
Modular Verification of Linearizability
with Non-Fixed Linearization Points

Hongjin Liang Xinyu Feng
University of Science and Technology of China

lhj1018@mail.ustc.edu.cn xyfeng@ustc.edu.cn

Abstract
Locating linearization points (LPs) is an intuitive approach for
proving linearizability, but it is difficult to apply the idea in Hoare-
style logic for formal program verification, especially for verify-
ing algorithms whose LPs cannot be statically located in the code.
In this paper, we propose a program logic with a lightweight in-
strumentation mechanism which can verify algorithms with non-
fixed LPs, including the most challenging ones that use the help-
ing mechanism to achieve lock-freedom (as in HSY elimination-
based stack), or have LPs depending on unpredictable future exe-
cutions (as in the lazy set algorithm), or involve both features. We
also develop a thread-local simulation as the meta-theory of our
logic, and show it implies contextual refinement, which is equiv-
alent to linearizability. Using our logic we have successfully ver-
ified various classic algorithms, some of which are used in the
java.util.concurrent package.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification – Correctness proofs, Formal
methods; F.3.1 [Logics and Meanings of Programs]: Specifying
and Verifying and Reasoning about Programs

General Terms Theory, Verification

Keywords Concurrency; Rely-Guarantee Reasoning; Lineariz-
ability; Refinement; Simulation

1. Introduction
Linearizability is a standard correctness criterion for concurrent ob-
ject implementations [16]. It requires the fine-grained implementa-
tion of an object operation to have the same effect with an instanta-
neous atomic operation. To prove linearizability, the most intuitive
approach is to find a linearization point (LP) in the code of the im-
plementation, and show that it is the single point where the effect
of the operation takes place.

However, it is difficult to apply this idea when the LPs are not
fixed in the code of object methods. For a large class of lock-
free algorithms with helping mechanism (e.g., HSY elimination-
based stack [14]), the LP of one method might be in the code
of some other method. In these algorithms, each thread maintains
a descriptor recording all the information required to fulfill its

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’13, June 16–19, 2013, Seattle, WA, USA.
Copyright c© 2013 ACM 978-1-4503-2014-6/13/06. . . $15.00

intended operation. When a thread A detects conflicts with another
thread B, A may access B’s descriptor and help B finish its intended
operation first before finishing its own. In this case, B’s operation
takes effect at a step from A. Thus its LP should not be in its own
code, but in the code of thread A.

Besides, in optimistic algorithms and lazy algorithms (e.g.,
Heller et al.’s lazy set [13]), the LPs might depend on unpredictable
future interleavings. In those algorithms, a thread may access the
shared states as if no interference would occur, and validate the
accesses later. If the validation succeeds, it finishes the operation;
otherwise it rolls back and retries. Its LP is usually at a prior state
access, but only if the later validation succeeds.

Reasoning about algorithms with non-fixed LPs has been a
long-standing problem. Most existing work either supports only
simple objects with static LPs in the implementation code (e.g., [2,
5, 19, 30]), or lacks formal soundness arguments (e.g., [32]). In this
paper, we propose a program logic for verification of linearizability
with non-fixed LPs. For a concrete implementation of an object
method, we treat the corresponding abstract atomic operation and
the abstract state as auxiliary states, and insert auxiliary commands
at the LP to execute the abstract operation simultaneously with
the concrete step. We verify the instrumented implementation in
an existing concurrent program logic (we will use LRG [8] in
this paper), but extend it with new logic rules for the auxiliary
commands. We also give a new relational interpretation to the logic
assertions, and show that at the LP, the step of the original concrete
implementation has the same effect as the abstract operation. We
handle non-fixed LPs in the following way:

• To support the helping mechanism, we collect a pending thread
pool as auxiliary state, which is a set of threads and their
abstract operations that might be helped. We allow the thread
that is currently being verified to use auxiliary commands to
help execute the abstract operations in the pending thread pool.

• For future-dependent LPs, we introduce a try-commit mecha-
nism to reason with uncertainty. The try clause guesses whether
the corresponding abstract operation should be executed and
keeps all possibilities, while commit chooses a specific pos-
sible case when we know which guess is correct later.

Although our program logic looks intuitive, it is challenging to
prove that the logic is sound w.r.t. linearizability. Recent work has
shown the equivalence between linearizability and contextual re-
finement [5, 9, 10]. The latter is often verified by proving simula-
tions between the concrete implementation and the atomic opera-
tion [5]. The simulation establishes some correspondence between
the executions of the two sides, showing there exists one step in
the concrete execution that fulfills the abstract operation. Given the
equivalence between linearizability and refinement, we would ex-
pect the simulations to justify the soundness of the LP method and
to serve as the meta-theory of our logic. However, existing thread-

local simulations do not support non-fixed LPs (except the recent
work [31], which we will discuss in Sec. 7). We will explain the
challenges in detail in Sec. 2.

Our work is inspired by the earlier work on linearizability
verification, in particular the use of auxiliary code and states by
Vafeiadis [32] and our previous work on thread-local simulation
RGSim [19], but makes the following new contributions:

• We propose the first program logic that has a formal soundness
proof for linearizability with non-fixed LPs. Our logic is built
upon the unary program logic LRG [8], but we give a relational
interpretation of assertions and rely/guarantee conditions. We
also introduce new logic rules for auxiliary commands used
specifically for linearizability proofs.

• We give a light instrumentation mechanism to relate con-
crete implementations with abstract operations. The system-
atic use of auxiliary states and commands makes it possible
to execute the abstract operations synchronously with the con-
crete code. The try-commit clauses allow us to reason about
future-dependent uncertainty without resorting to prophecy
variables [1, 32], whose existing semantics (e.g., [1]) is un-
suitable for Hoare-style verification.

• We design a novel thread-local simulation as the meta-theory
for our logic. It generalizes RGSim [19] and other composi-
tional reasoning of refinement (e.g., [5, 30]) with the support
for non-fixed LPs.

• Instead of ensuring linearizability directly, the program logic
and the simulation both establish contextual refinement, which
we prove is equivalent to linearizability. A program logic for
contextual refinement is interesting in its own right, since con-
textual refinement is also a widely accepted (and probably more
natural) correctness criterion for library code.

• We successfully apply our logic to verify 12 well-known algo-
rithms. Some of them are used in the java.util.concurrent
package, such as MS non-blocking queue [23] and Harris-
Michael lock-free list [11, 22].

In the rest of this paper, we first analyze the challenges in the
logic design and explain our approach informally in Sec. 2. Then
we give the basic technical setting in Sec. 3, including a formal
operational definition of linearizability. We present our program
logic in Sec. 4, and the new simulation relation as the meta-theory
in Sec. 5. In Sec. 6 we summarize all the algorithms we have
verified and sketch the proofs of three representative algorithms.
We discuss related work and conclude in Sec. 7.

2. Challenges and Our Approach
Below we start from a simple program logic for linearizability with
fixed LPs, and extend it to support algorithms with non-fixed LPs.
We also discuss the problems with the underlying meta-theory,
which establishes the soundness of the logic w.r.t. linearizability.

2.1 Basic Logic for Fixed LPs
We first show a simple and intuitive logic which follows the LP
approach. As a working example, Fig. 1(a) shows the implementa-
tion of push in Treiber stack [29] (let’s first ignore the blue code at
line 7’). The stack object is implemented as a linked list pointed to
by S, and push(v) repeatedly tries to update S to point to the new
node using compare-and-swap (cas) until it succeeds.

To verify linearizability, we first locate the LP in the code. The
LP of push(v) is at the cas statement when it succeeds (line 7).
That is, the successful cas can correspond to the abstract atomic
PUSH(v) operation: Stk := v::Stk; and all the other concrete
steps cannot. Here we simply represent the abstract stack Stk as

1 push(int v) {
2 local x, t, b;
3 x := new node(v);
4 do {
5 t := S;
6 x.next := t;
7 <b := cas(&S,t,x);
7’ if(b) linself;>
8 } while(!b);
9 }

(a) Treiber Stack

1 readPair(int i, j) {
2 local a, b, v, w;
3 while(true) {
4 <a := m[i].d; v := m[i].v;>
5 <b := m[j].d; w := m[j].v;
5’ trylinself;>
6 if(v = m[i].v) {
6’ commit(cid� (end, (a, b)));
7 return (a, b); }
8 } }
9 write(int i, d) {
10 <m[i].d := d; m[i].v++;> }

(c) Pair Snapshot
1 push(int v) {
2 local p, him, q;
3 p := new thrdDescriptor(cid, PUSH, v);
4 while(true) {
5 if (tryPush(v)) return;
6 loc[cid] := p;
7 him := rand(); q := loc[him];
8 if (q != null && q.id = him && q.op = POP)
9 if (cas(&loc[cid], p, null)) {

10 <b := cas(&loc[him], q, p);
10’ if(b) {lin(cid); lin(him);}>
11 if (b) return; }
12 ...
13 } } (b) HSY Elimination-Based Stack

Figure 1. LPs and Instrumented Auxiliary Commands

a sequence of values with “::” for concatenation. Then push(v)
can be linearized at the successful cas since it is the single point
where the operation takes effect.

We can encode the above reasoning in an existing (unary) con-
current program logic, such as Rely-Guarantee reasoning [17] and
CSL [24]. Inspired by Vafeiadis [32], we embed the abstract oper-
ation γ and the abstract state θ as auxiliary states on the concrete
side, so the program state now becomes (σ, (γ, θ)), where σ is the
original concrete state. Then we instrument the concrete implemen-
tation with an auxiliary command linself (shorthand for “linearize
self”) at the LP to update the auxiliary state. Intuitively, linself will
execute the abstract operation γ over the abstract state θ, as de-
scribed in the following operational semantics rule:

(γ, θ)� (end, θ′)
(linself, (σ, (γ, θ))) −→ (skip, (σ, (end, θ′)))

Here� encodes the transition of γ at the abstract level, and end is
a termination marker. We insert linself into the same atomic block
with the concrete statement at the LP, such as line 7’ in Fig. 1(a),
so that the concrete and abstract sides are executed simultaneously.
Here the atomic block 〈C〉 means C is executed atomically. Then
we reason about the instrumented code using a traditional concur-
rent logic extended with a new inference rule for linself.

The idea is intuitive, but it cannot handle more advanced algo-
rithms with non-fixed LPs, including the algorithms with the help-
ing mechanism and those whose locations of LPs depend on the
future interleavings. Below we analyze the two challenges in detail
and explain our solutions using two representative algorithms, the
HSY stack and the pair snapshot.

2.2 Support Helping Mechanism with Pending Thread Pool
HSY elimination-based stack [14] is a typical example using the
helping mechanism. Figure 1(b) shows part of its push method
implementation. The basic idea behind the algorithm is to let a push
and a pop cancel out each other.

At the beginning of the method in Fig. 1(b), the thread allocates
its thread descriptor (line 3), which contains the thread id, the name

of the operation to be performed, and the argument. The current
thread cid first tries to perform Treiber stack’s push (line 5). It
returns if succeeds. Otherwise, it writes its descriptor in the global
loc array (line 6) to allow other threads to eliminate its push. The
elimination array loc[1..n] has one slot for each thread, which
holds the pointer to a thread descriptor. The thread randomly reads
a slot him in loc (line 7). If the descriptor q says him is doing
pop, cid tries to eliminate itself with him by two cas instructions.
The first clears cid’s entry in loc so that no other thread could
eliminate with cid (line 9). The second attempts to mark the entry
of him in loc as “eliminated with cid” (line 10). If successful, it
should be the LPs of both the push of cid and the pop of him, with
the push happening immediately before the pop.

The helping mechanism allows the current thread to linearize
the operations of other threads, which cannot be expressed in the
basic logic. It also breaks modularity and makes thread-local ver-
ification difficult. For the thread cid, its concrete step could cor-
respond to the steps of both cid and him at the abstract level. For
him, a step from its environment could fulfill its abstract operation.
We must ensure in the thread-local verification that the two threads
cid and him always take consistent views on whether and how the
abstract operation of him is done. For example, if we let a concrete
step in cid fulfill the abstract pop of him, we must know him is
indeed doing pop and its pop has not been done before. Otherwise,
we will not be able to compose cid and him in parallel.

We extend the basic logic to express the helping mechanism.
First we introduce a new auxiliary command lin(t) to linearize a
specific thread t. For instance, in Fig. 1(b) we insert line 10’ at
the LP to execute both the push of cid and the pop of him at the
abstract level. We also extend the auxiliary state to record both
abstract operations of cid and him. More generally, we embed
a pending thread pool U , which maps threads to their abstract
operations. It specifies a set of threads whose operations might
be helped by others. Then under the new state (σ, (U, θ)), the
semantics of lin(t) just executes the thread t’s abstract operation
in U , similarly to the semantics of linself discussed before.

The shared pending thread pool U allows us to recover the
thread modularity when verifying the helping mechanism. A con-
crete step of cid could fulfill the operation of him in U as well as
its own abstract operation; and conversely, the thread him running
in parallel could check U to know if its operation has been finished
by others (such as cid) or not. We gain consistent abstract infor-
mation of other threads in the thread-local verification. Note that
the need of U itself does not break modularity because the required
information of other threads’ abstract operations can be inferred
from the concrete state. In the HSY stack example, we know him
is doing pop by looking at its thread descriptor in the elimination
array. In this case U can be viewed as an abstract representation of
the elimination array.

2.3 Try-Commit Commands for Future-Dependent LPs
Another challenge is to reason about optimistic algorithms whose
LPs depend on the future interleavings.

We give a toy example, pair snapshot [27], in Fig. 1(c). The
object is an array m, each slot of which contains two fields: d for
the data and v for the version number. The write(i,d) method
(lines 9) updates the data stored at address i and increments the
version number instantaneously. The readPair(i,j) method in-
tends to perform an atomic read of two slots i and j in the presence
of concurrent writes. It reads the data at slots i and j separately at
lines 4 and 5, and validate the first read at line 6. If i’s version num-
ber has not been increased, the thread knows that when it read j’s
data at line 5, i’s data had not been updated. This means the two
reads were at a consistent state, thus the thread can return. We can
see that the LP of readPair should be at line 5 when the thread

(a) Simple Simulation (b) Pending Thread Pool (c) Speculation

Figure 2. Simulation Diagrams

reads j’s data, but only if the validation at line 6 succeeds. That is,
whether we should linearize the operation at line 5 depends on the
future unpredictable behavior of line 6.

As discussed a lot in previous work (e.g., [1, 32]), the future-
dependent LPs cannot be handled by introducing history variables,
which are auxiliary variables storing values or events in the past ex-
ecutions. We have to refer to events coming from the unpredictable
future. Thus people propose prophecy variables [1, 32] as the dual
of history variables to store future behaviors. But as far as we know,
there is no semantics of prophecy variables suitable for Hoare-style
local and compositional reasoning.

Instead of resorting to prophecy variables, we follow the specu-
lation idea [31]. For the concrete step at a potential LP (e.g., line 5
of readPair), we execute the abstract operation speculatively and
keep both the result and the original abstract configuration. Later
based on the result of the validation (e.g., line 6 in readPair), we
keep the appropriate branch and discard the other.

For the logic, we introduce two new auxiliary commands:
trylinself is to do speculation, and commit(p) will commit to the
appropriate branch satisfying the assertion p. In Fig. 1(c), we insert
lines 5’ and 6’, where cid � (end, (a, b)) means that the cur-
rent thread cid should have done its abstract operation and would
return (a, b). We also extend the auxiliary state to record the mul-
tiple possibilities of abstract operations and abstract states after
speculation.

Furthermore, we can combine the speculation idea with the
pending thread pool. We allow the abstract operations in the pend-
ing thread pool as well as the current thread to speculate. Then
we could handle some trickier algorithms such as RDCSS [12], in
which the location of LP for thread t may be in the code of some
other thread and also depend on the future behaviors of that thread.
Please see Sec. 6 for one such example.

2.4 Simulation as Meta-Theory
The LP proof method can be understood as building simulations be-
tween the concrete implementations and the abstract atomic opera-
tions, such as the simple weak simulation in Fig. 2(a). The lower-
level and higher-level arrows are the steps of the implementation
and of the abstract operation respectively, and the dashed lines de-
note the simulation relation. We use dark nodes and white nodes
at the abstract level to distinguish whether the operation has been
finished or not. The only step at the concrete side corresponding
to the single abstract step should be the LP of the implementation
(labeled “LP” in the diagram). Since our program logic is based on
the LP method, we can expect simulations to justify its soundness.
In particular, we want a thread-local simulation which can handle
both the helping mechanism and future-dependent LPs and can en-
sure linearizability.

To support helping in the simulation, we should allow the LP
step at the concrete level to correspond to an abstract step made by
a thread other than the one being verified. This requires informa-
tion from other threads at the abstract side, thus makes it difficult
to build a thread-local simulation. To address the problem, we intro-
duce the pending thread pool at the abstract level of the simulation,
just as in the development of our logic in Sec. 2.2. The new simula-

(MName) f ∈ String

(Expr) E ::= x | n | E + E | . . .

(BExp) B ::= true | false | E = E | !B | . . .

(Instr) c ::= x := E | x := [E] | [E] := E | print(E)
| x := cons(E, . . . , E) | dispose(E) | . . .

(Stmt) C ::= skip | c | x := f(E) | return E | noret
| 〈C〉 | C;C | if (B) C else C | while (B){C}

(Prog) W ::= skip | let Π in C ‖ . . .‖C
(ODecl) Π ::= {f1 � (x1, C1), . . . , fn � (xn, Cn)}

Figure 3. Syntax of the Programming Language

tion is shown in Fig. 2(b). We can see that a concrete step of thread
t could help linearize the operation of t′ in the pending thread pool
as well as its own operation. Thus the new simulation intuitively
supports the helping mechanism.

As forward simulations, neither of the simulations in Fig. 2(a)
and (b) supports future-dependent LPs. For each step along the con-
crete execution in those simulations, we need to decide immedi-
ately whether the step is at the LP, and cannot postpone the decision
to the future. As discussed a lot in previous work (e.g., [1, 3, 6, 21]),
we have to introduce backward simulations or hybrid simulations
to support future-dependent LPs. Here we exploit the speculation
idea and develop a forward-backward simulation [21]. As shown in
Fig. 2(c), we keep both speculations after the potential LP, where
the higher black nodes result from executing the abstract operation
and the lower white nodes record the original abstract configura-
tion. Then at the validation step we commit to the correct branch.

Finally, to ensure linearizability, the thread-local simulation has
to be compositional. As a counterexample, we can construct a
simple simulation (like the one in Fig. 2(a)) between the following
implementation C and the abstract atomic increment operation γ,
but C is not linearizable w.r.t. γ.

C : local t; t := x; x := t + 1; γ : x++

The reason is that the simple simulation is not compositional w.r.t.
parallel compositions. To address this problem, we proposed a
compositional simulation RGSim [19] in previous work. The idea
is to parameterize the simple simulation with the interference with
the environment, in the form of rely/guarantee conditions (R and
G) [17]. RGSim says, the concrete executions are simulated by the
abstract executions under interference from the environment R, and
all the related state transitions of the thread being verified should
satisfy G. For parallel composition, we check that the guarantee
G of each thread is permitted in the rely R of the other. Then the
simulation becomes compositional and can ensure linearizability.

We combine the above ideas and develop a new compositional
simulation with the support of non-fixed LPs as the meta-theory of
our logic. We will discuss our simulation formally in Sec. 5.

3. Basic Technical Settings and Linearizability
In this section, we formalize linearizability of an object implemen-
tation w.r.t. its specification, and show that linearizability is equiv-
alent to contextual refinement.

3.1 Language and Semantics
As shown in Fig. 3, a program W contains several client threads in
parallel, each of which could call the methods declared in the object
Π. A method is defined as a pair (x,C), where x is the formal
argument and C is the method body. For simplicity, we assume
there is only one object in W and each method takes one argument
only, but it is easy to extend our work with multiple objects and
arguments.

(ThrdID) t ∈ Nat

(Mem) σ ∈ (PVar ∪ Nat) ⇀ Int

(CallStk) κ ::= (σl, x, C) | ◦
(ThrdPool) K ::= {t1 � κ1, . . . , tn � κn}

(PState) S ::= (σc, σo,K)

(LState) s ::= (σc, σo, κ)

(Evt) e ::= (t, f, n) | (t, ok, n) | (t, obj, abort)
| (t, out, n) | (t, clt, abort)

(ETrace) H ::= ε | e ::H

Figure 4. States and Event Traces

We use a runtime command noret to abort methods that termi-
nate but do not execute return E. It is automatically appended to
the method code and is not supposed to be used by programmers.
Other commands are mostly standard. Clients can use print(E) to
produce observable external events. We do not allow the object’s
methods to produce external events. To simplify the semantics, we
also assume there are no nested method calls.

Figure 4 gives the model of program states. Here we partition a
global state S into the client memory σc, the object σo and a thread
pool K. A client can only access the client memory σc, unless it
calls object methods. The thread pool maps each thread id t to its
local call stack frame. A call stack κ could be either empty (◦) when
the thread is not executing a method, or a triple (σl, x, C), where
σl maps the method’s formal argument and local variables (if any)
to their values, x is the caller’s variable to receive the return value,
and C is the caller’s remaining code to be executed after the method
returns. To give a thread-local semantics, we also define the thread
local view s of the state.

Figure 5 gives selected rules of the operational semantics. We
show three kinds of transitions: �−→ for the top-level program
transitions, −→ t,Π for the transitions of thread t with the methods’
declaration Π, and −� t for the steps inside method calls of thread
t. To describe the operational semantics for threads, we use an
execution context E:

(ExecContext) E ::= [] | E;C

The hole [] shows the place where the execution of code occurs.
E[C] represents the code resulting from placing C into the hole.

We label transitions with events e defined in Fig. 4. An event
could be a method invocation (t, f, n) or return (t, ok, n), a fault
(t, obj, abort) produced by the object method code, an output
(t, out, n) generated by print(E), or a fault (t, clt, abort) from the
client code. The first two events are called object events, and the last
two are observable external events. The third one (t, obj, abort)
belongs to both classes. An event trace H is then defined as a finite
sequence of events.

3.2 Object Specification and Linearizability
Next we formalize the object specification Γ, which maps method
names to their abstract operations γ, as shown in Fig. 6. γ trans-
forms an argument value and an initial abstract object to a return
value with a resulting abstract object in a single step. It specifies
the intended sequential behaviors of the method. The abstract ob-
ject representation θ is defined as a mapping from program vari-
ables to abstract values. We leave the abstract values unspecified
here, which can be instantiated by programmers.

Then we give an abstract version of programs W, where clients
interact with the abstract object specification Γ instead of its im-
plementation Π. The semantics is almost the same as the concrete
language shown in Sec. 3.1, except that the abstract atomic opera-
tion γ is executed when the method is called, which now operates
over the abstract object θ instead of over the concrete one σo. The

(Ci, (σc, σo,K(i)))
e−→ i,Π (C′

i, (σ
′
c, σ

′
o, κ

′))

(let Π in C1‖ . . . Ci . . .‖Cn, (σc, σo,K))
e�−→ (let Π in C1‖ . . . C′

i . . .‖Cn, (σ′
c, σ

′
o,K{i� κ′}))

(a) Program Transitions

Π(f) = (y, C) �E�σc = n x ∈ dom(σc) κ = ({y � n}, x,E[skip])

(E[x := f(E)], (σc, σo, ◦)) (t,f,n)−−−−→ t,Π (C; noret, (σc, σo, κ))

f 	∈ dom(Π) or �E�σc undefined or x 	∈ dom(σc)

(E[x := f(E)], (σc, σo, ◦)) (t,clt,abort)−−−−−−−→ t,Π abort

κ = (σl, x, C) �E�σo�σl = n σ′
c = σc{x� n}

(E[return E], (σc, σo, κ))
(t,ok,n)−−−−−→ t,Π (C, (σ′

c, σo, ◦))

�E�σc = n

(E[print(E)], (σc, σo, ◦)) (t,out,n)−−−−−→ t,Π (E[skip], (σc, σo, ◦))

(noret, s)
(t,obj,abort)−−−−−−−→ t,Π abort

(C, σo
 σl) −� t (C′, σ′
o
 σ′

l) dom(σl) = dom(σ′
l)

(C, (σc, σo, (σl, x, Cc))) −→ t,Π (C′, (σc, σ′
o, (σ

′
l, x, Cc)))

(b) Thread Transitions

�Ej�σ undefined (1 ≤ j ≤ i) or x 	∈ dom(σ)

(E[x := cons(E1, . . . , Ei)], σ) −� t abort
(C, σ) −�∗

t (skip, σ′)
(E[〈C〉], σ) −� t (E[skip], σ′)

(C, σ) −�∗
t abort

(E[〈C〉], σ) −� t abort

(c) Thread Transitions Inside Method Calls

Figure 5. Selected Rules of Concrete Operational Semantics

(AbsObj) θ ∈ PVar ⇀ AbsVal

(MSpec) γ ∈ Int → AbsObj ⇀ Int × AbsObj

(OSpec) Γ ::= {f1 � γ1, . . . , fn � γn}
(AbsProg) W ::= skip | with Γ do C ‖ . . .‖C

Figure 6. Object Specification and Abstract Program

abstract operation generates a pair of invocation and return events
atomically. Due to space limit, we give the semantics in TR [18].

Linearizability. Linearizability [16] is defined using the notion of
histories, which are special event traces H consisting of only object
events (i.e., invocations, returns and object faults).

Below we use H(i) for the i-th event of H , and |H| for the
length of H . H|t represents the sub-history consisting of all the
events whose thread id is t. The predicates is inv(e) and is res(e)
mean that the event e is a method invocation and a response (i.e., a
return or an object fault) respectively. We say a response e2 matches
an invocation e1 iff they have the same thread id.

A history H is sequential iff the first event of H is an invoca-
tion, and each invocation, except possibly the last, is immediately
followed by a matching response. Then H is well-formed iff, for all
t, H|t is sequential. H is complete iff it is well-formed and every
invocation has a matching response. An invocation is pending if no
matching response follows it. We handle pending invocations in an
incomplete history H following the standard linearizability defini-
tion [16]: we append zero or more response events to H , and drop
the remaining pending invocations. Then we get a set of complete
histories, which is denoted by completions(H). We give formal
definitions of the above concepts in TR [18].

Definition 1 (Linearizable Histories). H �lin H
′ iff

1. ∀t. H|t = H ′|t;
2. there exists a bijection π : {1, . . . , |H|} → {1, . . . , |H ′|} such

that ∀i. H(i) = H ′(π(i)) and

∀i, j. i < j ∧ is res(H(i)) ∧ is inv(H(j)) =⇒ π(i) < π(j).

That is, H is linearizable w.r.t. H ′ if the latter is a permutation of
the former, preserving the order of events in the same threads and
the order of the non-overlapping method calls.

We use H [[W, (σc, σo)]] to represent the set of histories pro-
duced by the executions of W with the initial client memory
σc, the object σo, and empty call stacks for all threads, and use
H [[W, (σc, θ)]] to generate histories from the abstract program W

with the initial client memory σc and the abstract object θ.
A legal sequential history H is a history generated by any client

using the specification Γ and an initial abstract object θ.

Γ � (θ,H)
def
=

∃n,C1, . . . , Cn, σc. H ∈ H [[(with Γ do C1‖ . . .‖Cn), (σc, θ)]]

Then an object is linearizable iff all its completed concurrent histo-
ries are linearizable w.r.t. some legal sequential histories.

Definition 2 (Linearizability of Objects). The object’s implemen-
tation Π is linearizable w.r.t. its specification Γ under a refinement
mapping ϕ, denoted by Π �ϕ Γ, iff

∀n,C1, . . . , Cn, σc, σo, θ,H.
H ∈ H [[(let Π in C1‖ . . .‖Cn), (σc, σo)]] ∧ (ϕ(σo) = θ)
=⇒ ∃Hc, H′. Hc ∈ completions(H) ∧ Γ � (θ,H′) ∧Hc �lin H′

Here the mapping ϕ relates concrete objects to abstract ones:

(RefMap) ϕ ∈ Mem ⇀ AbsObj

The side condition ϕ(σo) = θ in the above definition requires
the initial concrete object σo to be a well-formed data structure
representing a valid object θ.

3.3 Contextual Refinement and Linearizability
Next we define contextual refinement between the concrete object
and its specification, and prove its equivalence to linearizability.
This equivalence will serve as the basis of our logic soundness w.r.t.
linearizability.

Informally, the contextual refinement says, for any set of client
threads, the program W has no more observable behaviors than the
corresponding abstract program W. Below we use O [[W, (σc, σo)]]
to represent the set of observable event traces generated during the
executions of W with the initial state (σc, σo) (and empty stacks).
It is defined similarly as H [[W, (σc, σo)]], but now the traces consist
of observable events only (output events, client faults or object
faults). The observable event traces O [[W, (σc, θ)]] generated by
the abstract program is defined similarly.

(InsStmt) C̃ ::= skip | c | return E | noret
| linself | lin(E) | trylinself
| trylin(E) | commit(p) | 〈C̃〉 | C̃; C̃

| if (B) C̃ else C̃ | while (B){C̃}
(RelState) Σ ::= (σ,Δ)

(SpecSet) Δ ::= {(U1, θ1), . . . , (Un, θn)}
(PendThrds) U ::= {t1 � Υ1, . . . , tn � Υn}

(AbsOp) Υ ::= (γ, n) | (end, n)
(RelAss) p, q, I ::= true | false | E = E | emp | E �→ E

| x �⇒ E | E � (γ,E) | E � (end, E)
| p ∗ q | p⊕ q | p ∨ q | . . .

(RelAct) R,G ::= p � q | [p] | R ∗R | R⊕R | . . .

Figure 7. Instrumented Code and Relational State Model

• def
= {(∅, ∅)} where • ∈ SpecSet

f⊥g
def
= dom(f) ∩ dom(g) = ∅

Δ1	Δ2
def
= U1⊥U2 ∧ θ1⊥θ2 , where (U1,θ1)∈Δ1 ∧ (U2,θ2)∈Δ2

Δ1 ∗Δ2
def
= {(U1
U2, θ1
θ2) | (U1,θ1)∈Δ1 ∧ (U2,θ2)∈Δ2}

Σ1 ∗ Σ2
def
= (σ1
 σ2,Δ1 ∗Δ2)
where Σ1 = (σ1,Δ1),Σ2 = (σ2,Δ2), σ1⊥σ2 and Δ1	Δ2

Σ1 ⊕ Σ2
def
=

{
(σ,Δ1∪Δ2) if Σ1 = (σ,Δ1) and Σ2 = (σ,Δ2)
undefined otherwise

{{E}}σ def
=

{
�E�σ if dom(σ) = fv(E)
undefined otherwise

(σ,Δ) |= E1 = E2 iff {{(E1 = E2)}}σ = true ∧Δ = •
(σ,Δ) |= emp iff σ = ∅ ∧Δ = •
(σ,Δ) |= E1 �→ E2 iff ∃l, n, σ′. {{(E1, E2)}}σ′ = (l, n)

∧σ = σ′
 {l � n} ∧Δ = •
(σ,Δ) |= x �⇒ E iff ∃n, θ. {{E}}σ = n ∧ θ = {x� n}

∧Δ = {(∅, θ)}
(σ,Δ) |= E1 � (γ,E2) iff ∃σ1, σ2, t, n. σ = σ1
 σ2

∧{{E1}}σ1 = t ∧ {{E2}}σ2 =n
∧Δ = {({t� (γ, n)}, ∅)}

(σ,Δ) |= E1 � (end, E2) iff ∃σ1, σ2, t, n. σ = σ1
 σ2

∧{{E1}}σ1 = t ∧ {{E2}}σ2 =n
∧Δ = {({t� (end, n)}, ∅)}

Σ |= p ∗ q iff ∃Σ1,Σ2. Σ = Σ1 ∗ Σ2 ∧ Σ1 |= p ∧ Σ2 |= q

Σ |= p⊕ q iff ∃Σ1,Σ2. Σ = Σ1 ⊕ Σ2 ∧ Σ1 |= p ∧ Σ2 |= q

SpecExact(p) iff ∀Δ,Δ′. ((,Δ) |=p) ∧ ((,Δ′) |=p) =⇒ (Δ=Δ′)

Figure 8. Semantics of State Assertions

Definition 3 (Contextual Refinement). Π �ϕ Γ iff

∀n,C1, . . . , Cn, σc, σo, θ. ϕ(σo) = θ
=⇒ O [[(let Π in C1‖ . . .‖Cn), (σc, σo)]]

⊆ O [[(with Γ do C1‖ . . .‖Cn), (σc, θ)]] .

Following Filipović et al. [9], we can prove that linearizability is
equivalent to contextual refinement. We give the proofs in TR [18].

Theorem 4 (Equivalence). Π �ϕ Γ ⇐⇒ Π �ϕ Γ.

4. A Relational Rely-Guarantee Style Logic
To prove object linearizability, we first instrument the object imple-
mentation by introducing auxiliary states and auxiliary commands,
which relate the concrete code with the abstract object and oper-
ations. Our program logic extends LRG [8] with a relational in-
terpretation of assertions and new rules for auxiliary commands.

(Σ,Σ′) |= p � q iff Σ |= p ∧ Σ′ |= q

(Σ,Σ′) |= [p] iff Σ |= p ∧ Σ = Σ′

(Σ,Σ′) |= R1 ∗R2 iff
∃Σ1,Σ2,Σ′

1,Σ
′
2. (Σ = Σ1 ∗ Σ2) ∧ (Σ′ = Σ′

1 ∗ Σ′
2)∧ (Σ1,Σ′

1) |= R1 ∧ (Σ2,Σ′
2) |= R2

(Σ,Σ′) |= R1 ⊕R2 iff
∃Σ1,Σ2,Σ′

1,Σ
′
2. (Σ = Σ1 ⊕ Σ2) ∧ (Σ′ = Σ′

1 ⊕ Σ′
2)∧ (Σ1,Σ′

1) |= R1 ∧ (Σ2,Σ′
2) |= R2

Id
def
= [true] True

def
= true � true

(∅, n) γ−→ (∅, n′)

γ(n)(θ) = (n′, θ′) (Δ, n)
γ−→ (Δ′, n′)

({(U, θ)}
Δ, n)
γ−→ ({(U, θ′)}
Δ′, n′)

[E, p]γ[E′, q] iff
∀σ,Δ, n. (σ,Δ) |= (E=n) ∗ p

=⇒ ∃Δ′, n′. (Δ, n)
γ−→ (Δ′, n′) ∧ ((σ,Δ′) |= (E′=n′) ∗ q)

I
 R iff ([I] ⇒ R) ∧ (R ⇒ I � I) ∧ Precise(I)

Figure 9. Semantics of Actions

Although our logic is based on LRG [8], this approach is mostly in-
dependent with the base logic. Similar extensions can also be made
over other logics, such as RGSep [32].

Our logic is proposed to verify object methods only. Verified
object methods are guaranteed to be a contextual refinement of
their abstract atomic operations, which ensures linearizability of
the object. We discuss verification of whole programs consisting of
both client code and object code at the end of Sec. 4.3.

4.1 Instrumented Code and States
In Fig. 7 we show the syntax of the instrumented code and its
state model. As explained in Sec. 2, program states Σ for the
object method executions now consist of two parts, the physical
object states σ and the auxiliary data Δ. Δ is a nonempty set of
(U, θ) pairs, each pair representing a speculation of the situation
at the abstract level. Here θ is the current abstract object, and
U is a pending thread pool recording the remaining operation to
be fulfilled by each thread. It maps a thread id to its remaining
abstract operation, which is either (γ, n) (the operation γ needs to
be executed with argument n) or (end, n) (the operation has been
finished with the return value n). We assume Δ is always domain-
exact, defined as follows:

DomExact(Δ)
def
= ∀U, θ, U ′, θ′. (U, θ) ∈ Δ ∧ (U ′, θ′) ∈ Δ

=⇒ dom(U)=dom(U ′) ∧ dom(θ)=dom(θ′) .

It says, all the speculations in Δ should describe the same set of
threads and the same domain of abstract objects. Any Δ containing
a single speculation is domain-exact. Also domain-exactness can
be preserved under the step of any command in our instrumented
language, thus it is reasonable to assume it always holds.

Below we informally explain the effects over Δ of the newly
introduced commands. We leave their formal semantics to Sec. 4.4.
The auxiliary command linself executes the unfinished abstract op-
eration of the current thread in every U in Δ, and changes the ab-
stract object θ correspondingly. lin(E) executes the abstract opera-
tion of the thread with id E. linself or lin(E) is executed when we
know for sure that a step is the linearization point. The trylinself
command introduces uncertainty. Since we do not know if the ab-
stract operation of the current thread is fulfilled or not at the cur-
rent point, we consider both possibilities. For each (U, θ) pair in Δ
that contains unfinished abstract operation of the current thread, we
add in Δ a new speculation (U ′, θ′) where the abstract operation
is done and θ′ is the resulting abstract object. Since the original
(U, θ) is also kept, we have both speculations in Δ. Similarly, the

[E1, p]γ[E2, q]

�t {t� (γ,E1) ∗ p}linself{t� (end, E2) ∗ q} (LINSELF) �t {t� (end, E)}linself{t� (end, E)} (LINSELF-END)

[E1, p]γ[E2, q]

�t {E � (γ,E1) ∗ p}trylin(E){(E � (γ,E1) ∗ p)⊕ (E � (end, E2) ∗ q)} (TRY)

�t {E � (end, E′)}trylin(E){E � (end, E′)} (TRY-END)
SpecExact(p) p′ ⇒ p

�t {p′ ⊕ true}commit(p){p′} (COMMIT)

�t {t� (end, E)}E[return E]{t� (end, E)} (RET)
�t {p}C̃{q}

�t {p ∗ r}C̃{q ∗ r}
(FRAME)

�t {p}C̃{q} �t {p′}C̃{q′}
�t {p⊕ p′}C̃{q ⊕ q′}

(SPEC-CONJ)

�t {p}C̃{q} (p � q) ⇒ G ∗ True
I
 G p ∨ q ⇒ I ∗ true

[I], G, I �t {p}〈C̃〉{q}
(ATOM)

[I], G, I �t {p}〈C̃〉{q}
Sta({p, q}, R ∗ Id) I
 R

R,G, I �t {p}〈C̃〉{q}
(ATOM-R)

Figure 10. Selected Inference Rules

trylin(E) command introduces speculations about the thread E.
When we have enough knowledge p about the situation of the ab-
stract objects and operations, the commit(p) step keeps only the
subset of speculations consistent with p and drops the rest. Here p
is a logical assertion about the state Σ, which is explained below.

4.2 Assertions
Syntax of assertions is shown in Fig. 7. Following rely-guarantee
style reasoning, assertions are either single state assertions p and q
or binary rely/guarantee conditions R and G. Note here states refer
to the relational states Σ.

We use standard separation logic assertions such as true, E1 =
E2, emp and E1 �→ E2 to specify the memory σ. As shown in
Fig. 8, their semantics is almost standard, but for E1 = E2 to hold
over σ we require the domain of σ contains only the free variables
in E1 and E2. Here we use {{E}}σ to evaluate E with the extra
requirement that σ contains the exact resource to do the evaluation.

New assertions are introduced to specify Δ. x �⇒ E specifies
the abstract object θ in Δ, with no speculations of U (abstract
operations), while E1 � (γ,E2) (and E1 � (end, E2)) specifies
the singleton speculation of U . Semantics of separating conjunction
p ∗ q is similar as in separation logic, except that it is now lifted
to assertions over the relational states Σ. Note that the underlying
“disjoint union” over Δ for separating conjunction should not be
confused with the normal disjoint union operator over sets. The
former (denoted as Δ1∗Δ2 in Fig. 8) describes the split of pending
thread pools and/or abstract objects. For example, the left side Δ in
the following equation specifies two speculations of threads t1 and
t2 (we assume the abstract object part is empty and omitted here),
and it can be split into two sets Δ1 and Δ2 on the right side, each
of which describes the speculations of a single thread.

{
t1 Υ1

t2 Υ2
,

t1 Υ1

t2 Υ′
2

}
=

{ t1 Υ1 }
∗

{ t2 Υ2 , t2 Υ′
2 }

The most interesting new assertion is p ⊕ q, where p and q
specify two different speculations. It is this assertion that reflects
uncertainty about the abstract level. However, the readers should
not confuse ⊕ with disjunction. It is more like conjunction since it
says Δ contains both speculations satisfying p and those satisfying
q. As an example, the above equation could be formulated at the
assertion level using ∗ and ⊕:

(t1 � Υ1 ∗ t2 � Υ2)⊕ (t1 � Υ1 ∗ t2 � Υ′
2)⇔ t1 � Υ1 ∗ (t2 � Υ2 ⊕ t2 � Υ′

2)

Rely and guarantee assertions specify transitions over Σ. Here
we follow the syntax of LRG [8], with a new assertion R1 ⊕ R2

specifying speculative behaviors of the environment. The semantics
is given in Fig. 9. We will show the use of the assertions in the
examples of Sec. 6.

4.3 Inference Rules
The rules of our logic are shown in Fig. 10. Rules on the top half are
for sequential Hoare-style reasoning. They are proposed to verify
code C̃ in the atomic block 〈C̃〉. The judgment is parameterized
with the id t of the current thread.

For the linself command, if the abstract operation γ of the cur-
rent thread has not been done, this command will finish it. Here
[E1, p]γ[E2, q] in the LINSELF rule describes the behavior of γ,
which transforms abstract objects satisfying p to new ones satisfy-
ing q. E1 and E2 are the argument and return value respectively.
The definition is given in Fig. 9. The LINSELF-END rule says linself
has no effects if we know the abstract operation has been finished.
The LIN rule and LIN-END rule are similar and omitted here.

The TRY rule says that if the thread E has not finished the
abstract operation γ, it can do speculation using trylin(E). The
resulting state contains both cases, one says γ does not progress
at this point and the other says it does. If the current thread has
already finished the abstract operation, trylin(E) would have no
effects, as shown in the TRY-END rule. We omit the TRYSELF rule
and TRYSELF-END rule for the current thread, which are similar.

The above two pairs of rules require us to know for sure either
the abstract operation has been finished or not. If we want to
support uncertainty in the pre-condition, we could first consider
different cases and then apply the SPEC-CONJ rule, which is like
the conjunction rule in traditional Hoare logic.

The COMMIT rule allows us to commit to a specific speculation
and drop the rest. commit(p) keeps only the speculations satisfy-
ing p. We require p to describe an exact set of speculations, as de-
fined by SpecExact(p) in Fig. 8. For example, the following p1 is
speculation-exact, while p2 is not:

p1
def
= t� (γ, n)⊕ t� (end, n′)

p2
def
= t� (γ, n) ∨ t� (end, n′)

In all of our examples in Sec. 6, the assertion p in commit(p)
describes a singleton speculation, so SpecExact(p) trivially holds.

Before the current thread returns, it must know its abstract
operation has been done, as required in the RET rule. We also have
a standard FRAME rule as in separation logic for local reasoning.

Rules in the bottom half show how to do rely-guarantee style
concurrency reasoning, which are very similar to those in LRG [8].
As in LRG, we use a precise invariant I to specify the boundary
of the well-formed shared resource. The ATOM rule says we could
reason sequentially about code in the atomic block. Then we can
lift it to the concurrent setting as long as its effects over the shared
resource satisfy the guarantee G, which is fenced by the invariant I .
In this step we assume the environment does not update shared re-
source, thus using Id as the rely condition (see Fig. 9). To allow
general environment behaviors, we should apply the ATOM-R rule
later, which requires that R be fenced by I and the pre- and post-
conditions be stable with respect to R. Here Sta({p, q}, R) re-
quires that p and q be stable with respect to R, a standard require-
ment in rely-guarantee reasoning. More rules are shown in TR [18].

Linking with client program verification. Our relational logic is
introduced for object verification, but it can also be used to verify
client code, since it is just an extension over the general-purpose
concurrent logic LRG (which includes the rule for parallel com-
position). Moreover, as we will see in Sec. 5, our logic ensures
contextual refinement. Therefore, to verify a program W , we could
replace the object implementation with the abstract operations and
verify the corresponding abstract program W instead. Since W ab-
stracts away concrete object representation and method implemen-
tation details, this approach provides us with “separation and in-
formation hiding” [26] over the object, but still keeps enough in-
formation (i.e., the abstract operations) about the method calls in
concurrent client verification.

4.4 Semantics and Partial Correctness
We first show some key operational semantics rules for the instru-
mented code in Fig. 11.

A single step execution of the instrumented code by thread
t is represented as (C̃,Σ) ↪−→ t (C̃

′,Σ′). When we reach the
return E command (the second rule), we require that there be no
uncertainty about thread t at the abstract level in Δ. That is, in every
speculation in Δ, we always know t’s operation has been finished
with the same return value E. Meanings of the auxiliary commands
have been explained before. Here we use the auxiliary definition
Δ →t Δ

′ to formally define their transitions over Δ. The semantics
of commit(p) requires p to be speculation-exact (see Fig. 8). Also
it uses (σ,Δ)|p = (σ′,Δ′) to filter out the wrong speculations. To
ensure locality, this filter allows Δ to contain some extra resource
such as the threads and their abstract operations other than those
described in p. For example, the following Δ describes two threads
t1 and t2, but we could mention only t1 in commit(p).

Δ :

{
t1 (γ1, n1)
t2 (γ2, n2)

,
t1 (end, n′

1)
t2 (end, n′

2)

}

If p is t1 � (γ1, n1), then commit(p) will keep only the left
speculation and discard the other. p can also be t1 � (γ1, n1) ⊕
t1 � (end, n′

1), then commit(p) will keep both speculations.
Given the thread-local semantics, we could next define the tran-

sition (C̃,Σ)
R

↪−→ t (C̃,Σ), which describes the behavior of thread
t with interference R from the environment.

Semantics preservation by the instrumentation. It is easy to see
that the newly introduced auxiliary commands do not change the
physical state σ, nor do they affect the program control flow. Thus
the instrumentation does not change program behaviors, unless the
auxiliary commands are inserted into the wrong places and they get
stuck, but this can be prevented by our program logic.

Soundness w.r.t. partial correctness. Following LRG [8], we
could give semantics of the logic judgment as R,G, I |=t {p}C̃{q},
which encodes partial correctness of C̃ w.r.t. the pre- and post-

(C, σ) −� t (C′, σ′) C 	= E[return]

(C, (σ,Δ)) ↪−→ t (C′, (σ′,Δ))

∀U. (U,)∈Δ =⇒ U(t)=(end, �E�σ)

(E[return E], (σ,Δ)) ↪−→ t (skip, (σ,Δ))

Δ →t Δ′

(E[linself], (σ,Δ)) ↪−→ t (E[skip], (σ,Δ′))

�E�σ = t′ Δ →t′ Δ
′

(E[trylin(E)], (σ,Δ)) ↪−→ t (E[skip], (σ,Δ∪Δ′))

SpecExact(p) (σ,Δ)|p = (,Δ′)

(E[commit(p)], (σ,Δ)) ↪−→ t (E[skip], (σ,Δ′))

(C̃,Σ) ↪−→ t (C̃′,Σ′)

(C̃,Σ)
R

↪−→ t (C̃′,Σ′)

(Σ,Σ′) |= R

(C̃,Σ)
R

↪−→ t (C̃,Σ′)

Auxiliary Definitions:

U(t) = (γ, n) γ(n)(θ) = (n′, θ′)
(U, θ) ���t (U{t� (end, n′)}, θ′)

U(t) = (end, n)
(U, θ) ���t (U, θ)

∅ →t ∅
(U, θ) ���t (U ′, θ′) Δ →t Δ′

{(U, θ)}
Δ →t {(U ′, θ′)} ∪Δ′

(σ,Δ)|p = (σ′,Δ′) iff
∃σ′′,Δ′′,Δp. (σ = σ′
σ′′) ∧ (Δ = Δ′
Δ′′) ∧ ((σ′,Δp) |= p)

∧ (Δ′|dom(Δp) = Δp) ∧ (Δ′′|dom(Δp) ∩Δp = ∅)
Δ|D def

= {(U,θ) | dom({(U,θ)})=D∧ ∃U ′,θ′. (U
U ′, θ
θ′)∈Δ}
dom(Δ)

def
= (dom(U), dom(θ)) where (U, θ) ∈ Δ

Figure 11. Operational Semantics in the Relational State Model

conditions. We could prove the logic ensures partial correctness by
showing R,G, I �t {p}C̃{q} implies R,G, I |=t {p}C̃{q}. The
details are shown in TR [18]. In the next section, we give a stronger
soundness of the logic, i.e. soundness w.r.t. linearizability.

5. Soundness via Simulation
Our logic intuitively relates the concrete object code with its ab-
stract level specification. In this section we formalize the intuition
and prove that the logic indeed ensures object linearizability. The
proof is constructed in the following steps. We propose a new rely-
guarantee-based forward-backward simulation between the con-
crete code and the abstract operation. We prove the simulation is
compositional and implies contextual refinement between the two
sides, and our logic indeed establishes such a simulation. Thus the
logic establishes contextual refinement. Finally we get linearizabil-
ity following Theorem 4.

Below we first define a rely-guarantee-based forward-backward
simulation. It extends RGSim [19] with the support of the helping
mechanism and speculations.

Definition 5 (Simulation for Method). (x,C) �t
R;G;p γ iff

∀n, σ,Δ. (σ,Δ) |= (t� (γ, n) ∗ (x = n) ∗ p)
=⇒ (C; noret, σ) �t

R;G;p Δ .

Whenever (C, σ) �t
R;G;p Δ, we have the following:

1. if C �= E[return], then
(a) for any C′ and σ′, if (C, σ) −� t (C

′, σ′),
then there exists Δ′ such that Δ⇒ Δ′,
((σ,Δ), (σ′,Δ′)) |= (G ∗ True) and (C′, σ′) �t

R;G;p Δ′;

(b) (C, σ) �−� t abort;
2. for any σ′ and Δ′, if ((σ,Δ), (σ′,Δ′)) |= (R ∗ Id),

then (C, σ′) �t
R;G;p Δ′;

3. if C = E[return E], then there exists n′ such that �E�σ = n′

and (σ,Δ) |= (t� (end, n′) ∗ (x =) ∗ p).
As in RGSim, (x,C) �t

R;G;p γ says, the implementation C
is simulated by the abstract operation γ under the interference
with the environment, which is specified by R and G. The new
simulation holds if the executions of the concrete code C are related
to the speculative executions of some Δ. The Δ could specify
abstract operations of other threads that might be helped, as well as
the current thread t. Initially, the abstract operation of t is γ, with
the same argument n as the concrete side (i.e., x = n). The abstract
operations of other threads can be known from the precondition p.

For each step of the concrete code C, we require it to be safe,
and correspond to some steps of Δ, as shown in the first condition
in Definition 5. We define the transition Δ⇒ Δ′ as follows.

Δ⇒ Δ′ iff ∀U ′, θ′. (U ′, θ′) ∈ Δ′
=⇒ ∃U, θ. (U, θ) ∈ Δ ∧ (U, θ) ���∗ (U ′, θ′) ,

where (U, θ) ��� (U ′, θ′) def
= ∃t. (U, θ) ���t (U ′, θ′)

and (U, θ) ���t (U ′, θ′) has been defined in Fig. 11.

It says, any (U ′, θ′) pair in Δ′ should be “reachable” from Δ.
Specifically, we could execute the abstract operation of some thread
t′ (which could be the current thread t or some others), or drop
some (U, θ) pair in Δ. The former is like a step of trylin(t′) or
lin(t′), depending on whether or not we keep the original abstract
operation of t′. The latter can be viewed as a commit step, in which
we discard the wrong speculations.

We also require the related steps at the two levels to satisfy
the guarantee G ∗ True, G for the shared part and True (arbitrary
transitions) for the local part. Symmetrically, the second condition
in Definition 5 says, the simulation should be preserved under the
environment interference R ∗ Id, R for the shared part and Id
(identity transitions) for the local part.

Finally, when the method returns (the last condition in Defi-
nition 5), we require the current thread t has finished its abstract
operation, and the return values match at the two levels.

Like RGSim, our new simulation is compositional, thus can
ensure contextual refinement between the implementation and the
abstract operation, as shown in the following lemma.

Lemma 6 (Simulation Implies Contextual Refinement).
For any Π, Γ and ϕ, if there exist R, G, p and I such that the
following hold for all t,

1. for any f such that Π(f) = (x,C), we have Π(f) �t
Rt;Gt;pt Γ(f),

and x �∈ dom(I);
2. Rt =

∨
t′ �=t Gt′ , I 	 {Rt, Gt}, pt ⇒ I , and Sta(pt, Rt);

3. �ϕ� ⇒ ∧
t pt;

then Π �ϕ Γ.

Here x �∈ dom(I) means the formal argument x is always in the
local state, and �ϕ� lifts ϕ to a state assertion:

�ϕ� def
= {(σ, {(∅, θ)}) | ϕ(σ) = θ}.

Lemma 6 allows us to prove contextual refinement Π �ϕ Γ by
showing the simulation Π(f) �t

Rt;Gt;pt Γ(f) for each method f ,
where R, G and p are defined over the shared states fenced by the
invariant I , and the interference constraint Rt =

∨
t′ �=t Gt′ holds

following Rely-Guarantee reasoning [17]. Its proof is similar to the
compositionality proofs of RGSim [19], but now we need to be
careful with the helping between threads and the speculations. We
give the proofs in TR [18].

Objects Helping Fut. LP Java Pkg HS Book
Treiber stack [29]

√
HSY stack [14]

√ √
MS two-lock queue [23]

√
MS lock-free queue [23]

√ √ √
DGLM queue [6]

√
Lock-coupling list

√
Optimistic list [15]

√
Heller et al. lazy list [13]

√ √ √
Harris-Michael lock-free list

√ √ √ √
Pair snapshot [27]

√
CCAS [31]

√ √
RDCSS [12]

√ √

Table 1. Verified Algorithms Using Our Logic

Lemma 7 (Logic Ensures Simulation for Method).
For any t, x, C, γ, R, G and p, if there exist I and C̃ such that

R,G, I �t {t� (γ, x) ∗ p} C̃ {t� (end,) ∗ (x =) ∗ p} ,
and Er(C̃) = (C; noret), then (x,C) �t

R;G;p γ.

Here we use Er(C̃) to erase the instrumented commands in C̃. The
lemma shows that, verifying C̃ in our logic establishes simulation
between the original code and the abstract operation. It is proved
by first showing that our logic ensures the standard rely-guarantee-
style partial correctness (see Sec. 4.4). Then we build the simula-
tion by projecting the instrumented semantics (Fig. 11) to the con-
crete semantics of C (Fig. 5) and the speculative steps⇒ of Δ.

Finally, from Lemmas 6 and 7, we get the soundness theorem
of our logic, which says our logic can verify linearizability.

Theorem 8 (Logic Soundness). For any Π, Γ and ϕ, if there exist
R, G, p and I such that the following hold for all t,

1. for any f , if Π(f) = (x,C), there exists C̃ such that

Rt, Gt, I �t {t�(Γ(f), x) ∗ pt} C̃ {t�(end,) ∗ (x=) ∗ pt} ,
Er(C̃) = (C; noret), and x �∈ dom(I);

2. Rt =
∨

t′ �=t Gt′ , pt ⇒ I , and Sta(pt, Rt);

3. �ϕ� ⇒ ∧
t pt;

then Π �ϕ Γ, and thus Π �ϕ Γ.

6. Examples
Our logic gives us an effective approach to verify linearizability.
As shown in Table 1, we have verified 12 algorithms, including
two stacks, three queues, four lists and three algorithms on atomic
memory reads or writes. Table 1 summarizes their features, includ-
ing the helping mechanism (Helping) and future-dependent LPs
(Fut. LP). Some of them are used in the java.util.concurrent
package (Java Pkg). The last column (HS Book) shows whether
it occurs in Herlihy and Shavit’s classic textbook on concurrent al-
gorithms [15]. We have almost covered all the fine-grained stacks,
queues and lists in the book. We can see that our logic supports
various objects ranging from simple ones with static LPs to sophis-
ticated ones with non-fixed LPs. Although many of the examples
can be verified using other approaches, we provide the first pro-
gram logic which is proved sound and useful enough to verify all
of these algorithms. Their complete proofs are given in TR [18].

In general we verify linearizability in the following steps. First
we instrument the code with the auxiliary commands such as
linself, trylin(E) and commit(p) at proper program points. The
instrumentation should not be difficult based on the intuition of
the algorithm. Then, we specify the assertions (as in Theorem 8)

readPair(int i, j) { local a, b, v, w;
{I ∗ (cid� (γ, (i, j)))}

1 while(true) {
{I ∗ (cid� (γ, (i, j))⊕ true)}

2 < a := m[i].d; v := m[i].v; >
{∃v′. (I ∧ readCell(i, a, v; v′)) ∗ (cid� (γ, (i, j))⊕ true)}

3 < b := m[j].d; w := m[j].v; trylinself; >

{∃v′. (I ∧ readCell(i, a, v; v′) ∧ readCell(j, b, w;)) ∗ afterTry}
4 if (v = m[i].v) {

{I ∗ (cid� (end, (a, b))⊕ true)}
5 commit(cid� (end, (a, b)));

{I ∗ (cid� (end, (a, b)))}
6 return (a, b);

{I ∗ (cid� (end, (a, b)))}
7 } } }
Auxiliary definitions:
readCell(i, d, v; v′) def

= (cell(i, d, v) ∨ (cell(i, , v′) ∧ v 	= v′)) ∗ true

absRes
def
= (cid�(end, (a, b)) ∧ v′=v)∨(cid�(end, (, b)) ∧ v′ 	=v)

afterTry
def
= cid� (γ, (i, j))⊕ absRes⊕ true

Figure 12. Proof Outline of readPair in Pair Snapshot

and reason about the instrumented code by applying our inference
rules, just like the usual partial correctness verification in LRG. In
our experience, handling the auxiliary commands usually would
not introduce much difficulty over the plain verification with LRG.
Below we sketch the proofs of three representative examples: the
pair snapshot, MS lock-free queue and the CCAS algorithm.

6.1 Pair Snapshot
As discussed in Sec. 2.3, the pair snapshot algorithm has a future-
dependent LP. In Fig. 12, we show the proof of readPair for the
current thread cid. We will use γ for its abstract operation, which
atomically reads the cells i and j at the abstract level.

First, we insert trylinself and commit as highlighted in Fig. 12.
The commit command says, when the validation at line 4 succeeds,
we must have cid� (end, (a, b)) as a possible speculation. This
actually requires a correct instrumentation of trylinself. In Fig. 12,
we insert it at line 3. It cannot be moved to other program points
since line 3 is the only place where we could get the abstract return
value (a, b) when executing γ. Besides, we cannot replace it by
a linself, because if line 4 fails later, we have to restart to do the
original abstract operation.

After the instrumentation, we can define the precise invariant I ,
the rely R and the guarantee G. The invariant I simply maps every
memory cell (d, v) at the concrete level to a cell with data d at the
abstract level, as shown below:

I
def
= �i∈[1..size].(∃d, v. cell(i, d, v))

where cell(i, d, v)
def
= (m[i] �→ (d, v)) ∗ (m[i] �⇒ d))

Every thread guarantees that when writing a cell, it increases the
version number. Here we use [G]I short for (G∨ Id)∗ Id∧ (I� I).

G
def
= [Write]I Write

def
= ∃i, v. cell(i, , v) � cell(i, , v + 1)

The rely R is the same as the guarantee G.
Then we specify the pre- and post-conditions, and reason about

the instrumented code using our inference rules. The proof follows
the intuition of the algorithm. Note that we relax cid� (γ, (i, j))
in the precondition of the method to cid � (γ, (i, j)) ⊕ true to
ensure the loop invariant. The latter says, cid may just start (or
restart) its operation and have not done yet.

The readPair method in the pair snapshot algorithm is “read-
only” in the sense that the abstract operation does not update the ab-
stract object. This perhaps means that it does not matter to linearize
the method multiple times. In Sec. 6.3 we will verify an algorithm
with future-dependent LPs, CCAS, which is not “read-only”. We
can still “linearize” a method with side effects multiple times.

1 enq(v) {
2 local x, t, s, b;
3 x := cons(v, null);
4 while (true) {
5 t := Tail; s := t.next;
6 if (t = Tail) {
7 if (s = null) {
8 b:=cas(&(t.next),s,x);
9 if (b) {

10 cas(&Tail, t, x);
11 return; }
12 }else cas(&Tail, t, s);
13 }
14 }
15 }

16 deq() {
17 local h, t, s, v, b;
18 while (true) {
19 h := Head; t := Tail;
20 s := h.next;
21 if (h = Head)
22 if (h = t) {
23 if (s = null)
24 return EMPTY;
25 cas(&Tail, t, s);
26 }else {
27 v := s.val;
28 b:=cas(&Head,h,s);
29 if(b) return v; }
30 } }

Figure 13. MS Lock-Free Queue Code

6.2 MS Lock-Free Queue
The widely-used MS lock-free queue [23] also has future-dependent
LPs. We show its code in Fig. 13.

The queue is implemented as a linked list with Head and Tail
pointers. Head always points to the first node (a sentinel) in the list,
and Tail points to either the last or second to last node. The enq
method appends a new node at the tail of the list and advances
Tail, and deq replaces the sentinel node by its next node and
returns the value in the new sentinel. If the list contains only the
sentinel node, meaning the queue is empty, then deq returns EMPTY.

The algorithm employs the helping mechanism for the enq
method to swing the Tail pointer when it lags behind the end of
the list. A thread should first try to help the half-finished enq by
advancing Tail (lines 12 and 25 in Fig. 13) before doing its own
operation. But this helping mechanism would not affect the LP of
enq which is statically located at line 8 when the cas succeeds,
since the new node already becomes visible in the queue after being
appended to the list, and updating Tail will not affect the abstract
queue. We simply instrument line 8 as follows to verify enq:

< b := cas(&(t.next), s, x); if (b) linself; >

On the other hand, the original queue algorithm [23] checks
Head or Tail (line 6 or 21 in Fig. 13) to make sure that its value
has not been changed since its local copy was read (at line 5
or 19), and if it fails, the operation will restart. This check can
improve efficiency of the algorithm, but it makes the LP of the deq
method for the empty queue case depend on future executions. That
LP should be at line 20, if the method returns EMPTY at the end
of the same iteration. The intuition is, when we read null from
h.next at line 20 (indicating the abstract queue must be empty
there), we do not know how the iteration would terminate at that
time. If the later check over Head at line 21 fails, the operation
would restart and line 20 may not be the LP. We can use our try-
commit instrumentation to handle this future-dependent LP. We
insert trylinself at line 20, as follows:

< s := h.next; if (h = t && s = null) trylinself; >

Before the method returns EMPTY, we commit to the finished ab-
stract operation, i.e., we insert commit(cid� (end, EMPTY)) just
before line 24. Also, when we know we have to do another itera-
tion, we can commit to the original DEQ operation, i.e., we insert
commit(cid� DEQ) at the end of the loop body.

For the case of nonempty queues, the LP of the deq method is
statically at line 28 when the cas succeeds. Thus we can instrument
linself there, as shown below.

< b := cas(&Head, h, s); if (b) linself; >

After the instrumentation, we can define I , R and G and verify
the code using our logic rules. The invariant I relates all the nodes

1 CCAS(o, n) {
2 local r, d;
3 d := cons(cid, o, n);
4 r := cas(&a, o, d);
5 while(IsDesc(r)) {
6 Complete(r);
7 r := cas(&a, o, d);
8 }
9 if(r = o) Complete(d);

10 return r; }

11 Complete(d) {
12 local b;
13 b := flag;
14 if (b)
15 cas(&a, d, d.n);
16 else
17 cas(&a, d, d.o);
18 }
19 SetFlag(b){ flag := b;}

Figure 14. CCAS Code

in the concrete linked list to the abstract queue. R and G specify
the related transitions at both levels, which simply include all the
actions over the shared states in the algorithm. The proof is similar
to the partial correctness proof using LRG, except that we have to
specify the abstract objects and operations in assertions and reason
about the instrumented code. We show the full proof in TR [18].

6.3 Conditional CAS
Conditional compare-and-swap (CCAS) [31] is a simplified version
of the RDCSS algorithm [12]. It involves both the helping mecha-
nism and future-dependent LPs. We show its code in Fig. 14.

The object contains an integer variable a, and a boolean bit
flag. The method SetFlag (line 19) sets the bit directly. The
method CCAS takes two arguments: an expected current value o of
the variable a and a new value n. It atomically updates a with the
new value if flag is true and a indeed has the value o; and does
nothing otherwise. CCAS always returns the old value of a.

The implementation in Fig. 14 uses a variant of cas: instead
of a boolean value indicating whether it succeeds, cas(&a,o,n)
returns the old value stored in a. When starting a CCAS, a thread
first allocates its descriptor (line 3), which contains the thread id
and the arguments for CCAS. It then tries to put its descriptor in
a (line 4). If successful (line 9), it calls the auxiliary Complete
function, which restores a to the new value n (line 15) or to the
original value o (line 17), depending on whether flag is true. If
it finds a contains a descriptor (i.e., IsDesc holds), it will try to
help complete the operation in the descriptor (line 6) before doing
its own. Since we disallow nested function calls to simplify the
language, the auxiliary Complete function should be viewed as a
macro.

The LPs of the algorithm are at lines 4, 7 and 13. If a contains a
different value from o at lines 4 and 7, then CCAS fails and they are
LPs of the current thread. We can instrument these lines as follows:

<r := cas(&a, o, d); if(r!=o && !IsDesc(r)) linself;>

If the descriptor d gets placed in a, then the LP should be in the
Complete function. Since any thread can call Complete to help
the operation, the LP should be at line 13 of the thread which will
succeed at line 15 or 17. It is a future-dependent LP which may be
in other threads’ code. We instrument line 13 using trylin(d.id)
to speculatively execute the abstract operation for the thread in d,
which may not be the current thread. That is, line 13 becomes:

< b := flag; if (a = d) trylin(d.id); >

The condition a=d requires that the abstract operation in the de-
scriptor has not been finished. Then at lines 15 and 17, we commit
the correct guess. We show the instrumentation at line 15 below
(where s is a local variable), and line 17 is instrumented similarly.

< s := cas(&a, d, d.n);
if(s = d) commit(d.id �(end, d.o) ∗ a�⇒d.n); >

That is, it should be possible that the thread in d has finished the
operation, and the current abstract a is the new value n.

Then we can define I , R and G, and verify the code by applying
the inference rules. The invariant I says, the shared state includes
flag and a at the abstract and the concrete levels; and when a is a
descriptor d, the descriptor and the abstract operation of the thread
d.id are also shared.

The rely R and the guarantee G should include the action
over the shared states at each line. The action at line 4 (or 7) is
interesting. If it succeeds, both the descriptor d and the abstract
operation will be transferred from the local state to the shared part.
This puts the abstract operation in the pending thread pool and
enables other threads to help execute it.

The action at line 13 guarantees TrylinSucc∨TrylinFail, which
demonstrates the use of our logic for both helping and speculation.

TrylinSucc
def
= (∃t, o, n. (flag �⇒ true ∗ notDone(t, o, n))

� (flag �⇒ true ∗ endSucc(t, o, n)))⊕ Id

where notDone(t, o, n)
def
= t� (CCAS, o, n) ∗ a �⇒ o

endSucc(t, o, n)
def
= t� (end, o) ∗ a �⇒ n

TrylinFail is symmetric for the case when flag �⇒ false. Here
we use R ⊕ Id (defined in Fig. 8) to describe the action of trylin.
It means, after the action we will keep the original state as well
as the new state resulting from R as possible speculations. Also,
in TrylinSucc and TrylinFail, the current thread is allowed to help
execute the abstract CCAS of some thread t.

The subtle part in the proof is to ensure that, no thread could
cheat by imagining another thread’s help. In any program point
of CCAS, the environment may have done trylin and helped the
operation. But whether the environment has helped it or not, the
commit at line 15 or 17 cannot fail. This means, we should not
confuse the two kinds of nondeterminism caused by speculation
and by environment interference. The former allows us to discard
wrong guesses, while for the latter, we should consider all possible
environments (including none).

7. Related Work and Conclusion
In addition to the work mentioned in Sec. 1 and 2, there is a large
body of work on linearizability verification. Here we only discuss
the most closely related work that can handle non-fixed LPs.

Our logic is similar to Vafeiadis’ extension of RGSep to prove
linearizability [32]. He also uses abstract objects and abstract
atomic operations as auxiliary variables and code. There are two
key differences between the logics. First he uses prophecy variables
to handle future-dependent LPs, but there has been no satisfactory
semantics given for prophecy variables so far. We use the simple
try-commit mechanism, whose semantics is straightforward. Sec-
ond the soundness of his logic w.r.t. linearizability is not specified
and proved. We address this problem by defining a new thread-
local simulation as the meta-theory of our logic. As we explained
in Sec. 2, defining such a simulation to support non-fixed LPs is one
of the most challenging issues we have to solve. Although recently
Vafeiadis develops an automatic verification tool [33] with formal
soundness for linearizability, his new work can handle non-fixed
LPs for read-only methods only, and cannot verify algorithms like
HSY stack, CCAS and RDCSS in our paper.

Recently, Turon et al. [31] propose logical relations to ver-
ify fine-grained concurrency, which establish contextual refinement
between the library and the specification. Underlying the model a
similar simulation is defined. Our pending thread pool is proposed
concurrently with their “spec thread pool”, while the speculation
idea in our simulation is borrowed from their work, which traces
back to forward-backward simulation [21]. What is new here is
a new program logic and the way we instrument code to do re-
lational reasoning. The set of syntactic rules, including the try-
commit mechanism to handle uncertainty, is much easier to use
than the semantic logical relations to construct proofs. On the other

hand, they support higher-order features, recursive types and poly-
morphism, while we focus on concurrency reasoning and use only
a simple first-order language.

O’Hearn et al. [25] prove linearizability of an optimistic variant
of the lazy set algorithm by identifying the “Hindsight” property of
the algorithm. Their Hindsight Lemma provides a non-constructive
evidence for linearizability. Although Hindsight can capture the
insights of the set algorithm, it remains an open problem whether
the Hindsight-like lemmas exist for other concurrent algorithms.

Colvin et al. [3] formally verify the lazy set algorithm using
a combination of forward and backward simulations between au-
tomata. Their simulations are not thread-local, where they need to
know the program counters of all threads. Besides, their simula-
tions are specifically constructed for the lazy set only, while ours is
more general in that it can be satisfied by various algorithms.

The simulations defined by Derrick et al. [4] are thread-local
and general, but they require the operations with non-fixed LPs to
be read-only, thus cannot handle the CCAS example. They also pro-
pose a backward simulation to verify linearizability [28]. Although
the method is proved to be complete, it does not support thread-
local verification and there is no program logic given.

Elmas et al. [7] prove linearizability by incrementally rewriting
the fine-grained code to the atomic operation. They do not need to
locate LPs. Their rules are based on left/right movers and program
refinements, but not for Hoare-style reasoning as in our work.

There are also lots of model-checking based tools (e.g., [20, 34])
for checking linearizability. For example, Vechev et al. [34] check
linearizability with user-specified non-fixed LPs. Their method is
not thread modular. To handle non-fixed LPs, they need users to
instrument the code with enough information about the actions of
other threads, which usually demands a priori knowledge about the
number of threads running in parallel, as shown in their example.
Besides, although their checker can detect un-linearizable code, it
will not terminate for linearizable methods in general.

Conclusion. We propose a new program logic to verify lin-
earizability of algorithms with non-fixed LPs. The logic extends
LRG [8] with new rules for the auxiliary commands introduced
specifically for linearizability proof. We also give a relational in-
terpretation of asssertions and rely/guarantee conditions to relate
concrete implementations with the corresponding abstract opera-
tions. Underlying the logic is a new thread-local simulation, which
gives us contextual refinement. Linearizability is derived based on
its equivalence to refinement. Both the logic and the simulation sup-
port reasoning about the helping mechanism and future-dependent
LPs. As shown in Table 1, we have applied the logic to verify
various classic algorithms.

Acknowledgments
We would like to thank Matthew Parkinson, Zhong Shao, Jan Hoff-
mann and anonymous referees for their suggestions and comments
on earlier versions of this paper. This work is supported in part
by grants from National Natural Science Foundation of China
(NSFC) under Grant No. 61073040 and 61229201, the National
Hi-Tech Research and Development Program of China (Grant No.
2012AA010901), and Program for New Century Excellent Talents
in Universities (Grant No. NCET-2010-0984). Part of the work is
done during Hongjin Liang’s visit to Yale University in 2012-2013,
which is supported by China Scholarship Council.

References
[1] M. Abadi and L. Lamport. The existence of refinement mappings.

Theor. Comput. Sci., 82(2):253–284, 1991.
[2] D. Amit, N. Rinetzky, T. Reps, M. Sagiv, and E. Yahav. Comparison

under abstraction for verifying linearizability. In CAV’07.

[3] R. Colvin, L. Groves, V. Luchangco, and M. Moir. Formal verification
of a lazy concurrent list-based set algorithm. In CAV’06.

[4] J. Derrick, G. Schellhorn, and H. Wehrheim. Verifying linearisability
with potential linearisation points. In FM’11.

[5] J. Derrick, G. Schellhorn, and H. Wehrheim. Mechanically verified
proof obligations for linearizability. ACM TOPLAS, 33(1):4, 2011.

[6] S. Doherty, L. Groves, V. Luchangco, and M. Moir. Formal verifica-
tion of a practical lock-free queue algorithm. In FORTE’04.

[7] T. Elmas, S. Qadeer, A. Sezgin, O. Subasi, and S. Tasiran. Simplifying
linearizability proofs with reduction and abstraction. In TACAS’10.

[8] X. Feng. Local rely-guarantee reasoning. In POPL’09.
[9] I. Filipović, P. O’Hearn, N. Rinetzky, and H. Yang. Abstraction for

concurrent objects. Theor. Comput. Sci., 2010.
[10] A. Gotsman and H. Yang. Linearizability with ownership transfer. In

CONCUR’12.
[11] T. L. Harris. A pragmatic implementation of non-blocking linked-lists.

In DISC’01.
[12] T. L. Harris, K. Fraser, and I. A. Pratt. A practical multi-word

compare-and-swap operation. In DISC’02.
[13] S. Heller, M. Herlihy, V. Luchangco, M. Moir, W. N. S. III, and

N. Shavit. A lazy concurrent list-based set algorithm. In OPODIS’05.
[14] D. Hendler, N. Shavit, and L. Yerushalmi. A scalable lock-free stack

algorithm. In SPAA’04.
[15] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming.

Morgan Kaufmann, Apr. 2008.
[16] M. Herlihy and J. Wing. Linearizability: a correctness condition for

concurrent objects. ACM TOPLAS, 12(3):463–492, 1990.
[17] C. B. Jones. Tentative steps toward a development method for inter-

fering programs. ACM TOPLAS, 5(4):596–619, 1983.
[18] H. Liang and X. Feng. Modular verification of linearizability with

non-fixed linearization points. Technical report, USTC, March 2013.
http://kyhcs.ustcsz.edu.cn/relconcur/lin.

[19] H. Liang, X. Feng, and M. Fu. A rely-guarantee-based simulation for
verifying concurrent program transformations. In POPL’12.

[20] Y. Liu, W. Chen, Y. A. Liu, and J. Sun. Model checking linearizability
via refinement. In FM’09.

[21] N. A. Lynch and F. W. Vaandrager. Forward and backward simula-
tions: I. untimed systems. Inf. Comput., 121(2):214–233, 1995.

[22] M. M. Michael. High performance dynamic lock-free hash tables and
list-based sets. In SPAA’02.

[23] M. M. Michael and M. L. Scott. Simple, fast, and practical non-
blocking and blocking concurrent queue algorithms. In PODC’96.

[24] P. W. O’Hearn. Resources, concurrency, and local reasoning. Theor.
Comput. Sci., 375(1-3):271–307, 2007.

[25] P. W. O’Hearn, N. Rinetzky, M. T. Vechev, E. Yahav, and G. Yorsh.
Verifying linearizability with hindsight. In PODC’10, .

[26] P. W. O’Hearn, H. Yang, and J. C. Reynolds. Separation and informa-
tion hiding. In POPL’04, .

[27] S. Qadeer, A. Sezgin, and S. Tasiran. Back and forth: Prophecy
variables for static verification of concurrent programs. Tech Report.

[28] G. Schellhorn, H. Wehrheim, and J. Derrick. How to prove algorithms
linearisable. In CAV’12.

[29] R. K. Treiber. System programming: coping with parallelism. Tech-
nical Report RJ 5118, IBM Almaden Research Center, 1986.

[30] A. Turon and M. Wand. A separation logic for refining concurrent
objects. In POPL’11.

[31] A. Turon, J. Thamsborg, A. Ahmed, L. Birkedal, and D. Dreyer.
Logical relations for fine-grained concurrency. In POPL’13.

[32] V. Vafeiadis. Modular fine-grained concurrency verification. Thesis.
[33] V. Vafeiadis. Automatically proving linearizability. In CAV, 2010.
[34] M. T. Vechev, E. Yahav, and G. Yorsh. Experience with model check-

ing linearizability. In SPIN’09.

