongly fair scheduling looks almost the same
as the await-w rule, with a slightly different definite progress condition
(R : D′• f−→ (B,B′)), which is also shown in Definition 7.3 with the
difference highlighted in the gray box. The key difference here is that
the low-level enabling condition B (represented as Bl in Definition 7.3)
does not have to be stable once it becomes true. Under strongly fair
scheduling we know the await block will be executed as long as it is
enabled infinitely often. Therefore in condition (3) we only need to
ensure that f does not increase if the enabling condition Bl remains
false, but we allow f to increase whenever we see Bl holds.

The (general) whl rule and the await-w and await-s rules are the
only new command rules we introduce to reason about partial methods
and blocking primitives. All the other rules in Figures 7.4 and 7.5 can
be used for partial methods without any changes.

7.3 Soundness

The two await rules actually give us two program logics, for strongly
fair and weakly fair scheduling respectively. To distinguish them, we
use D, R,G `χ {P}Π:Γ to represent the verification using the logic for
χ-scheduling (χ ∈ {sfair,wfair}), where the corresponding await rule
is used.

Theorem 7.1 shows that our logic is sound in that it guarantees
linearizability and progress properties of concurrent objects.

Theorem 7.1 (Soundness). If D, R,G `χ {P}Π : Γ and ϕ⇒ P , then

(1) Π �lin
ϕ Γ (i.e., linearizability holds); and

(2) PDFχϕ,Γ(Π); and

(3) if R⇒ bRc0 and G⇒ bGc0, then PSFχϕ,Γ(Π) holds; and

(4) if total(Γ), then DFϕ(Π); and

(5) if total(Γ), R⇒ bRc0 and G⇒ bGc0, then SFϕ(Π) holds; and

(6) if total(Γ) and D is instantiated to false ; true, then LFϕ(Π)
holds; and

386 Verifying Progress of Concurrent Objects

non-delay delay
non-blocking wait-freedom ⇒ lock-freedom

⇓ ⇓
blocking starvation-freedom ⇒ deadlock-freedom

Figure 7.15: Progress properties for total methods.

(7) if total(Γ), D is instantiated to false ; true, R ⇒ bRc0 and
G⇒ bGc0, then WFϕ(Π) holds.

Here χ ∈ {sfair,wfair}, and ϕ⇒P
def= ∀σ,Σ. (ϕ(σ)=Σ) =⇒ (σ,Σ) |=P .

Theorem 7.1 says that LiLi ensures linearizability and partial dead-
lock freedom (PDF) together. It also ensures partial starvation freedom
(PSF) if the rely/guarantee conditions specify only level-0 actions, as
required by R ⇒ bRc0 and G ⇒ bGc0. That is, none of the object
actions of a thread could delay the progress of other threads. With the
specialized R and G, we can derive the progress of each single thread,
which gives us PSF.

When the atomic specification Γ is total (i.e., each method body
in Γ is an atomic block 〈C〉 followed by a return E command), LiLi
ensures the four progress properties for total methods (see items (4)–(7)
in Theorem 7.1). It ensures deadlock-freedom (DF), and when R and
G specify only level-0 actions, it also ensures starvation-freedom (SF).
To verify lock-freedom (LF) and wait-freedom (WF), we instantiate the
definite actions D to false ; true.

To understand the soundness theorem, Figure 7.15 shows the rela-
tionships among all the four progress properties for total methods (where
“⇒” represents implications). We sort them in two dimensions: blocking
and delay (their difference has been explained in Subsection 2.4.3).
Starvation-free or deadlock-free objects allow a thread to be blocked,
and lock-free and deadlock-free objects permit delay.

LiLi handles blocking by definite actions, and supports delay by
�-tokens and multi-level actions. By ignoring either or both features,
it can be instantiated to verify objects with any of the four progress
properties in Figure 7.15.

For instance, to verify lock-free objects, we instantiate the definite
actions D to be false ; true, and use only the supports for delay.

7.4. Examples 387

Then a thread cannot rely on the environment threads’ D, meaning
that it is never blocked. The whl rule in Figure 7.4 is reduced to the
following rule, requiring that the loop terminates (the ♦-tokens decrease
at each iteration) unless being delayed by the environment. The definite
progress condition J ⇒ (R,G : D f−−→(Q, true)) could trivially hold by
setting both Q and J to be true and f to be a constant function.

p ∧B ⇒ p′ ∗ (♦ ∧ emp) false ; true, R,G ` {p′}C{p}
false ; true, R,G ` {p}while (B){C}{p ∧ ¬B}

(whl-lfwf)

To verify wait-free objects, besides instantiating D as false ; true,
we also require R and G to specify actions of level 0 only, as in The-
orem 7.1(3). The instantiation results in the logic rules disallowing
both blocking and delay, so we know every method would terminate
regardless of the environment interference.

To prove Theorem 7.1, we first prove the logic establishes the
progress-aware contextual refinements, and then apply the Abstrac-
tion Theorem 6.1 to ensure linearizability and the progress properties.

7.4 Examples

We have seen a few small examples showing the use of LiLi. Below we
give an overview of other algorithms we have verified.

• PSF and PDF algorithms.

• Locks and other partial objects. We have applied LiLi to verify
ticket locks (Mellor-Crummey and Scott, 1991), test-and-set
locks (Herlihy and Shavit, 2008), bounded partial queues
with two locks (Herlihy and Shavit, 2008) (where the locks
are implemented using the specification (2.3.2)) and Treiber
stacks (Treiber, 1986) with partial pop methods.
• Wrappers. Perhaps interestingly, we also use our logic to
prove that, for the atomic partial specification Γ for locks,
the wrapping of Γ (as the object implementation) respects
Γ itself as the atomic specification under the designated
fairness conditions, i.e., (D, R,G ` {P}wrχProg(Γ) : Γ) holds

388 Verifying Progress of Concurrent Objects

for certain D, R, G and P , and for different combinations
of fairness χ and progress Prog. This result validates our
wrappers and program logic. It shows Progχϕ,Γ(wrχProg(Γ))
holds, i.e., each wrapper itself satisfies the corresponding
progress property.

• Starvation-free and deadlock-free algorithms.

• Coarse-grained synchronization. The easiest way to imple-
ment a SF or DF concurrent object is using a single lock to
protect all the object data. As an example, we have verified
the counter with various lock implementations (Herlihy and
Shavit, 2008; Mellor-Crummey and Scott, 1991), including
ticket locks, Anderson array-based queue locks, CLH list-
based queue locks, MCS list-based queue locks, and TAS
locks. We show that the coarse-grained object with ticket
locks or queue locks is starvation-free, and it is deadlock-free
with TAS locks.
• Fine-grained and optimistic synchronization. As examples
with more permissive locking scheme, we have verified Michael-
Scott two-lock queues (Michael and Scott, 1996), lock-coupling
lists (Herlihy and Shavit, 2008), optimistic lists (Herlihy
and Shavit, 2008), and lazy lists (Heller et al., 2005). We
show that the two-lock queues and the lock-coupling lists
are starvation-free if all their locks are implemented using
ticket locks, and they are deadlock-free if their locks are TAS
locks. The optimistic lists and the lazy lists have rollback
mechanisms, and we prove they are deadlock-free.

• Lock-free algorithms. We have also verified several variants of cas-
based lock-free counters, Treiber stacks (Treiber, 1986), Michael-
Scott lock-free queues (Michael and Scott, 1996) and DGLM
lock-free queues (Doherty et al., 2004).

To the best of our knowledge, we are the first to formally verify
the starvation-freedom of lock-coupling lists, the deadlock-freedom of
optimistic lists and lazy lists, and the PSF/PDF of the lock algorithms.

7.4. Examples 389

In the following subsections, we first verify the optimistic list algo-
rithm. Then we show the verification of test-and-set locks and ticket
locks. Finally, to demonstrate the use of the rules for await commands,
we verify simple locks implemented using await which guarantee PSF
under weak fairness.

7.4.1 Optimistic Lists

Below we verify the optimistic list-based implementation in Figure 2.3
of a mutable set data structure. The algorithm has operations add,
which adds an element to the set, and rmv, which removes an element
from the set. Figure 7.16 shows the code and the proof outline for rmv.

We have informally explained the idea of the algorithm in Sub-
section 7.1.5. To verify its progress in LiLi, we need to recognize the
delaying actions, specify them in rely and guarantee conditions with
appropriate levels, define the definite actions, and finally prove the
termination of loops following the whl rule.

Following the earlier linearizability proofs in RGSep (Vafeiadis, 2008),
the basic actions of a thread include the lock acquire (line 4) and release
actions (lines 6 and 12), and the Add and Rmv actions (lines 8–11) that
insert and delete nodes from the list respectively. Since we use TAS locks
here, acquirements of a lock will delay other threads competing for the
same lock. Thus lock acquirements are delaying actions, as illustrated in
Subsection 7.2.3. Also, the Add and Rmv actions may cause the failure
of the validation (at line 5) in other threads. The failed validation
will further cause the threads to roll back and to acquire the locks
again. Therefore the Add and Rmv actions are also delaying actions
that may lead to more lock acquirements. In our rely and guarantee
specifications, the Add and Rmv actions are level-2 delaying actions,
while lock acquirements are at level 1.

Next we define the definite actions D that a blocked thread may
wait for. Since a thread is blocked only if the lock it tries to acquire is
unavailable, we only need to specify in D the various scenarios under
which the lock release would definitely happen. The definitions are
omitted here.

390 Verifying Progress of Concurrent Objects

rmv(int e) {{
�(1, 2) ∧ arem(RMV(e)) ∧ . . .

}
1 local b := false, p, c, n;{

¬b ∧ �(1, 2) ∧ ♦ ∧ . . . ∨ b ∧ . . .
}

2 while (!b) {{
�(1, 2) ∧ . . .

}
3 (p, c) := find(e); // a loop of list traversal{

valid(p, c) ∧ �(1, 2) ∧ . . . ∨ invalid(p, c) ∧ �(1, 4) ∧ ♦ ∧ . . .
}

4 lock p; lock c;{
valid(p, c) ∧ �(1, 0) ∧ . . . ∨ invalid(p, c) ∧ �(1, 2) ∧ ♦ ∧ . . .

}
5 b := validate(p, c); // a loop of list traversal
6 if (!b) { unlock c; unlock p; }{

b ∧ valid(p, c) ∧ �(1, 0) ∧ . . . ∨ ¬b ∧ �(1, 2) ∧ ♦ ∧ . . .
}

7 }{
valid(p, c) ∧ �(1, 0) ∧ arem(RMV(e)) ∧ . . .

}
8 if (c.data = e) {
9 n := c.next;{

valid(p, c, e, n) ∧ �(1, 0) ∧ arem(RMV(e)) ∧ . . .
}

10 < p.next := n; gn := gn ∪ {c} >; // LP{
valid(p, n) ∧ arem(skip) ∧ . . .

}
11 }
12 unlock c; unlock p;{

arem(skip) ∧ . . .
}

}

Figure 7.16: Proofs for optimistic lists (with auxiliary code in gray).

We also need to find a metric f to prove the definite progress
condition in the whl rule. We define f as the number of all the locked
nodes, including those on the list and those that have been removed
from the list but have not been unlocked yet. It is a conservative upper
bound of the length of the queue of definite actions that a blocked
thread is waiting for. It is easy to check that every definite action D
makes the metric to decrease, and that a thread is unblocked to acquire
the lock when the metric becomes 0.

In Figure 7.16, the precondition is given �(1, 2), two level-1 �-tokens
for locking two adjacent nodes, and one level-2 �-token for doing Rmv .
We apply the (hide-♦) rule and assign one ♦-token to the loop at
lines 2-7, so the loop should terminate in one round if it is not delayed
by the environment.

7.4. Examples 391

A round of loop is started at the cost of the ♦-token. The code find
at line 3 traverses the list. After line 3, p and c may be valid: both
of them are on the list and p.next is c. However, if the environment
updates the list by the level-2 delaying actions Add or Rmv , the two
nodes p and c may no longer satisfy valid. In this case, invalid(p, c)
holds, and the current thread could gain two more level-1 �-tokens and
one more ♦-token, allowing it to roll back and re-lock the nodes in a
new round.

At line 4, lock p and lock c consume two level-1 �-tokens respec-
tively. The validation at line 5 succeeds in a valid state, and fails in an
invalid state. Thus we can re-establish the loop invariant after line 6.

Lines 8-11 perform the node removal. Line 10 is the linearization
point (LP in the figure), at which we fulfill the abstract atomic operation
RMV(e). Afterwards, the remaining abstract code becomes skip. To help
specify the shared state, in line 10 we introduce an auxiliary variable
gn to collect the locations of removed nodes.

Due to space limit, here we only give a brief overview of the proofs
and omit many details, including the specifications of rely and guarantee
conditions, definite actions, and the proofs of the implementation of
find (line 3), validate (line 5) and lock (line 4).

7.4.2 Test-and-Set Locks

In Subsection 7.2.3, we have verified DF of an object using test-and-set
locks (see Figure 7.10). In Figure 7.17, we verify PDF of the test-and-set
lock object with respect to the atomic partial specifications L_ACQ’ and
L_REL defined in (2.3.2). To distinguish the variables at the two levels,
below we use capital letters (e.g., L) in the specifications and small
letters (e.g., l) in the implementations.

As we explained in Subsection 3.1, the method L_rel and the
specification L_REL have annotated preconditions (l = cid) and (L =
cid), respectively. That is, it is not allowed to call L_rel (or L_REL)
when the thread does not hold the lock. The annotated precondition for
L_acq and L_ACQ’ is true. In Figure 7.17, we define the assertion lock
as the object invariant P used in the obj rule. Then the method L_acq
is verified with the precondition lock, and L_rel is verified with the

392 Verifying Progress of Concurrent Objects

locks
def= (l = L = s) lock def= ∃s. locks

lockedt
def= lockt ∧ (t 6= 0) locked def= ∃t. lockedt

unlocked def= lock0

Rt
def=
∨

t′ 6=tGt′ Gt
def= Acqt ∨ Rel t

Acqt
def= unlocked n1 lockedt Rel t

def= lockedt n0 unlocked
D def= false ; true

J
def= lock Q

def= unlocked f(S) def=
{

1 if S |= locked
0 if S |= Q

L_acq(){{
lock ∧ � ∧ arem(L_ACQ’)

}
1 local b := false;{

((¬b) ∧ lock ∧ � ∧ ♦ ∧ arem(L_ACQ’)) ∨ (b ∧ lockedcid ∧ arem(skip))
}

2 while (!b) {{
((unlocked ∧ �) ∨ (locked ∧ � ∧ ♦)) ∧ arem(L_ACQ’)

}
3 b := cas(&l, 0, cid);
4 }{

lockedcid ∧ arem(skip)
}

}
L_rel(){{

lockedcid ∧ arem(L_REL)
}

5 l := 0;{
lock ∧ arem(skip)

}
}

Figure 7.17: Proofs for the test-and-set lock.

precondition lock ∧ (l = cid) which is reduced to lockedcid, as shown
in Figure 7.17.

To verify L_acq, we make the following key observations. When the
cas at line 3 succeeds, L_ACQ’ must be enabled and can be executed
correspondingly. And at the time when the cas fails, L_ACQ’ must be
disabled. The progress of L_acq relies on that the environment thread
holding the lock could eventually release the lock, i.e., turning the
current thread’s L_ACQ’ from disabled to enabled. But such an action is
not “definite”, since the client thread may never call the L_rel method.
The definite action D for this object can be defined as false ; true,
saying that there is no definite action that a thread needs to complete.

7.4. Examples 393

The action Acqt (corresponding to the successful cas at line 3) is a
delaying action (defined with level 1). When thread t succeeds in cas,
termination of other threads’ L_acq can be delayed, as allowed by PDF.
The thread t has to pay a �-token, given in the precondition of L_acq.

The definite progress condition (R,G : D f−→(Q, L=0)) now says that
thread t is either at a state that it itself can progress (i.e., Q holds),
or blocked at the abstract level (i.e., L=0 does not hold). The metric
ft(S) decreases when an environment thread releases L, but can be reset
(which means thread t is delayed) if an environment thread successfully
acquires the lock.

By the Soundness Theorem 7.1, we know the test-and-set lock object
satisfies the PDF property, and contextually refines the abstraction
generated by the corresponding PDF wrappers in Figure 6.3, under
strongly and weakly fair scheduling.

7.4.3 Ticket Locks

In Subsection 7.2.2, we have verified SF of an object using ticket locks
(see Figure 7.7). In Figure 7.18, we prove the ticket lock object itself
satisfies PSF. We introduce some write-only auxiliary variables to help
the verification. First, as in the proofs in Figure 7.7 in Subsection 7.2.2,
we introduce an array ticket to help specify the queue of the threads
requesting the lock. Each array cell ticket[i] records the ID of the
unique thread getting the ticket number i (see line 2). Second, we
introduce a lock bit l to make the lock acquirement and lock release
explicit (see lines 4 and 5).

We then define the object invariant lock(s, tl, n1, n2). It says that the
lock bits l and L are equal, n1 and n2 are the values of owner and next
respectively, and tl is the list of the threads recorded in ticket[n1],
ticket[n1 + 1], . . . , ticket[n2−1] (as specified by tickets(tl, n1, n2)).

The guarantee condition Gt describes the possible atomic actions
of thread t. Reqt adds t at the end of tl of the threads requesting the
lock and also increments next. It corresponds to line 2 in the code at
the top of Figure 7.18. Acqt sets the lock bits to t, explicitly indicating
the lock acquirement (see line 4). It is also a definite action (see the
definition of Dt) since thread t must acquire the lock if its loop at

394 Verifying Progress of Concurrent Objects

tkL_acq(){
1 local i, o;
2 <i := getAndInc(&next); ticket[i] := cid >;
3 o := owner; while (i != o) { o := owner; }
4 l := cid;
}
tkL_rel(){
5 <owner := owner+1; l := 0 >;
}

lock(s, tl, n1, n2) def=
(l = L = s ∧ (s = head(tl) ∨ s = 0))
∗ ((owner = n1) ∗ (next = n2) ∧ (n1 ≤ n2)) ∗ tickets(tl, n1, n2)

Gt
def= Reqt ∨ Acqt ∨ Rel t

Reqt
def= ∃s, tl, n1, n2. lock(s, tl, n1, n2) n lock(s, tl++[t], n1, n2 + 1)

Acqt
def= ∃tl, n1, n2. lock(0, t :: tl, n1, n2) n lock(t, t :: tl, n1, n2)

Rel t
def= ∃tl, n1, n2. lock(t, t :: tl, n1, n2) n lock(0, tl, n1 + 1, n2)

Dt
def= ∀tl, n1, n2. lock(0, t :: tl, n1, n2) ; lock(t, t :: tl, n1, n2)

Jt
def= ∃s, n1, n2, tl1, tl2. tlockedtl1,t,tl2(s, n1, i, n2) ∧ (o ≤ n1)

Qt
def= ∃n2, tl2. lock(0, t :: tl2, i, n2) ∧ (o ≤ i)

f(S) def=
{

2k + 1 if S |= (i− owner = k) ∗ (l = 0)
2k if S |= (i− owner = k) ∗ (l 6= 0)

Figure 7.18: Proofs for the ticket lock (with auxiliary code in gray).

line 3 terminates. Rel t increments owner to dequeue the thread t which
currently holds the lock, and resets the lock bits (see line 5). All actions
are at level 0. There are no delaying actions.

By applying the whl rule of our logic, we need to prove the definite
progress condition J ⇒ (R, Id : D f−→(Q, L=0)) for the loop at line 3. Here
J , Q and f are defined at the bottom of Figure 7.18. In the definition
of Jt, we use tlockedtl1,t,tl2(s, n1, i, n2) to say that t is requesting the
lock and its ticket number is i. Here tl1 is the list of the threads which
are waiting ahead of t, and tl2 is for the threads behind t. Qt specifies
the case when tl1 is empty. In this case the lock bits must be 0 and
tlocked is reduced to lock, as shown at the bottom of Figure 7.18.

The metric ft(S) is determined by the number of threads ahead
of t in the waiting queue and the status of the lock bits. It decreases

7.4. Examples 395

when an environment thread t′ does the definite action Dt′ , setting
the lock bits to t′. It also decreases when t′ releases the lock and
increments owner, turning (L 6= 0) to (L = 0). Thus we can prove
J ⇒ (R, Id : D f−→(Q, L=0)).

By the Soundness Theorem 7.1, we know the ticket lock object
satisfies the PSF property, and contextually refines the abstraction
generated by the corresponding PSF wrappers, under both strongly and
weakly fair scheduling.

7.4.4 Simple PSF Locks with Await Blocks

Figure 7.19 shows the proofs of a simple lock object implemented with
an await statement which guarantees PSF under weak fairness. The
acquire method is simply wrwfairPSF (await(l=0){l:=cid}). The release
method resets the lock bit l directly. It has the annotated precondition
(l = cid). We still verify the object in our logic with the specifications
L_ACQ’ and L_REL defined in (2.3.2).

We first define the object invariant P used in the obj rule. It is
defined based on lock, which requires l to have the same value as the
abstract lock L. The queue listid records the threads currently waiting
for the lock. Here diff(tb) says that the threads in tb are all different.
Then the object invariant Pt further requires that the current thread
t is not recorded in listid. It is preserved before and after t calls a
method.

The object has three kinds of possible actions (see the definition
of G). Reqt appends the thread t at the end of listid to request the
lock (line 1). Acqt acquires the lock if the lock is available and t is at
the head of listid (lines 2-4). Rel t releases the lock (line 5). Here Acqt
is also the definite action of thread t (see the definition of D). None of
the actions are delaying actions.

To verify the await statement at lines 2-4, we apply the await-w
rule in Figure 7.14, and prove:

lockReq ⇒ (R : D◦ f−→(l = 0 ∧ cid = enhd(listid), L = 0)).
(7.4.1)

The metric f is defined at the top of Figure 7.19. We can see that ft(S)
decreases when an environment thread t′ performs a definite action,

396 Verifying Progress of Concurrent Objects

Pt
def= ∃s, tb. locks(tb) ∧ (t 6∈ tb) where tb ::= ε | (t, ‘l=0’) :: tb

locks(tb) def= (l = L = s) ∗ (listid = tb) ∧ diff(tb)
unlocked(tb) def= lock0(tb) lockReqt

def= ∃s, tb. locks(tb) ∧ (t ∈ tb)
lockedt(tb) def= lockt(tb) ∧ (t 6= 0) ∧ (t 6∈ tb) lockedt

def= ∃tb. lockedt(tb)
Gt

def= Reqt ∨ Acqt ∨ Rel t
Reqt

def= ∃s, tb. (locks(tb) ∧ (t 6∈ tb)) n locks(tb ++ [(t, ‘l=0’)])
Acqt

def= ∃tb. unlocked((t, ‘l=0’) :: tb) n lockedt(tb)
Rel t

def= ∃tb. lockedt(tb) n unlocked(tb)
Dt

def= ∀tb. unlocked((t, ‘l=0’) :: tb) ; lockedt(tb)

ft(S) def=


2k + 1 if ∃s, tb, tb′. (S |= locks(tb ++ [(t, ‘l=0’)] ++ tb′)

∧ s 6= 0) ∧ |tb| = k
2k if ∃tb, tb′. (S |= unlocked(tb ++ [(t, ‘l=0’)] ++ tb′))

∧ |tb| = k

acquire(){{
Pcid ∧ arem(L_ACQ’)

}
1 listid := listid ++ [(cid, ’l=0’)];{

lockReqcid ∧ arem(L_ACQ’)
}

2 await (l = 0 /\ cid = enhd(listid)) {{
∃tb. unlocked((cid, ‘l=0’) :: tb) ∧ arem(L_ACQ’)

}
3 l := cid; listid := listid \ cid;{

∃tb. lockedcid(tb) ∧ arem(skip)
}

4 }{
lockedcid ∧ arem(skip)

}
}
release(){{

lockedcid ∧ arem(L_REL)
}

5 l := 0;{
Pcid ∧ arem(skip)

}
}

Figure 7.19: Proofs for the simple PSF lock under weak fairness.

since Dt′ will remove t′ that is waiting ahead of the thread t. Also ft(S)
decreases when t′ releases the lock, turning (L 6= 0) to (L = 0). Thus
(7.4.1) holds.

By the Soundness Theorem 7.1, we know this simple lock satisfies
PSF under weak fairness.

8
Related Work

There has been much work on the relationships between linearizability,
progress properties and contextual refinement (e.g., Filipović et al.,
2009; Gotsman and Yang, 2011, 2012; Liang et al., 2013), and on
verifying progress properties or progress-aware refinement (e.g., Boström
and Müller, 2015; da Rocha Pinto et al., 2016; Gotsman et al., 2009;
Hoffmann et al., 2013; Jacobs et al., 2015; Tassarotti et al., 2017). Below
we focus on the most closely related work.

8.1 Progress Properties and Abstraction

Herlihy and Shavit (2011) informally discuss the meanings of the
progress properties for objects with total methods. Our definitions
in Subsection 5.1 mostly follow their explanations, but ours are more
formal and close the gap between program semantics and their history-
based interpretations. In addition, Herlihy and Shavit (2011) also discuss
obstruction-freedom, which we leave as future work.

Filipović et al. (2009) first show the equivalence between linearizabil-
ity and a contextual refinement (which is Theorem 4.1 in this tutorial).
Gotsman and Yang (2011) propose a new linearizability definition that
preserves lock-freedom, and suggest a connection between lock-freedom

397

398 Related Work

and a termination-sensitive contextual refinement. We do not redefine
linearizability here. Instead, we propose a unified abstraction theorem
to systematically relate all the progress properties plus linearizability
to contextual refinements.

Fossati et al. (2012) propose a uniform approach in the π-calculus
to formulate the standard progress properties for objects with total
methods and their observational approximations. Their technical setting
is completely different from ours. Also, their observational approxima-
tions for lock-freedom and wait-freedom are strictly weaker than the
standard notions. Their deadlock-freedom and starvation-freedom are
not formulated.

There are also formulations of progress properties based on temporal
logics. For example, Petrank et al. (2009) and Dongol (2006) use linear
temporal logics to formalize the progress properties for objects with
total methods. Those formulations make it easier to do model checking
(e.g., Petrank et al., 2009 also build a tool to model check a variant
of lock-freedom), while our abstraction theorem is used to build the
program logic LiLi for Hoare-style verification.

In our previous work (Liang et al., 2013), we formulate several con-
textual refinements, each of which can characterize a progress property
of linearizable objects with total methods. However, the contextual
refinements lack transitivity because they take different observable be-
haviors and even assume different scheduling at the concrete and the
abstract sides. In this tutorial, we unify WF and LF with the contextual
refinement vtω, and unify SF and DF with vfair (see Definition 6.1).
These contextual refinements have transitivity, so it becomes possible
to verify WF/LF (or SF/DF) nested concurrent objects.

8.2 Verification

Using rely-guarantee style logics to verify liveness properties can date
back to work by Stark (1985), Stølen (1992), Abadi and Lamport (1995)
and Xu et al. (1997). Among them the most closely related work is the
fair termination rule for while loops proposed by Stølen (1992), based
on an idea of wait conditions. His rule requires each iteration to descend
if the wait condition Pw holds once in the round. Pw is comparable

8.2. Verification 399

to ¬Q in our whl rule in Figure 7.4. But it is difficult to specify Pw
which is part of the global interface of a thread, while our Q can be
constructed on-the-fly for each loop. Also it is difficult to construct the
well-founded order when ¬Pw is not stable (e.g., as in the TAS lock).
We address the problem with the token transfer idea. Besides, his rule
does not support starvation-freedom verification.

Gotsman et al. (2009) propose a rely-guarantee-style logic to verify
non-blocking algorithms. They allow R and G to specify certain types
of liveness properties in temporal logic assertions, and do layered proofs
iteratively in multiple rounds to break circular reasoning. Afterwards
Hoffmann et al. (2013) propose the token-transfer idea to handle delays
in lock-free algorithms. Their approach can be viewed as giving relatively
lightweight guidelines (without the need of multi-round reasoning) to
discharge the temporal obligations for lock-freedom verification. We then
apply similar ideas in refinement verification (Liang et al., 2014), and
the resulting logic can verify linearizability and lock-freedom together.
In LiLi, the use of stratified �-tokens generalizes the token-transfer
approaches to support delays and rollbacks for deadlock-free objects.
Also we propose the new idea of definite actions as a specific guideline
to support blocking for progress verification under fair scheduling.

In their program logic Total-TaDA, da Rocha Pinto et al. (2016)
take a different approach to handle delay. They verify total correctness
of non-blocking programs by explicitly specifying the number of delaying
actions that the environment can do. Recently D’Osualdo et al. (2019)
propose the program logic TaDA-Live, which extends Total-TaDA with
the support for objects with partial methods. We will compare our work
with TaDA-Live in detail in Subsection 8.3.

Jacobs et al. (2015) also design logic rules for total correctness. They
prevent deadlock by global wait orders (proposed by Leino et al., 2010
to prove safety properties), where they need a global function mapping
locks to levels. It is unclear if their rules can be applied to algorithms
with dynamic locking and rollbacks, such as the list algorithms verified
with LiLi. Besides, the idea of wait orders relies on built-in locks, which
is ill-suited for object verification since it is often difficult to identify a
particular field in the object as a lock.

400 Related Work

Boström and Müller (2015) extend the approach of global wait orders
to verify finite blocking in non-terminating programs. They propose a
notion of obligations which are like our definite actions D. But they still
do not support starvation-freedom verification. Here we propose the
definite progress condition to also ensure the termination of a thread
if it is unblocked infinitely often. On the other hand, they support
special built-in blocking primitives for locking, message passing and
thread join. Their obligation-based reasoning strategies may be applied
to await blocks too, to verify that the client threads of await will not
be permanently blocked.

Schellhorn et al. (2016) propose thread-local proof principles for ver-
ifying starvation-freedom. They propose a special predicate to describe
the waiting-for relations among the threads, and the proof method is
based on rely-guarantee and temporal reasoning. In particular, they
have a temporal proof obligation saying that not waiting is sufficient
for termination. The well-founded metrics we use can be viewed as a
way to discharge the temporal proof obligations.

There is also work on verifying refinement under fair scheduling.
Back and Xu (1998) and Henzinger et al. (2002) propose simulations
to verify fair refinement, but their simulations are not thread-local
and there is no program logic given. Tassarotti et al. (2017) propose a
higher-order logic based on Iris (Jung et al., 2015) for fair refinements.
Our wrappers and reasoning method may be applied there to support
higher-order refinement reasoning with blocking primitives.

None of the above work studies objects with partial methods as
we do. On the other hand, our ideas might be general enough to be
integrated with these verification methods to support blocking primitives
and partial methods.

For objects with partial methods, Gu et al. (2016) verify progress
of the ticket lock implementation as part of their verified kernel. Their
specification of the lock relies on the behaviors of clients. It requires
that the client owning a lock must eventually release it. Then they prove
that the acquire method always terminates with the cooperative clients.
It is unclear how the approach can be applied for general objects with
partial methods.

8.3. Comparison with TaDA-Live 401

There is also plenty of work for liveness verification based on tempo-
ral logics and model checking. Temporal reasoning allows one to verify
progress properties in a unified and general way, but it provides less
guidance on how to discharge the proof obligations. Our logic rules are
based on program structures and enforce specific patterns (e.g., definite
actions and tokens) to guide liveness proofs.

8.3 Comparison with TaDA-Live

As we mentioned, TaDA-Live (D’Osualdo et al., 2019) is a program
logic for verifying total correctness of client programs that possibly use
objects with partial methods. TaDA-Live and our work have several
differences.

First, TaDA-Live and LiLi are proposed for different goals. TaDA-
Live aims at verifying total correctness, in particular, proving termina-
tion of programs. It does not care about progress properties of concurrent
objects in general. As a result, program specifications in TaDA-Live
have to assume cooperative environments, with which the program
guarantees to terminate.

By contrast, we mainly focus on specifying and verifying progress
properties (not only termination!) of objects, without particular assump-
tions about how the object methods are invoked by clients. For instance,
in PSF/PDF we need to specify the object behaviors even when clients
deadlock. Actually most of the technical challenges we address there for
partial methods’ specification and verification are caused by the weak
requirements of clients.

Second, because of the above differences in the verification goals,
TaDA-Live and LiLi give different abstractions of objects. TaDA-Live
gives axiomatic specifications to methods of concurrent objects. The
specification is in the form of pre- and post-conditions, and guarantees
an abstract atomic view of the method that transforms atomically from
a state satisfying the pre-condition to one satisfying the post-condition.
As we explain above, TaDA-Live verifies termination of programs and
assumes cooperative environments only. The assumption is reflected in
the preconditions. For instance, their lock specifications assume in the
preconditions that the locks are always eventually released (otherwise

402 Related Work

the lock-acquire method may not terminate). For test-and-set locks,
their specifications further assume that the lock-acquire/release methods
are invoked by the environments for only a bounded number of times.
If the preconditions are violated, the specifications become vacuously
true and provide no guarantee at all.

In LiLi, we introduce the abstraction theorem in order to describe
the abstract object behaviors operationally. Since they need to encode
various progress behaviors, our abstract specifications for objects may
not be atomic (see Section 6). The non-atomicity is a natural con-
sequence of encoding the non-terminating behaviors of objects. Also,
as explained above, our specifications do not assume how the object
methods are invoked by clients.

As a result, our non-atomic specifications of objects may not be as
abstract as those in TaDA-Live. They may cause some complexity in
client verification, because we need to replace the method calls with
the object specifications and reason about the non-atomic code when
verifying clients. The atomic specifications in TaDA-Live are easier to
use in verifying (termination of) clients.

On the other hand, our object specifications do not enforce any
constraint on the properties of clients that we can verify. In particular,
we can verify not only termination, but also non-termination or other
liveness properties of non-terminating clients. Besides, our abstraction
theorem just decouples the object reasoning from client reasoning, and
our operational object specifications do not restrict how to verify the
objects or clients. They are not bound with a particular program logic.

Below we give an example to show the difference. It is a solution to
the dining philosopher problem of three threads.

while (true) {
lock L1;
lock L2;

eat++;
unlock L1;
unlock L2;

}

while (true) {
lock L2;
lock L3;

eat++;
unlock L2;
unlock L3;

}

while (true) {
lock L1;
lock L3;

eat++;
unlock L1;
unlock L3;

}
(8.3.1)

8.3. Comparison with TaDA-Live 403

The goal is to prove that eat increases infinitely often (then we know
the dining philosophers never deadlock). As we mentioned, TaDA-Live’s
spin lock specification assumes an upper bound on the number of lock-
acquire/release operations, which does not hold in (8.3.1), so TaDA-Live
cannot apply. But our lock abstractions still apply in this client.

Finally, TaDA-Live achieves better modularity than LiLi because
of not only its axiomatic and atomic specifications, but also its use of
layered obligation assertions. We use the client below to give a brief
overview of TaDA-Live’s layered obligation assertions.

lock L;
[done] := true;
unlock L;

local d := false;
while (!d) {

lock L; d := [done]; unlock L;
}

(8.3.2)
To verify in TaDA-Live that the client program (8.3.2) must termi-

nate using ticket locks, one needs to introduce two obligation assertions
k and d with layer(k) < layer(d). The obligation k says that a thread
holding the lock must eventually release the lock. The obligation d is
owned by the left thread only. It says that the left thread must eventu-
ally set done to true (no matter whether or not it acquires the lock).
In a thread’s termination proof, one can assume that the environment
thread must eventually fulfill its obligation. To avoid circular reasoning,
TaDA-Live requires that a thread t can only assume the environment
thread’s obligations with layers strictly lower than any obligation which
t must fulfill. As a consequence, fulfilling d can rely on the environment
thread’s obligation k (and indeed it does, since the left thread needs to
first acquire the lock before setting done to true, which relies on the
right thread releasing the lock), but fulfilling k cannot rely on d.

Below is another example from TaDA-Live (D’Osualdo et al., 2019).
The object contains three methods using two ticket locks.

both(){
lock L1; lock L2;
unlock L2; unlock L1;

}

one(){
lock L1;
unlock L1;

}

two(){
lock L2;
unlock L2;

}
(8.3.3)

404 Related Work

TaDA-Live proves termination of the three methods (in the presence
of any concurrent calls of them) by introducing two obligation assertions
k1 and k2, with layer(k2) < layer(k1). Here k1 (or k2) says that a thread
holding the lock L1 (or L2) must eventually release it. With the layer
system, the termination proof can be arranged in a hierarchy.

1. The fulfillment of k2 is proved without particular assumptions
on the environment’s progress. This is like our definite actions,
which must be definite regardless of the environment behaviors.

2. The fulfillment of k1 is proved by assuming that the environment
threads must fulfill k2. This assumption is necessary, because in
the code both(), the thread acquiring L1 must acquire L2 before
releasing L1, and the successful acquirement of L2 relies on the
environment’s fulfillment of k2.

3. Finally the termination of the three methods are proved by as-
suming the environment’s fulfillment of k1 and k2.

Our definite actions can be viewed as the most basic obligation
assertions which have the lowest layer. That is, the definite actions
must be fulfilled by a thread without relying on any progress of its
environment. For instance, k in TaDA-Live’s reasoning about (8.3.2)
may be defined as a definite action Dk in LiLi (although LiLi is not
designed for verifying client programs, we may still verify (8.3.2) by
viewing each thread as an object method). Similarly, to verify the object
(8.3.3) in LiLi, we can define a definite action D2 as the counterpart of
the obligation assertion k2 in TaDA-Live.

However, LiLi does not support hierarchical definite actions yet,
so we cannot directly encode the higher-layer obligation assertions in
TaDA-Live, such as d for (8.3.2) and k1 for (8.3.3). Instead, we have to
decompose them into definite actions with a finer granularity so that
each of them, when enabled, can be fulfilled independently without
relying on others. Then our proof of definite progress (see Definition 7.1)
in the whl rule in Figure 7.4 has to determine an order between these
flattened definite actions so that each of them is enabled after the
fulfillment of those in front of it. Defining these fine-grained definite

8.3. Comparison with TaDA-Live 405

actions and finding an order between them may expose details of the
program and make the proofs more complicated and less modular.

That said, we could make LiLi more modular by incorporating a
similar layer system for definite actions. That is, we may allow definite
actions of higher layers, which can be proved “definite” by assuming the
fulfillment of those with lower layers. For instance, we may introduce a
new definite action Dd that corresponds to the obligation assertion d
in (8.3.2). It has a higher layer, which allows us to prove its fulfillment
by assuming Dk. Then in the termination proof of the right thread, we
can assume the left thread’s fulfillment of both Dd and Dk. We leave
the extension of LiLi with layered definite actions as future work.

9
Conclusion and Future Work

We have studied progress of concurrent objects in three aspects:

• First, we formulate the progress properties. In addition to the
traditional progress properties, wait-freedom (WF), lock-freedom
(LF), starvation-freedom (SF) and deadlock-freedom (DF), we also
introduce two new progress properties, partial starvation-freedom
(PSF) and partial deadlock-freedom (PDF), for concurrent objects
with partial methods.

• Second, we design wrappers to generate abstractions for objects.
We give distinguished wrappers for different combinations of
progress properties and fairness of scheduling. We prove the Ab-
straction Theorem about the equivalence between each progress
property and the progress-aware contextual refinement, where the
abstraction is generated by the wrapper.

• Third, we develop a program logic LiLi to verify linearizability
and all the six progress properties. We sort progress properties in
two dimensions called blocking and delay, use tokens to support
delay, and use definite progress conditions to support blocking.

406

407

Although our program logic verifies both linearizability and progress
properties, it is focused more on the latter. Existing work (Khyzha
et al., 2017; Liang and Feng, 2013; Turon et al., 2013b) has shown that
linearizability itself can be challenging to verify, and special mechanisms
are needed for very fine-grained objects with non-fixed linearization
points (LPs). Our logic cannot verify these objects, but our conjecture
is that the mechanisms handling non-fixed LPs (as studied in Liang
and Feng, 2013) are orthogonal to our progress reasoning, and they can
be integrated into our logic if needed.

The key idea of LiLi is to use definite actions and stratified tokens
to reason about progress. They can be viewed as special strategies
implementing the general principle for termination reasoning, that is to
find a well-founded metric that keeps decreasing during the program
execution. These ideas and rules give a concrete guide to users on how
to construct the metric and the proofs. Although we have tried to make
them as general as possible, and they have been shown applicable to
many non-trivial algorithms, they may not be complete and it would be
unsurprising if there are examples that they cannot handle. As future
work, we would like to verify more examples to explore the scope of the
applicability.

LiLi is a program logic for objects. It verifies linearizability and
progress properties of an object. A related project is to develop inference
rules to verify liveness properties (e.g., total correctness) of the client
code. To this end, one way is to use the Abstraction Theorem to
replace the concrete object implementations with their abstractions,
but we still need to design rules to reason about the abstractions. Since
the abstractions are usually non-atomic (see Figures 6.2 and 6.3), the
verification may still be not easy. Besides, it is also interesting to extend
LiLi to support nested objects and multi-objects. Here a natural question
to ask is about the compositionality of progress properties, e.g., whether
composing two SF objects gives a SF object.

The specifications of linearizable objects must be atomic, but some-
times we may want to give non-atomic specifications to object methods.
We can apply our wrappers to every occurrence of the await blocks in
the non-atomic specifications to establish progress-aware refinements.
We suspect that our logic can still be used to verify such refinements

408 Conclusion and Future Work

(as in Liang et al., 2014). Another potential limitation may be due to
the use of the pure Boolean expression B in await(B){C}, which may
limit the expressiveness of the specifications. However, our technical
development does not rely on this setting. Everything may still hold if
we replace B with the more expressive state assertions.

We also hope to consider other progress properties. For instance, in
addition to WF, LF, SF and DF, there is also an important progress
property called obstruction-freedom for objects with total methods in
the literature (Herlihy and Shavit, 2008). It guarantees progress for
any thread that eventually executes in isolation. It is interesting to
design wrappers to generate abstractions for obstruction-free objects,
and extend LiLi to also verify obstruction-freedom. Besides progress
properties of objects, we would also like to study progress properties
of methods. For instance, the deadlock-free lazy list algorithm has a
“wait-free” contains method (Herlihy and Shavit, 2008). How do we
specify and verify progress properties of individual methods?

Other interesting future work includes automating the verification
process. One of the key problems is to infer the definite actions and prove
the definite progress conditions. There have been efforts to synthesize
the ranking functions for loop termination (see Cook et al., 2011 for
an overview), which may provide insights for automating the definite
progress proofs. In addition we might be able to follow the ideas in
automated rely-guarantee reasoning (e.g., Calcagno et al., 2007) to
automate the verification in our rely-guarantee logic.

Acknowledgements

The material presented here is closely aligned with our work on for-
malizing and verifying progress of concurrent objects (Liang and Feng,
2016, 2018a; Liang et al., 2013, 2014). This work is supported in part
by grants from National Natural Science Foundation of China (NSFC)
under Grant Nos. 61922039 and 61632005, and from Huawei Innovation
Research Program (HIRP).

409

References

Abadi, M. and L. Lamport (1995). “Conjoining specifications”. ACM
Trans. Program. Lang. Syst. 17(3): 507–535.

Aspnes, J. and M. Herlihy (1990). “Wait-free data structures in the
asynchronous PRAM model”. In: SPAA. 340–349.

Back, R. and Q. Xu (1998). “Refinement of fair action systems”. Acta
Inf. 35(2): 131–165.

Boström, P. and P. Müller (2015). “Modular verification of finite blocking
in non-terminating programs”. In: Proceedings of the 29th Euro-
pean Conference on Object-Oriented Programming (ECOOP 2015).
639–663.

Boyapati, C., R. Lee, and M. Rinard (2002). “Ownership types for safe
programming: Preventing data races and deadlocks”. In: OOPSLA.
211–230.

Calcagno, C., M. J. Parkinson, and V. Vafeiadis (2007). “Modular safety
checking for fine-grained concurrency”. In: Proceedings of the 14th
International Symposium on Static Analysis (SAS 2007). 233–248.

Cook, B., A. Podelski, and A. Rybalchenko (2011). “Proving program
termination”. Commun. ACM. 54(5): 88–98.

da Rocha Pinto, P., T. Dinsdale-Young, P. Gardner, and J. Suther-
land (2016). “Modular termination verification for non-blocking
concurrency”. In: Proceedings of the 25th European Symposium on
Programming Languages and Systems (ESOP 2016). 176–201.

410

References 411

Derrick, J., G. Schellhorn, and H. Wehrheim (2011). “Mechanically
verified proof obligations for linearizability”. ACM Trans. Program.
Lang. Syst. 33(1): 4:1–4:43.

Doherty, S., L. Groves, V. Luchangco, and M. Moir (2004). “Formal
verification of a practical lock-free queue algorithm”. In: FORTE.
97–114.

Dongol, B. (2006). “Formalising progress properties of non-blocking
programs”. In: ICFEM. 284–303.

D’Osualdo, E., A. Farzan, P. Gardner, and J. Sutherland (2019). “TaDA
live: Compositional reasoning for termination of fine-grained con-
current programs”. arXiv: 1901.05750.

Feng, X. (2009). “Local rely-guarantee reasoning”. In: POPL. 315–327.
Filipović, I., P. O’Hearn, N. Rinetzky, and H. Yang (2009). “Abstrac-

tion for concurrent objects”. In: Proceedings of the 18th European
Symposium on Programming (ESOP 2009). 252–266.

Fossati, L., K. Honda, and N. Yoshida (2012). “Intensional and ex-
tensional characterisation of global progress in the π-calculus”. In:
CONCUR. 287–301.

Gotsman, A., B. Cook, M. J. Parkinson, and V. Vafeiadis (2009). “Prov-
ing that non-blocking algorithms don’t block”. In: Proceedings of the
36th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL 2009). 16–28.

Gotsman, A. and H. Yang (2011). “Liveness-preserving atomicity ab-
straction”. In: Proceedings of the 38th International Conference on
Automata, Languages and Programming (ICALP 2011). 453–465.

Gotsman, A. and H. Yang (2012). “Linearizability with ownership
transfer”. In: Proceedings of the 23rd International Conference on
Concurrency Theory (CONCUR 2012). 256–271.

Gu, R., Z. Shao, H. Chen, X. Wu, J. Kim, V. Sjöberg, and D. Costanzo
(2016). “CertiKOS: An extensible architecture for building certified
concurrent OS kernels”. In: Proceedings of the 12th USENIX Con-
ference on Operating Systems Design and Implementation (OSDI
2016). 653–669.

Harris, T. L. (2001). “A pragmatic implementation of non-blocking
linked-lists”. In: DISC. 300–314.

http://arxiv.org/abs/1901.05750

412 References

Heller, S., M. Herlihy, V. Luchangco, M. Moir, W. N. Scherer III, and
N. Shavit (2005). “A lazy concurrent list-based set algorithm”. In:
OPODIS. 3–16.

Hendler, D., N. Shavit, and L. Yerushalmi (2004). “A scalable lock-free
stack algorithm”. In: SPAA. 206–215.

Henzinger, T. A., O. Kupferman, and S. K. Rajamani (2002). “Fair
simulation”. Inf. Comput. 173(1): 64–81.

Herlihy, M. and N. Shavit (2008). The Art of Multiprocessor Program-
ming. Morgan Kaufmann.

Herlihy, M. and N. Shavit (2011). “On the nature of progress”. In:
Proceedings of the 15th International Conference on Principles of
Distributed Systems (OPODIS 2011). 313–328.

Herlihy, M. and J. Wing (1990). “Linearizability: A correctness condition
for concurrent objects”. ACM Trans. Program. Lang. Syst. 12(3):
463–492.

Hoffmann, J., M. Marmar, and Z. Shao (2013). “Quantitative reason-
ing for proving lock-freedom”. In: Proceedings of the 28th Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS 2013).
124–133.

Jacobs, B., D. Bosnacki, and R. Kuiper (2015). “Modular termination
verification”. In: Proceedings of the 29th European Conference on
Object-Oriented Programming (ECOOP 2015). 664–688.

Jones, C. B. (1983). “Tentative steps toward a development method
for interfering programs”. ACM Trans. Program. Lang. Syst. 5(4):
596–619.

Jung, R., D. Swasey, F. Sieczkowski, K. Svendsen, A. Turon, L. Birkedal,
and D. Dreyer (2015). “Iris: Monoids and invariants as an orthogonal
basis for concurrent reasoning”. In: Proceedings of the 42nd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL 2015). 637–650.

Khyzha, A., M. Dodds, A. Gotsman, and M. J. Parkinson (2017).
“Proving linearizability using partial orders”. In: Proceedings of the
26th European Symposium on Programming (ESOP 2017). 639–667.

Leino, K. R. M. and P. Müller (2009). “A basis for verifying multi-
threaded programs”. In: ESOP. 378–393.

References 413

Leino, K. R. M., P. Müller, and J. Smans (2010). “Deadlock-free channels
and locks”. In: ESOP. 407–426.

Liang, H. and X. Feng (2013). “Modular verification of linearizability
with non-fixed linearization points”. In: Proceedings of the 34th
ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI 2013). 459–470.

Liang, H. and X. Feng (2016). “A program logic for concurrent objects
under fair scheduling”. In: Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL 2016). 385–399.

Liang, H. and X. Feng (2018a). “Progress of concurrent objects with
partial methods”. Proc. ACM Program. Lang. 2(POPL): Article 20.

Liang, H. and X. Feng (2018b). “Progress of concurrent objects with
partial methods (extended version)”. Tech. Rep. https://cs.nju.edu.
cn/hongjin/papers/popl18-partial-tr.pdf.

Liang, H., X. Feng, and Z. Shao (2014). “Compositional verification of
termination-preserving refinement of concurrent programs”. In: Pro-
ceedings of the Joint Meeting of the 23rd EACSL Annual Conference
on Computer Science Logic and the 29th Annual ACM/IEEE Sym-
posium on Logic in Computer Science (CSL-LICS 2014). Article 65.

Liang, H., J. Hoffmann, X. Feng, and Z. Shao (2013). “Characterizing
progress properties of concurrent objects via contextual refinements”.
In: Proceedings of the 24th International Conference on Concurrency
Theory (CONCUR 2013). 227–241.

Mellor-Crummey, J. M. and M. L. Scott (1991). “Algorithms for scalable
synchronization on shared-memory multiprocessors”. ACM Trans.
Comput. Syst. 9(1): 21–65.

Michael, M. M. (2002). “High performance dynamic lock-free hash tables
and list-based sets”. In: SPAA. 73–82.

Michael, M. M. and M. L. Scott (1996). “Simple, fast, and practical
non-blocking and blocking concurrent queue algorithms”. In: PODC.
267–275.

Parkinson, M., R. Bornat, and C. Calcagno (2006). “Variables as re-
source in Hoare logics”. In: LICS. 137–146.

https://cs.nju.edu.cn/hongjin/papers/popl18-partial-tr.pdf
https://cs.nju.edu.cn/hongjin/papers/popl18-partial-tr.pdf

414 References

Petrank, E., M. Musuvathi, and B. Steensgaard (2009). “Progress guar-
antee for parallel programs via bounded lock-freedom”. In: PLDI.
144–154.

Schellhorn, G., O. Travkin, and H. Wehrheim (2016). “Towards a thread-
local proof technique for starvation freedom”. In: Proceedings of the
12th International Conference on Integrated Formal Methods (IFM
2016). 193–209.

Stark, E. W. (1985). “A proof technique for rely/guarantee properties”.
In: FSTTCS. 369–391.

Stølen, K. (1992). “Shared-state design modulo weak and strong process
fairness”. In: FORTE. 479–498.

Tassarotti, J., R. Jung, and R. Harper (2017). “A higher-order logic
for concurrent termination-preserving refinement”. In: Proceedings
of the 26th European Symposium on Programming (ESOP 2017).
909–936.

Treiber, R. K. (1986). “System programming: Coping with parallelism”.
Tech. Rep. RJ 5118. IBM Almaden Research Center.

Turon, A., D. Dreyer, and L. Birkedal (2013a). “Unifying refinement
and Hoare-style reasoning in a logic for higher-order concurrency”.
In: ICFP. 377–390.

Turon, A., J. Thamsborg, A. Ahmed, L. Birkedal, and D. Dreyer (2013b).
“Logical relations for fine-grained concurrency”. In: Proceedings of
the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL 2013). 343–356.

Vafeiadis, V. (2008). “Modular fine-grained concurrency verification”.
Tech. Rep. PhD Thesis.

Williams, A., W. Thies, and M. D. Ernst (2005). “Static deadlock
detection for java libraries”. In: ECOOP. 602–629.

Xu, Q., W. P. de Roever, and J. He (1997). “The rely-guarantee method
for verifying shared variable concurrent programs”. Formal Asp.
Comput. 9(2): 149–174.

	Introduction
	General Motivation
	Overview

	Background
	Linearizability
	Progress Properties
	Contextual Refinement and Abstraction Theorems
	Verifying Progress Properties

	Basic Technical Settings
	The Language
	Execution Traces and Fairness of Scheduling

	Linearizability and Contextual Refinement
	Linearizability
	Contextual Refinement and Abstraction

	Progress Properties
	Progress for Objects with Total Methods Only
	Progress for Objects with Partial Methods

	Progress-Aware Abstraction
	Overview of Our Results
	Formalizing Progress-Aware Contextual Refinements
	Abstraction for Wait-Free and Lock-Free Objects
	Abstraction for Starvation-Free and Deadlock-Free Objects
	Abstraction for PSF and PDF Objects

	Verifying Progress of Concurrent Objects
	Challenges and Key Ideas
	The Program Logic LiLi
	Soundness
	Examples

	Related Work
	Progress Properties and Abstraction
	Verification
	Comparison with TaDA-Live

	Conclusion and Future Work
	Acknowledgements
	References

