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Abstract

Many verification problems can be reduced to refinement verification, i.e., proving

that a concrete program has no more behaviors than a more abstract program.

This dissertation explores the applications of refinement verification of concur-

rent programs, and proposes compositional verification techniques that support

these applications. It makes several contributions to understanding and verifying

concurrent program refinement.

First, it shows a Rely-Guarantee-based Simulation (RGSim) as a general proof

technique for concurrent program refinement. The novel simulation relation is pa-

rameterized with the interference between threads and their parallel environments.

It is compositional and supports modular verification. RGSim can incorporate the

assumptions about environments made by specific refinement applications, thus is

flexible and practical. We apply RGSim to reason about optimizations in parallel

contexts. We also reduce the verification of concurrent garbage collectors (GCs) to

refinement verification, and propose a general GC verification framework based on

RGSim. Using the framework, we verify the Boehm et al. concurrent mark-sweep

GC algorithm.

Second, it shows a Hoare-style program logic for modular and effective verifi-

cation of linearizability of concurrent objects, which is an important application

of concurrent program refinement verification. Our logic with a lightweight instru-

mentation mechanism supports objects with non-fixed linearization points (LPs),

including the most challenging ones that use the helping mechanism to achieve

lock-freedom (as in HSY elimination-based stack), or have LPs depending on un-

predictable future executions (as in the lazy set algorithm), or involve both features

(as in the RDCSS algorithm). We generalize RGSim with the support for non-fixed

LPs as the meta-theory of our logic, and show it implies a contextual refinement

which is equivalent to linearizability. Using our logic we successfully verify 12 well-

known algorithms, two of which are used in the java.util.concurrent package.

Finally, it shows a unified framework that characterizes the full correctness

(i.e., linearizability and progress properties) of concurrent objects via contextual
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refinements. We prove that for linearizable objects, each progress property is

equivalent to a certain form of termination-sensitive contextual refinement. The

framework unifies linearizability and all the five most common progress proper-

ties: wait-freedom, lock-freedom, obstruction-freedom, starvation-freedom, and

deadlock-freedom. It enables modular verification of safety and liveness proper-

ties of client programs, and also makes it possible to borrow ideas from existing

proof methods for contextual refinements to verify linearizability and a progress

property together.

Keywords: Concurrency, Program Verification, Refinement, Simulation, Pro-

gram Logic, Program Correctness
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Chapter 1

Introduction

Program refinement has been used as a theoretical foundation for program verifi-

cation. Refinement establishes a relation ⊑ between a concrete program C and a

more abstract one (or a specification) C. Informally, C ⊑ C requires that C have

no more observable behaviors than C. It enables us to soundly substitute C for

C in any program context. We say C and C are equivalent if the other direction

C ⊑ C holds as well. As an example, consider the following program which is an

implementation of x++.

local t; t := x; x := t + 1;

It first stores the value of x in a local variable t, and then writes the computation

result back to x. It refines x++ if we do not care about the value of the local

variable t. It is also refined by x++, and hence the two programs are equivalent.

Studying refinement and its verification techniques is not only of theoretical

interest. In fact, many verification problems can be reduced to refinement verifi-

cation. Below we list some typical applications.

• Correctness of compilation and optimizations. A compiler translates the

source program C into the target C. It has to ensure the semantics preser-

vation, which requires C be a refinement of C [42]. If every target program

is a refinement of its source, we can conclude the correctness of the compiler.

• Correctness of programs and algorithms. A correct program or algorithm C

has to satisfy its specification, which can be viewed as an abstract program

C. Thus the correctness of C can be characterized by a refinement C ⊑ C.

For instance, verifying the implementation of an abstract data structure

requires us to prove a refinement from an abstract operation to a concrete

and executable program (also known as data refinement [36]).
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In concurrent settings, we give another two examples showing the deep re-

lationship between the program correctness and refinement.

– Concurrent objects. A concurrent object or library provides a set of

methods that allow clients to manipulate the shared data structure with

abstract atomic behaviors [33]. Its correctness can be reduced to a re-

finement from abstract atomic operations to concrete and executable

method implementations in a concurrent context. In fact, Filipović et

al. [21] have proved that linearizability as a standard functional cor-

rectness criterion of concurrent objects is equivalent to a contextual

refinement.

– Implementations of Software Transactional Memory (STM). Many lan-

guages supporting STM provide a high-level atomic block atomic{C}
as a transaction, so that programmers can assume the atomicity of the

execution of C. Atomic blocks are implemented using some STM proto-

col (e.g., TL2 [16]) that allows very fine-grained interleavings. Verifying

that the fine-grained program respects the semantics of atomic blocks

gives us the correctness of the STM implementation.

• Correctness of Garbage Collectors (GCs). High-level garbage-collected lan-

guages (e.g., Java) allow programmers to work at an abstract level without

knowledge of the underlying GC algorithm. However, the concrete and ex-

ecutable low-level program involves interactions between the mutators and

the collector. If we view the GC algorithm as a transformation from high-

level mutators to low-level ones with a concrete GC, the GC safety can be

reduced naturally to the correctness of the transformation, which can be

characterized by a refinement between the low-level executable implementa-

tions and the high-level mutators.

• Correctness of Operating System (OS) kernels. A kernel provides an ab-

stract programming model, which hides the details of the underlying hard-

ware and simplifies the development of the high-level user applications. The

correctness of the kernel requires that the real user behaviors in the concrete

machine model be compatible with their expected behaviors at the abstract

model [40]. Thus the verification of OS kernels can be reduced to verifying

refinement between the two machines.

There has been a large body of work on refinement verification. However, it is

often difficult to apply existing work to verify concurrent program refinement.
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1.1 Challenges in Verifying Concurrent Program

Refinement

This dissertation studies general proof techniques for concurrent program refine-

ment, and mainly focus on the applications on verifying concurrent objects. Below

we analyze the key challenges in these two aspects.

1.1.1 General Problems

An effective and general proof technique for refinement ⊑ between concurrent

programs needs to satisfy the following requirements.

• Independence of language details. In many refinement applications, the con-

crete program C could be in a different language from the abstract C. For

instance, the input of a compiler is usually written in a high-level program-

ming language, while the target may be machine code or in assembly. Also

the source and the target may take different views of program states.

• Support of different granularities of concurrency. To verify fine-grained im-

plementations of abstract operations, the refinement proof should support

different granularities of state accesses at the concrete and the abstract lev-

els. For instance, a concurrent object allows interleavings between concrete

methods executed by parallel threads, though it is expected to generate

atomic behaviors at the abstract level.

• Compositionality. A compositional proof technique is of particular impor-

tance for modular verification of refinement. In a concurrent setting, we

should be able to know C1‖C2 ⊑ C1‖C2 if we have C1 ⊑ C1 and C2 ⊑ C2.

Here we use‖ for the parallel composition of two threads.

The most challenging requirement among the above is to admit composition-

ality with respect to parallel compositions. Since the refinement or equivalence

relation between sequential threads cannot be preserved in general with parallel

compositions, we cannot simply adapt existing proof methods for sequential re-

finement (e.g. [28, 36, 37, 42]) to verify refinement of concurrent programs. Proof

techniques based on fully abstract semantics of concurrent programs (e.g., [2, 10])

are compositional, but they assume arbitrary program contexts, which is too strong

for practical refinement applications mentioned above. We will explain the chal-

lenges in detail in Section 2.1.
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1.1.2 On the Correctness of Concurrent Objects

Verifying implementations of concurrent objects is an important application of

refinement verification of concurrent programs. Linearizbaility [35] is a widely

accepted functional correctness criterion for concurrent objects. It requires the

fine-grained implementation of an object operation to have the same effect with

(i.e., to “refine”) an instantaneous atomic operation. To prove linearizability, the

most common approach (e.g., see [3, 14, 65, 66]) is to find a linearization point

(LP) in the code of the implementation, and show that it is the single point where

the effect of the operation takes place.

However, it is difficult to apply this idea when the LPs are not fixed in the

code of object methods. For a large class of lock-free algorithms with helping

mechanism (e.g., HSY elimination-based stack [30]), the LP of one method might

be in the code of some other method. In these algorithms, each thread maintains

a descriptor recording all the information required to fulfill its intended operation.

When a thread A detects conflicts with another thread B, A may access B’s de-

scriptor and help B finish its intended operation first before finishing its own. In

this case, B’s operation takes effect at a step from A. Thus its LP should not be

in its own code, but in the code of thread A.

Besides, in optimistic algorithms and lazy algorithms (e.g., Heller et al.’s lazy

set [29]), the LPs might depend on unpredictable future interleavings. In those

algorithms, a thread may access the shared states as if no interference would occur,

and validate the accesses later. If the validation succeeds, it finishes the operation;

otherwise it rolls back and retries. Its LP is usually at a prior state access, but

only if the later validation succeeds.

Reasoning about algorithms with non-fixed LPs has been a long-standing prob-

lem. Most existing work either supports only simple objects with static LPs in

the implementation code (e.g., [3, 14, 64]), or lacks formal soundness arguments

(e.g., [66]). We will explain in detail the challenges for linearizability verification

with non-fixed LPs in Section 5.1.

In addition to linearizability that describes the correctness on functionality,

concurrent objects are also expected to satisfy progress properties. The most

important progress properties are wait-freedom, lock-freedom and obstruction-

freedom for non-blocking implementations, and starvation-freedom and deadlock-

freedom for lock-based implementations. These properties describe conditions

under which method calls are guaranteed to successfully complete in an execu-

tion. For example, lock-freedom guarantees that “infinitely often some method

call finishes in a finite number of steps” [33].
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Nevertheless, the common informal or semi-formal definitions of the progress

properties are difficult to use in a modular and layered program verification be-

cause they fail to describe how the progress properties affect clients. In a modular

verification of client threads, the concrete implementation C of the object meth-

ods should be replaced by the corresponding abstract atomic operations C. The

progress properties should then characterize whether and how the behaviors of

a client program will be affected if using C instead of C. In particular, we are

interested in whether the termination of a client will be preserved.

Filipović et al. [21] proved that linearizability and a contextual refinement

are equivalent. Informally, C is a contextual refinement of C, if every observable

behavior of any client program using C can also be observed when the client uses C

instead. To obtain equivalence to linearizability, the observable behaviors include

I/O events but not divergence (i.e., non-termination). Gotsman and Yang [24]

showed that a client program that diverges using a linearizable and lock-free object

must also diverge when using the abstract operations instead. Their work reveals

a connection between lock-freedom and a form of contextual refinement which

preserves termination as well as safety properties. But it is unclear how other

progress guarantees affect termination of client programs and how they are related

to contextual refinements.

1.2 Contributions and Dissertation Outline

By addressing the above problems, this dissertation mainly makes the following

contributions. First, we propose a Rely-Guarantee-based Simulation (RGSim) as

a general proof technique for concurrent program refinement. The novel simulation

relation satisfies all the requirements mentioned in Section 1.1.1.

• RGSim parameterizes the simulation with rely/guarantee conditions [38],

which specify the interference between threads and their parallel environ-

ments. This makes it compositional with respect to parallel compositions,

allowing us to decompose refinement proofs for multi-threaded programs

into proofs for individual threads. Also, the rely/guarantee conditions can

incorporate the assumptions about environments made by specific refinement

applications, so RGSim can be applied to solve many practical refinement

problems.

• Based on the simulation technique, RGSim focuses on comparing externally

observable behaviors (e.g., I/O events) only, which gives us considerable

5



leeway in the implementations of related programs. The relation is mostly

independent of the language details. It can be used to relate programs

in different languages with different views of program states and different

granularities of atomic state accesses.

Second, as an important application of RGSim, we reduce the problem of veri-

fying concurrent garbage collectors to verifying program transformations, and pro-

pose a general GC verification framework, which combines unary Rely-Guarantee

reasoning [38] with relational proofs based on RGSim. We have verified the Boehm

et al. concurrent garbage collection algorithm [9] using our framework. As far as

we know, it is the first time to formally prove the correctness of this algorithm.

Third, we design a Hoare-style program logic for modular and effective veri-

fication of linearizability of concurrent objects. It is the first program logic that

has a formal soundness proof for linearizability and supports the most challeng-

ing objects with non-fixed LPs. Our logic is built upon the unary program logic

LRG [20], but we give a relational interpretation of assertions and rely/guarantee

conditions. We introduce a lightweight instrumentation mechanism specifically for

linearizability proofs and design new logic rules for these auxiliary commands.

• To support the helping mechanism, we collect a pending thread pool as

auxiliary state, which is a set of threads and their abstract operations that

might be helped. The thread that is currently being verified can use auxiliary

commands to help execute the abstract operations in the pending thread

pool.

• For future-dependent LPs, we introduce a try-commit mechanism. The try

clause guesses whether the corresponding abstract operation should be ex-

ecuted and keeps all possibilities, while commit chooses a specific possible

case when we know which guess is correct later. The try-commit clauses

allow us to reason about future-dependent uncertainty without resorting to

prophecy variables [1, 66], whose existing semantics (e.g., [1]) is unsuitable

for Hoare-style verification.

We also generalize the RGSim relation with the support for non-fixed LPs as the

meta-theory of our logic, and show it implies a contextual refinement, which is

equivalent to linearizability. Using our logic we successfully verify 12 well-known

algorithms, some of which are used in the java.util.concurrent package.

Finally, we present a unified framework that characterizes progress proper-

ties via contextual refinements. We prove that for linearizable objects, each

6



progress property is equivalent to a specific type of termination-sensitive contex-

tual refinement. The framework unifies all the five most common progress prop-

erties: wait-freedom, lock-freedom, obstruction-freedom, deadlock-freedom and

starvation-freedom. It shows exactly how progress properties affect the termina-

tion behaviors of client programs, and hence enables modular verification. It also

ensures that the verification of a specific contextual refinement guarantees both

linearizability and the corresponding progress property for a concurrent object.

Outline of this dissertation.

• Chapter 2 presents the formal definition of RGSim and prove its composi-

tionality.

• Chapter 3 studies some simple applications of RGSim, such as reasoning

about optimizations in parallel contexts.

• Chapter 4 proposes a general concurrent GC verification framework based

on RGSim, and verify the Boehm et al. concurrent mark-sweep GC [9].

• Chapter 5 describes the program logic and the lightweight instrumentation

mechanism for verifying linearizability with non-fixed LPs.

• Chapter 6 presents the unified contextual refinement framework for observing

the progress of concurrent objects.

7



8



Chapter 2

Rely-Guarantee-Based Simulation

This chapter describes RGSim, a new simulation parameterized with rely/guarantee

conditions. It is a general and compositional proof technique for refinement ⊑ of

concurrent programs. Following Leroy’s approach [42], we define the refinement

relation C ⊑ C saying that C has no more observable behaviors than C.

Below we first analyze the challenges for compositional verification of con-

current program refinement, and explain our approach informally in Section 2.1.

Then we give the basic technical settings in Section 2.2, including a formal defini-

tion of program refinement. We formulate the RGSim relation in Section 2.3, and

prove its compositionality in Section 2.4. Finally we discuss a simple example in

Section 2.5. More serious examples can be found in Chapter 3.

2.1 Challenges and Our Approach

The major challenge in verifying refinement ⊑ between concurrent programs is to

allow compositional proofs, i.e., we should be able to know C1 ‖C2 ⊑ C1 ‖C2 if

we have C1 ⊑ C1 and C2 ⊑ C2.

2.1.1 Sequential Refinement Loses Parallel Composition-

ality

Observable behaviors of sequential imperative programs usually refer to their con-

trol effects (e.g., termination and exceptions) and final program states. However,

refinement relations defined correspondingly cannot be preserved after parallel

compositions. It has been a well-known fact in the compiler community that

sound optimizations for sequential programs may change the behaviors of multi-

threaded programs [7]. The Dekker’s algorithm shown in Figure 2.1(a) has been

9



local r1;

x := 1;

r1 := y;

if (r1 = 0) then

critical region

‖

local r2;

y := 1;

r2 := x;

if (r2 = 0) then

critical region

(a) Dekker’s mutual exclusion algorithm (initially x = y = 0)

x++; ‖ x++;

vs.

local r1;

r1 := x;

x := r1 + 1;

‖
local r2;

r2 := x;

x := r2 + 1;

(b) different granularities of atomic operations

Figure 2.1 Equivalence lost after parallel composition.

widely used to demonstrate the problem. Reordering the first two assignment

statements of the thread on the left preserves its sequential behaviors, but the

whole program can no longer ensure exclusive access to the critical region.

In addition to instruction reordering, the different granularities of atomic op-

erations between the concrete and the abstract programs can also break the com-

positionality of program equivalence in a concurrent setting. In Figure 2.1(b),

the concrete program at the bottom behaves differently from the abstract one at

the top (assuming each statement is executed atomically), although the individual

threads at the two levels have the same behaviors.

2.1.2 Assuming Arbitrary Environments is Too Strong

The problem with the refinement for sequential programs is that it does not

consider the effects of threads’ intermediate state accesses on their parallel en-

vironments. Previous work on fully abstract semantics of concurrent programs

(e.g., [2, 10]) suggests an alternative definition (and a proof method) for refine-

ment. The semantics of a program is modeled as a set of execution traces. Each

trace is an interleaving of state transitions made by the program itself and arbitrary

transitions made by the environment. Then the refinement between programs can

be defined as the subset relation between the corresponding trace sets. Since it

considers all possible environments, the refinement relation has very nice compo-

sitionality, and hence supports compositional verification straightforwardly. But

unfortunately it is too strong to formulate and prove the refinement for many

10



well-known applications. Here are some examples.

• Many concurrent languages (e.g., C++ [8]) do not give semantics to pro-

grams with data races (like the examples shown in Figure 2.1). Therefore

the compilers only need to guarantee the semantics preservation of data-

race-free programs.

• When we prove that a fine-grained implementation of a concurrent object is

a refinement of an abstract atomic object, we can assume that all accesses to

the object are made through the object’s methods only, e.g., a stack object

can only be accessed through push and pop methods, and its internal data

cannot be arbitrarily updated.

• Usually the implementation of STM (e.g., TL2 [16]) ensures the atomicity

of a transaction atomic{C} only when there are no data races. Therefore,

the refinement from high-level atomic blocks to fine-grained concurrent code

assumes data-race-freedom at the abstract level.

• Many garbage-collected languages are type-safe and prohibit operations such

as pointer arithmetic. Therefore the garbage collector could make corre-

sponding assumptions about the mutators that run in parallel.

In all these cases, individual threads are allowed to make various assumptions

about their environments in the refinement. We do not have to ensure semantics

preservation within all contexts.

2.1.3 Languages at the Two Levels May Be Different

The use of different languages at the concrete and the abstract levels makes the

formulation and verification of the refinement more difficult. If the concrete and

the abstract languages have different views of program states and different atomic

primitives, we cannot directly compare the state transitions made by the concrete

and the abstract programs. This is another reason that makes the aforementioned

subset relation between sets of program traces in fully abstract semantics infea-

sible. For the same reason, many existing techniques for proving refinement or

equivalence of programs in the same language cannot be applied either.

2.1.4 Different Observers Make Different Observations

Concurrency introduces tensions between two kinds of observers: human beings (as

external observers) and the parallel program contexts. External observers do not
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care about the implementation details of the concrete and the abstract programs.

For them, intermediate state accesses (such as memory reads and writes) are

silent steps (unobservable), and only external events (such as I/O operations) are

observable. On the other hand, state accesses have effects on the parallel program

contexts, and are not silent to them.

If the refinement relation relates externally observable event traces only, it

cannot have parallel compositionality, as we explained in Section 2.1.1. On the

other hand, relating all state accesses of programs is too strong. Any reordering

of state accesses or change of atomicity would fail the refinement.

2.1.5 Our Approach

In this paper we propose a Rely-Guarantee-based Simulation (RGSim) � between

the concrete and the abstract programs. It establishes a weak simulation, ensuring

that for every externally observable event made by the concrete program there is

a corresponding one at the abstract side. We choose to view intermediate state

accesses as silent steps, thus we can relate programs with different implementation

details. This also makes our simulation independent of language details.

To support parallel compositionality, our relation takes into account explicitly

the expected interference between threads and their parallel environments. In-

spired by the Rely-Guarantee verification method [38], we specify the interference

using rely/guarantee conditions. In Rely-Guarantee reasoning, the rely condition

R of a thread specifies the permitted state transitions that its environment may

have, and its guarantee G specifies the possible transitions made by the thread

itself. To ensure parallel threads can collaborate, we need to check the interfer-

ence constraint, i.e., the guarantee of each thread is permitted in the rely of every

other. Then we can verify their parallel composition by separately verifying each

thread, showing its behaviors under the rely condition indeed satisfy its guarantee.

After parallel composition, the threads should be executed under their common

environment (i.e., the intersection of their relies) and guarantee all the possible

transitions made by them (i.e., the union of their guarantees).

Parameterized with rely/guarantee conditions for the two levels, our relation

(C,R,G) � (C,R,G) talks about not only the concrete program C and the ab-

stract program C, but also the interference R and G between C and its low-level

environment, and R and G between C and its environment at the abstract level.

Informally, (C,R,G) � (C,R,G) says the executions of C under the environment

R do not exhibit more observable behaviors than the executions of C under the

environment R, and the state transitions of C and C satisfy G and G respectively.
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RGSim is now compositional, as long as the threads are composed with well-

behaved environments only. The parallel compositionality lemma is in the follow-

ing form. If we know (C1,R1,G1) � (C1,R1,G1) and (C2,R2,G2) � (C2,R2,G2),

and also the interference constraints are satisfied, i.e., G2 ⊆ R1, G1 ⊆ R2, G2 ⊆ R1

and G1 ⊆ R2, we could get

(C1‖C2,R1 ∩ R2,G1 ∪ G2) � (C1‖C2,R1 ∩ R2,G1 ∪G2) .

The compositionality of RGSim gives us a proof theory for concurrent program

refinement.

Also different from fully abstract semantics for threads, which assumes arbi-

trary behaviors of environments, RGSim allows us to instantiate the interference

R, G, R and G differently for different assumptions about environments, there-

fore it can support the aforementioned refinement applications. For instance, if

we want to prove a refinement that preserves the behaviors of data-race-free pro-

grams, we can specify the data-race-freedom in R and G. Then we are no longer

concerned with the examples in Figure 2.1, both of which have data races.

Example. Next we give an example of loop invariant hoisting to illustrate how

RGSim works. The following source program C is transformed to the target C1.

We want to prove in a concurrent setting that the transformation is correct, i.e.,

C1 is a refinement of C. The formal proofs are given in Section 3.1.2.

Target Code (C1)

local t;

t := x + 1;

while(i < n) {

i := i + t;

}

⇐

Source Code (C)

local t;

while(i < n) {

t := x + 1;

i := i + t;

}

Benton [6] has proved that the optimized code C1 preserves the sequential

behaviors of the source C. In a concurrent setting, this optimization is incorrect

within arbitrary environments. For instance, if other threads may update x, the

final values of i might be different at the two levels. In fact, this optimization

works only when the environments R at both levels do not update x nor t. The

guarantees G of both C1 and C can be specified as arbitrary transitions. Then we

can prove the RGSim relation (C1,R,G) � (C,R,G) and conclude the correctness

of the transformation.
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(Events) e ::= . . . (Labels) ι ::= e | τ

(a) events and transition labels

(LState) σ ::= . . .

(LExpr) E ∈ LState → Int⊥

(LBExp) B ∈ LState → {true, false}⊥
(LInstr) c ∈ LState ⇀ P((Labels × LState) ∪ {abort})
(LStmt) C ::= skip | c | C1;C2 | if (B) C1 else C2

| while (B) C | C1‖C2

(b) low-level language

(HState) Σ ::= . . .

(HExpr) E ∈ HState → Int⊥

(HBExp) B ∈ HState → {true, false}⊥
(HInstr) 
 ∈ HState ⇀ P((Labels × HState) ∪ {abort})
(HStmt) C ::= skip | 
 | C1;;C2 | if B then C1 else C2

| while B do C | C19C2

(c) high-level language

Figure 2.2 Generic languages at concrete and abstract levels.

2.2 Basic Technical Settings

In this section, we present the programming languages at the concrete and abstract

levels. Then we define the basic refinement relation ⊑, which naturally says the

concrete program has no more externally observable event traces than the abstract

one. Our RGSim relation, which will be formally defined in Section 2.3, is proposed

as a proof technique for this simple and intuitive refinement ⊑.

2.2.1 Languages

Following standard simulation techniques, we model the semantics of concrete and

abstract programs as labeled transition systems. Before showing the languages,

we first define events and labels in Figure 2.2(a). We leave the set of (externally

observable) events e unspecified here. It can be instantiated by program veri-

fiers, depending on their interest (e.g., input/output events). A label ι that will

be associated with a state transition is either an event or τ , which means the

corresponding transition does not generate any event (i.e., a silent step).
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(ι,Σ′) ∈ 
 Σ

(
,Σ)
ι−→ (skip ,Σ′)

abort ∈ 
 Σ
(
,Σ) −→ abort

Σ 6∈ dom(
)

(
,Σ) −→ (
,Σ)

(skip9skip ,Σ) −→ (skip ,Σ)

(C1,Σ)
ι−→ (C′

1,Σ
′)

(C19C2,Σ)
ι−→ (C′

19C2,Σ
′)

(C2,Σ)
ι−→ (C′

2,Σ
′)

(C19C2,Σ)
ι−→ (C19C

′
2,Σ

′)

(C1,Σ) −→ abort or (C2,Σ) −→ abort

(C19C2,Σ) −→ abort

Figure 2.3 Selected operational semantics rules of the high-level language.

The language for the concrete programs, which we also call the low-level lan-

guage, is shown in Figure 2.2(b). We abstract away the forms of states, expressions

and primitive instructions in the language. An arithmetic expression E is mod-

eled as a function from states to integers lifted with an undefined value ⊥. The

boolean expression B is modeled similarly. An instruction c is a partial function

from states to sets of label and state pairs, describing the state transitions and the

events it generates. We use P( ) to denote the power set. Unsafe executions lead

to abort. Note that the semantics of an instruction could be non-deterministic.

Moreover, it might be undefined on some states, making it possible to model

blocking operations such as requesting a lock.

Statements C are either primitive instructions or compositions of them. skip is

a special statement used as a flag to show the end of executions. When it is sequen-

tially composed with other statements, it has no computational effects. A single-

step execution of statements is modeled as a labeled transition (C, σ)
ι−→L (C

′, σ′).

The step aborts if an unsafe instruction is executed.

The high-level language (i.e., the language for the abstract programs) is defined

similarly in Figure 2.2(c), but it is important to note that its states and primitive

instructions may be different from those in the low-level language. The compound

statements are almost the same as their low-level counterparts. C1;;C2 and C19C2

are sequential and parallel compositions of C1 and C2 respectively. Note that we

choose to use the same set of compound statements in the two languages for

simplicity only. This is not required by our simulation relation, although the

analogous program constructs of the two languages (e.g., parallel compositions

C1 ‖ C2 and C19C2) make it convenient for us to discuss the compositionality

later.

Figure 2.3 shows part of the definition of (C,Σ)
ι−→H (C′,Σ′), which gives

the high-level operational semantics of statements. We often omit the subscript
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H (or L) in the labeled transition and the label on top of the arrow when it

is τ . The semantics is mostly standard. We only show the rules for primitive

instructions and parallel compositions here. Note that when a primitive instruction


 is blocked at state Σ (i.e., Σ 6∈ dom(
)), we let the program configuration (
,Σ)

reduce to itself. For example, the instruction lock(l) would be blocked when

l is not 0, making it be repeated until l becomes 0; whereas unlock(l) simply

sets l to 0 at any time and would never be blocked. Primitive instructions in the

high-level and low-level languages are atomic in the interleaving semantics. The

operational semantics of the low-level language is defined similarly and omitted.

Below we use (C,Σ) −→ ∗ (C′,Σ′) for zero or multiple-step transitions with no

events generated, and (C,Σ)
e−→ ∗ (C′,Σ′) for multiple-step transitions with only

one event e generated. Both notations are overloaded at the low level.

2.2.2 Event Trace Refinement

Now we can formally define the refinement relation ⊑ that relates the set of ex-

ternally observable event traces generated by the low-level and the high-level pro-

grams. A trace E is a sequence of events e, and may end with a termination marker

term or a fault marker abort. We write ǫ for the empty sequence and :: for the

concatenation of two sequences.

(EvtTrace) E ::= ǫ | term | abort | e ::E

Definition 2.1 (Event Trace Set). ETrSetn(C, σ) represents a set of external

event traces produced by C in n steps from the state σ.

1. ETrSet0(C, σ)
def
= {ǫ} ;

2. ETrSetn+1(C, σ)
def
=

{E | (C, σ) −→ (C ′, σ′) ∧ E ∈ ETrSetn(C
′, σ′)

∨ (C, σ)
e−→ (C ′, σ′) ∧ E ′ ∈ ETrSetn(C

′, σ′) ∧ E = e ::E ′

∨ (C, σ) −→ abort ∧ E = abort

∨ C = skip ∧ E = term} .

We define ETrSet (C, σ) as
⋃

n ETrSetn(C, σ).

We overload the notation and use ETrSet (C,Σ) for the high-level language.

Note that we treat abort as a specific behavior instead of undefined arbitrary

behaviors. The choices should depend on applications. The ideas in the paper

should also apply for the latter setting, though we need to change our refinement

and simulation relations defined below.
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Then we define an event trace refinement as the subset relation between event

trace sets, which is similar to Leroy’s refinement property [42].

Definition 2.2 (Event Trace Refinement). We say (C, σ) is an event trace refine-

ment of (C,Σ), written as (C, σ) ⊑ (C,Σ), if and only if

ETrSet (C, σ) ⊆ ETrSet (C,Σ) .

The refinement is defined for program configurations (i.e., pairs of code and

states) instead of for code only because the initial states may affect the behaviors

of programs. Suppose a state transformation T translates the initial high-level

state Σ to the initial low-level state σ, i.e., σ = T(Σ) holds. We can define the

refinement C ⊑T C as follows.

C ⊑T C
def
= ∀σ,Σ. σ = T(Σ) =⇒ (C, σ) ⊑ (C,Σ) .

If the transformation T translates code as well, we can formulate its correctness

in Eq. (2.1). Here we overload the notation and use T(C) to represent the code

transformation.

Correct(T)
def
= ∀C,C. C = T(C) =⇒ C ⊑T C . (2.1)

From the event trace refinement definition, we can derive an event trace equiv-

alence relation by requiring both directions hold.

(C, σ) ≈ (C,Σ)
def
= (C, σ) ⊑ (C,Σ) ∧ (C,Σ) ⊑ (C, σ) .

For the state transformation T, we define

C ≈T C
def
= ∀σ,Σ. σ = T(Σ) =⇒ (C, σ) ≈ (C,Σ) .

2.3 Definition of the RGSim Relation

The event trace refinement is defined directly over the externally observable be-

haviors of programs. It is intuitive, and also abstract in that it is independent of

language details. However, as we explained before, it is not compositional with

respect to parallel compositions. In this section we propose RGSim, which can

be viewed as a compositional proof technique that allows us to derive the simple

event trace refinement.

Our co-inductively defined RGSim relation is in the form of (C, σ,R,G) �α;γ

(C,Σ,R,G), which is a simulation between program configurations (C, σ) and

(C,Σ). It is parametrized with the rely and guarantee conditions at the low level

and the high level, which are binary relations over states.
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(a) α-related transitions

σ

θ

Σ

σ′

θ′

Σ′

α

β

R

RM

R *

α

β

(b) side condition of trans

Figure 2.4 Related transitions.

R,G ∈ P(LState× LState) , R,G ∈ P(HState× HState) .

The simulation also takes two additional parameters: the step invariant α and the

postcondition γ, which are both relations between the low-level and the high-level

states.

α, γ ∈ P(LState× HState) .

Before we formally define RGSim in Definition 2.4, we first introduce the α-

related transitions as follows.

Definition 2.3 (α-Related Transitions). 〈R,R〉α def
=

{((σ, σ′), (Σ,Σ′)) | (σ, σ′) ∈ R ∧ (Σ,Σ′) ∈ R ∧ (σ,Σ) ∈ α ∧ (σ′,Σ′) ∈ α} .

〈R,R〉α represents a set of the α-related transitions in R and R, putting to-

gether the corresponding transitions in R and R that can be related by α, as

illustrated in Figure 2.4(a). 〈G,G〉α is defined in the same way.

Definition 2.4 (RGSim). Whenever (C, σ,R,G) �α;γ (C,Σ,R,G), then (σ,Σ) ∈
α and the following are true.

1. If (C, σ)−→(C ′, σ′), then there exist C′ and Σ′ such that (C,Σ)−→∗ (C′,Σ′),

((σ, σ′), (Σ,Σ′)) ∈ 〈G,G∗〉α and (C ′, σ′,R,G) �α;γ (C′,Σ′,R,G).

2. If (C, σ)
e−→(C ′, σ′), then there exist C′ and Σ′ such that (C,Σ)

e−→∗ (C′,Σ′),

((σ, σ′), (Σ,Σ′)) ∈ 〈G,G∗〉α and (C ′, σ′,R,G) �α;γ (C′,Σ′,R,G).

3. If C = skip, then there exists Σ′ such that (C,Σ) −→∗ (skip,Σ′),

((σ, σ), (Σ,Σ′)) ∈ 〈G,G∗〉α, (σ,Σ′) ∈ γ and γ ⊆ α.

4. If (C, σ) −→ abort, then (C,Σ) −→∗ abort.

5. If ((σ, σ′), (Σ,Σ′)) ∈ 〈R,R∗〉α, then (C, σ′,R,G) �α;γ (C,Σ′,R,G).
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(C, σ)

(C,Σ)

(C ′, σ′)
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G

e

G
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(a) program steps

(C, σ)

(C,Σ)

(C ′, σ′)

(C′,Σ′)

� α

R

R

*

� α

(b) environment steps

Figure 2.5 Simulation diagrams of RGSim.

Then, (C,R,G) �α;ζ⋉γ (C,R,G) iff

for any σ and Σ, if (σ,Σ) ∈ ζ , then (C, σ,R,G) �α;γ (C,Σ,R,G). Here the

precondition ζ ∈ P(LState×HState) is used to relate the initial states σ and Σ.

Informally, (C, σ,R,G) �α;γ (C,Σ,R,G) says the low-level configuration (C, σ)

is simulated by the high-level configuration (C,Σ) with behaviors G and G respec-

tively, no matter how their environments R and R interfere with them. It requires

the following hold for every execution of C.

• Starting from α-related states, each step of C corresponds to zero or multiple

steps of C, and the resulting states are α-related too. If an external event

is produced in the step of C, the same event should be produced by C. We

show the simulation diagram with events generated by the program steps in

Figure 2.5(a), where solid lines denote hypotheses and dashed lines denote

conclusions, following Leroy’s notations [42].

• The α relation reflects the abstractions from the low-level machine model

to the high-level one, and is preserved by the related transitions at the two

levels (so it is an invariant). For instance, when verifying a fine-grained

implementation of sets, the α relation may relate a concrete representation

in memory (e.g., a linked-list) at the low level to the corresponding abstract

mathematical set at the high level.

• The corresponding transitions of C and C need to be in 〈G,G∗〉α. That

is, for each step of C, its state transition should satisfy the guarantee G,
and the corresponding transition made by the multiple steps of C should

be in the transitive closure of G. The guarantees are abstractions of the

programs’ behaviors. As we will show later in the par rule in Figure 2.7,

they will serve as the rely conditions of the sibling threads at the time of
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parallel compositions. Note that we do not need each step of C to be in G,

although we could do so. This is because we only care about the coarse-

grained behaviors (with mumbling) of C that are used to simulate C. We

will explain more by the example of Eq. (2.2) in Section 2.4.

• If C terminates, then C terminates as well, and the final states should be

related by the postcondition γ. We require γ ⊆ α, i.e., the final state relation

is not weaker than the step invariant.

• C is not safe only if C is not safe either. This means the safety of the

high-level program should be preserved at the low level.

• Whatever the low-level environment R and the high-level one R do, as long

as the state transitions are α-related, they should not affect the simulation

between C and C, as shown in Figure 2.5(b). Here a step in R may corre-

spond to zero or multiple steps of R. Note that different from the program

steps, some steps of R may not correspond to steps of R. On the other

hand, only requiring that R be simulated by R (i.e., every step of R should

correspond to steps of R, as shown in (2.3) in Section 2.4) is not sufficient

for parallel compositionality, which we will explain later in Section 2.4.

Then based on the simulation, we hide the states by the precondition ζ and

define the RGSim relation between programs only. By the definition we know

ζ ⊆ α if (C,R,G) �α;ζ⋉γ (C,R,G), i.e., the precondition needs to be no weaker

than the step invariant. Usually in practice α is very weak and naturally implied

by the pre- and post-conditions ζ and γ, e.g., ζ and γ are the same as α in most

examples in Chapter 3.

RGSim is adequate with respect to the event trace refinement (Definition 2.2).

That is, (C, σ,R,G) �α;γ (C,Σ,R,G) ensures that (C, σ) does not have more

observable behaviors than (C,Σ).

Theorem 2.5 (Adequacy of RGSim). If there exist R, G, R, G, α and γ such

that (C, σ,R,G) �α;γ (C,Σ,R,G), then (C, σ) ⊑ (C,Σ).

The adequacy theorem shows that RGSim is a proof technique for the simple

and natural refinement ⊑ , which is what we ultimately care about. The theorem

can be proved by first strengthening the relies to the identity transitions and weak-

ening the guarantees to the universal relations. Then we prove that the resulting

simulation under identity environments implies the event trace refinement. The

mechanized proof in the Coq proof assistant [13] is available online [44].
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InitRelT(ζ)
def
= ∀σ,Σ. σ = T(Σ) =⇒ (σ,Σ) ∈ ζ

B⇔⇔B
def
= {(σ,Σ) | B σ = B Σ} B∧∧B def

= {(σ,Σ) | B σ ∧ B Σ}
Intuit(α)

def
= ∀σ,Σ, σ′,Σ′. (σ,Σ) ∈ α ∧ σ ⊆ σ′ ∧ Σ ⊆ Σ′ =⇒ (σ′,Σ′) ∈ α

η # α
def
= (η ∩ α) ⊆ (η ⊎ α) α−1 def

= {(Σ, σ) | (σ,Σ) ∈ α}
α ⊎ β

def
= {(σ1 ⊎ σ2,Σ1 ⊎ Σ2) | (σ1,Σ1) ∈ α ∧ (σ2,Σ2) ∈ β}

β ◦ α def
= {(σ,Σ) | ∃θ. (σ, θ) ∈ α ∧ (θ,Σ) ∈ β}

Id
def
= {(σ, σ) | σ ∈ LState} True

def
= {(σ, σ′) | σ, σ′ ∈ LState}

RM isMidOf (α, β;R,R)
def
=

∀σ, σ′,Σ,Σ′. ((σ, σ′), (Σ,Σ′)) ∈ 〈R,R〉β◦α =⇒ ∀θ. (σ, θ) ∈ α ∧ (θ,Σ) ∈ β =⇒
∃θ′. ((σ, σ′), (θ, θ′)) ∈ 〈R,RM〉α ∧ ((θ, θ′), (Σ,Σ′)) ∈ 〈RM,R〉β

Figure 2.6 Auxiliary definitions for RGSim.

When the initial state for the low-level program is transformed from the initial

high-level state, we have the following Corollary 2.6. We use InitRelT(ζ) (defined

in Figure 2.6) to say that the transformation T over states ensures the binary

precondition ζ .

Corollary 2.6. If there exist R, G, R, G, α, ζ and γ such that InitRelT(ζ) and

(C,R,G) �α;ζ⋉γ (C,R,G), then C ⊑T C.

2.4 Compositionality Rules

RGSim is compositional with respect to various program constructs, including

parallel compositions. We present the compositionality rules in Figure 2.7, which

gives us a relational proof method for concurrent program refinement.

As in the Rely-Guarantee logic [38], we require that the pre- and post-conditions

be stable under the interference from the environments. Here we introduce the

concept of stability of a relation ζ with respect to a set of transition pairs Λ ∈
P((LState× LState)× (HState× HState)).

Definition 2.7 (Stability). Sta(ζ,Λ) holds iff

for any σ, σ′, Σ and Σ′, if (σ,Σ) ∈ ζ and ((σ, σ′), (Σ,Σ′)) ∈ Λ, then (σ′,Σ′) ∈ ζ .

Usually we need Sta(ζ, 〈R,R∗〉α), which says whenever ζ holds initially and R
and R∗ perform related actions, the resulting states still satisfy ζ . By unfolding

〈R,R∗〉α, we could see α itself is stable with respect to any α-related transitions,

i.e., Sta(α, 〈R,R∗〉α) always holds. Another simple example is given below, where
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ζ ⊆ α

(skip,R, Id) �α;ζ⋉ζ (skip ,R, Id)
(skip)

(C1,R,G) �α;ζ⋉γ (C1,R,G) (C2,R,G) �α;γ⋉η (C2,R,G)

(C1;C2,R,G) �α;ζ⋉η (C1; ;C2,R,G)
(seq)

(C1,R,G) �α;ζ1⋉γ (C1,R,G) (C2,R,G) �α;ζ2⋉γ (C2,R,G)
ζ ⊆ (B⇔⇔B) ζ1 = (ζ ∩ (B∧∧B)) ζ2 = (ζ ∩ (¬B∧∧¬B)) ζ ⊆ α

(if (B) C1 else C2,R,G) �α;ζ⋉γ (if B then C1 else C2,R,G)
(if)

(C,R,G) �α;γ1⋉γ (C,R,G)
γ ⊆ (B⇔⇔B) γ1 = (γ ∩ (B∧∧B)) γ2 = (γ ∩ (¬B∧∧¬B))

(while (B) C,R,G) �α;γ⋉γ2 (while B do C,R,G)
(while)

(C1,R1,G1) �α;ζ⋉γ1 (C1,R1,G1) (C2,R2,G2) �α;ζ⋉γ2 (C2,R2,G2)
G1 ⊆ R2 G2 ⊆ R1 G1 ⊆ R2 G2 ⊆ R1

(C1‖C2,R1 ∩R2,G1 ∪ G2) �α;ζ⋉(γ1∩γ2) (C19C2,R1 ∩ R2,G1 ∪G2)
(par)

(C,R,G) �α;ζ⋉γ (C,R,G) (ζ ∪ γ) ⊆ α′ ⊆ α Sta(α′, 〈G,G∗〉α)
(C,R,G) �α′;ζ⋉γ (C,R,G)

(stren-α)

(C,R,G) �α;ζ⋉γ (C,R,G) α ⊆ α′ Sta(α, 〈R,R∗〉α′)

(C,R,G) �α′;ζ⋉γ (C,R,G)
(weaken-α)

(C,R,G) �α;ζ⋉γ (C,R,G)
ζ ′ ⊆ ζ γ ⊆ γ′ ⊆ α R′ ⊆ R R

′ ⊆ R G ⊆ G′
G ⊆ G

′

(C,R′,G′) �α;ζ′⋉γ′ (C,R′,G′)
(conseq)

(C,R,G) �α;ζ⋉γ (C,R,G) η ⊆ β η # {ζ, γ, α}
Intuit({α, ζ, γ, β, η,R,R,R1 ,R1}) Sta(η, {〈G,G∗〉α, 〈R1,R

∗
1〉β})

(C,R ⊎R1,G ⊎ G1) �α⊎β;(ζ⊎η)⋉(γ⊎η) (C,R ⊎ R1,G ⊎G1)
(frame)

(C,R,G) �α;ζ⋉γ (CM,RM,GM)
(CM,RM,GM) �β;δ⋉η (C,R,G) RM isMidOf (α, β;R,R∗)

(C,R,G) �β◦α;(δ◦ζ)⋉(η◦γ) (C,R,G)
(trans)

Figure 2.7 Compositionality rules for RGSim. At each proof rule, we implicitly as-
sume that the pre- and post-conditions are stable under the environments’ interference
(Definition 2.7), and the relies and guarantees are closed over identity transitions.
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both environments could increment x and the unary stable assertion x ≥ 0 is lifted

to the relation ζ . We can prove Sta(ζ, 〈R,R∗〉α).

ζ
def
= {(σ,Σ) | σ(x) = Σ(x) ∧ σ(x) ≥ 0} α

def
= {(σ,Σ) | σ(x) = Σ(x)}

R def
= {(σ, σ′) | σ′ = σ{x ❀ σ(x) + 1}} R

def
= {(Σ,Σ′) | Σ′ = Σ{x ❀ Σ(x) + 1}}

Stability of the pre- and post-conditions under the environments’ interference is

assumed as an implicit side condition at every proof rule in Figure 2.7, e.g., we

assume Sta(ζ, 〈R,R∗〉α) in the skip rule. We also require implicitly that the relies

and guarantees are closed over identity transitions, since stuttering steps will not

affect observable event traces.

In Figure 2.7, the rules skip, seq, if and while reveal a high degree of simi-

larity to the corresponding inference rules in Hoare logic. In the seq rule, γ serves

as the postcondition of C1 and C1 and the precondition of C2 and C2 at the same

time. The if rule requires the boolean conditions of both sides to be evaluated

to the same value under the precondition ζ . The definitions of the sets B ⇔⇔ B

and B∧∧B are given in Figure 2.6. The rule also requires the precondition ζ to

imply the step invariant α. In the while rule, the γ relation is viewed as a loop

invariant preserved at the loop entry point, and needs to ensure B⇔⇔B.

Parallel compositionality. The par rule shows parallel compositionality of

RGSim. The interference constraints say that two threads can be composed in

parallel if one thread’s guarantee implies the rely of the other. After parallel

composition, they are expected to run in the common environment and their

guaranteed behaviors contain each single thread’s behaviors.

Note that, although RGSim does not require every step of the high-level pro-

gram to be in its guarantee (see the first two conditions in Definition 2.4), this

relaxation does not affect the parallel compositionality. This is because the low-

level program could have less behaviors than the high-level one. To let C19C2

simulate C1 ‖ C2, we only need a subset of the interleavings of C1 and C2 to

simulate those of C1 and C2. Thus the high-level relies and guarantees need to

ensure the existence of those interleavings only. Below we give a simple example

to explain this subtle issue. We can prove

(x:=x+2,R,G) �α;ζ⋉γ (x:=x+1;x:=x+1,R,G) . (2.2)

The relies and the guarantees R, G, R and G say x can be increased by 2. And

α, ζ and γ relate x of the two sides.
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R = G def
= {(σ, σ′) | σ′ = σ ∨ σ′ = σ{x ❀ σ(x) + 2}} ;

R = G
def
= {(Σ,Σ′) | Σ′ = Σ ∨ Σ′ = Σ{x ❀ Σ(x) + 2}} ;

α = ζ = γ
def
= {(σ,Σ) | σ(x) = Σ(x)} .

Note that the high-level program is actually finer-grained than its guarantee, but

to prove Eq. (2.2) we only need the execution in which it goes two steps to the end

without interference from its environment. Also we prove (print(x),R,G) �α;ζ⋉γ

(print(x),R,G). Here we use the instruction print(E) to observe the value of

x, which will produce an external event out(n) if E evaluates to n. Then by the

par rule, we get

(x:=x+2‖print(x),R,G) �α;ζ⋉γ ((x:=x+1;x:=x+1)9print(x),R,G) .

The result does not violate the natural meaning of refinement. All the possible

external events produced by the low-level side can also be produced by the high-

level side, although the latter could have more external behaviors due to its finer

granularity.

Another subtlety in the RGSim definition is with the fifth condition over the

environments, which is crucial for parallel compositionality. One may think a more

natural alternative to this condition is to require that R be simulated by R, as

shown below.

If (σ, σ′) ∈ R , then there exists Σ′ such that

(Σ,Σ′) ∈ R
∗ and (C, σ′,R,G) �′

α;γ (C,Σ′,R,G) .
(2.3)

We refer to this modified simulation definition as �′. Unfortunately, �′ does not

have parallel compositionality. As a counter-example, suppose the invariant α says

the low-level x is not greater than the high-level x.

α
def
= {(σ,Σ) | σ(x) ≤ Σ(x)} ,

Then we could prove the following.

(x:=x+1, Id, True) �′
α;α⋉α (x:=x+2, Id, True) ; (2.4)

(x:=0;print(x), True, Id) �′
α;α⋉α (x:=0;print(x), True, Id) . (2.5)

Here we use Id and True (defined in Figure 2.6) for the sets of identity transitions

and arbitrary transitions respectively, and overload the notations at the low level

to the high level. However, the following refinement does not hold after parallel

composition.

(x:=x+1‖(x:=0;print(x)), Id, True)

�′
α;α⋉α (x:=x+29(x:=0;print(x)), Id, True) .
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This is because the rely R (or R) is an abstraction of all the permitted behaviors

in the environment of a thread t. Any thread t′ whose behaviors are allowed in

R (or R) can run in parallel with t. Thus to obtain parallel compositionality, we

have to ensure that the simulation is preserved with any possible sibling thread t′.

With our definition �, the simulation of Eq. (2.5) is not provable, because after

some α-related transitions of environments, the low-level program may print out

a value smaller than the one printed at the high level.

Other rules. We also develop some other useful rules about RGSim. For exam-

ple, the stren-α rule allows us to replace the invariant α by a stronger invariant

α′. We need to check that α′ is indeed an invariant preserved by the α-related

program steps, i.e., Sta(α′, 〈G,G∗〉α) holds. Symmetrically, the weaken-α rule

requires α to be preserved by environment steps related by the weaker invariant

α′. As in the Rely-Guarantee logic [38], the pre- and post-conditions, the relies

and the guarantees can be strengthened or weakened by the conseq rule.

The frame rule allows us to use local specifications [59]. When verifying the

simulation between C and C, we need to only talk about the locally-used resource

in α, ζ and γ, and the local relies and guarantees R, G, R and G. Then the proof

can be reused in contexts where some extra resource η is used, and the accesses of

it respect the invariant β and R1, G1, R1 and G1. We give the auxiliary definitions

in Figure 2.6. The disjoint union ⊎ between states is lifted to state pairs. A state

relation α is intuitionistic, written as Intuitα, if it is monotone with respect to the

extension of states. The disjointness η # α says that any state pair satisfying both

η and α can be split into two disjoint state pairs satisfying η and α respectively.

For example, let η
def
= {(σ,Σ) | σ(y) = Σ(y)} and α

def
= {(σ,Σ) | σ(x) = Σ(x)}

where x and y are two distinct variables, then both η and α are intuitionistic and

η # α holds. The frame rule also requires η to be stable under interference from

the programs (i.e., the programs do not change the extra resource) and the extra

environments. We use η # {ζ, γ, α} as a shorthand for (η # ζ)∧(η # γ)∧(η # α).

Similar representations are used in this rule.

Finally, the transitivity rule trans allows us to verify refinement by introduc-

ing an intermediate level as a bridge. The intermediate environment RM should be

chosen with caution so that the (β ◦α)-related transitions can be decomposed into

β-related and α-related transitions, as illustrated in Figure 2.4(b). Here ◦ defines

the composition of two relations and isMidOf defines the side condition over the

environments, as shown in Figure 2.6. We use θ for a middle-level state.
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Soundness. All the rules in Figure 2.7 are sound, i.e., for each rule the premises

imply the conclusion. We prove their soundness by co-induction, directly fol-

lowing the definition of RGSim. The proofs [44] are checked in the Coq proof

assistant [13].

Instantiations of relies and guarantees. We can derive the sequential re-

finement and the fully-abstract-semantics-based refinement by instantiating the

rely conditions in RGSim. For example, the simulation of Eq. (2.6) over closed

programs assumes identity environments, making the interference constraints in

the par rule unsatisfiable. This confirms the observation in Section 2.1.1 that the

sequential refinement loses parallel compositionality.

(C, Id,True) �α;ζ⋉γ (C, Id,True) (2.6)

The simulation of Eq. (2.7) assumes arbitrary environments, which makes the

interference constraints in the par rule trivially true. But this assumption is too

strong: usually Eq. (2.7) cannot be satisfied in practice.

(C,True,True) �α;ζ⋉γ (C,True,True) (2.7)

2.5 A Simple Example

Below we give a simple example to illustrate the use of RGSim and its parallel

compositionality in verifying concurrent program refinement. The high-level pro-

gram C19C2 is transformed to C1‖C2, using a lock l to synchronize the accesses

of the shared variable x. We aim to prove C1 ‖C2 ⊑T C19C2. That is, although

x:=x+2 is implemented by two steps of incrementing x in C2, the parallel observer

C1 will not print unexpected values. Here we view output events as externally

observable behaviors.

print(x); 9 x := x + 2;

⇓
lock(l);

print(x);

unlock(l);

‖

lock(l);

x := x+1; x := x+1;

〈unlock(l); X := x; 〉

To facilitate the proof, we introduce an auxiliary shared variable X at the low

level to record the value of x at the time when releasing the lock. It specifies the
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value of x outside every critical section, thus should match the value of the high-

level x after every corresponding action. Here 〈C〉 means C is executed atomically.

Its semantics follows RGSep [66] (or see Section 5.2). The auxiliary variable is

write-only and would not affect the external behaviors of the program [1]. Thus

below we can focus on the instrumented low-level program with the auxiliary code.

By the adequacy and compositionality of RGSim, we only need to prove sim-

ulations over individual threads, providing appropriate relies and guarantees. We

first define the invariant α, which only cares about the value of x when the lock is

free.

α
def
= {(σ,Σ) | σ(X) = Σ(x) ∧ (σ(l) = 0 =⇒ σ(x) = σ(X))} .

We let the pre- and post-conditions be α as well.

The high-level threads can be executed in arbitrary environments with arbi-

trary guarantees: R = G
def
= True. The low-level threads use the lock to protect

every access of x, thus their relies and guarantees are not arbitrary.

R def
= {(σ, σ′) | σ(l)=cid =⇒

σ(x)=σ′(x) ∧ σ(X)=σ′(X) ∧ σ(l)=σ′(l)} ;
G def

= {(σ, σ′) | σ′=σ ∨ σ(l)=0 ∧ σ′=σ{l ❀ cid}
∨ σ(l)=cid ∧ σ′=σ{x ❀ }
∨ σ(l)=cid ∧ σ′=σ{l ❀ 0, X ❀ }} .

Every low-level thread guarantees that it updates x only when the lock is acquired.

Its environment cannot update x or l if the current thread holds the lock. Here

cid is the identifier of the current thread. When acquired, the lock holds the

identifier of the owner thread.

Following the definition of RGSim, we can prove (C1,R,G) �α;α⋉α (C1,R,G)

and (C2,R,G) �α;α⋉α (C2,R,G). By applying the par rule and from the adequacy

of RGSim (Corollary 2.6), we know C1‖C2 ⊑T C19C2 holds for any transformation

T that respects α.

Perhaps interestingly, if we omit the lock and unlock operations in C1, then

C1 ‖ C2 would have more externally observable behaviors than C1 9C2. This

does not indicate the unsoundness of our par rule (which is sound!). The reason

is that x might have different values at the two levels after the environments’

α-related transitions 〈R,R∗〉α, so that we cannot have (print(x),R,G) �α;α⋉α

(print(x),R,G), even though the code of the two sides is syntactically identical.

The use of the auxiliary variable. The auxiliary variable X helps us define

the invariant α and do the proof. It is difficult to prove the refinement without
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this auxiliary variable. One may wish to prove

(C1,R′,G ′) �α′;α′⋉α′ (C1,R,G), (2.8)

where α′, R′ and G ′ are defined as follows by eliminating X from α, R and G.

α′ def
= {(σ,Σ) | σ(l)=0 =⇒ σ(x) = Σ(x)} ;

R′ def
= {(σ, σ′) | σ(l)=cid =⇒ σ(x)=σ′(x) ∧ σ(l)=σ′(l)} ;

G ′ def
= {(σ, σ′) | σ′=σ ∨ σ(l)=0 ∧ σ′=σ{l ❀ cid}

∨ σ(l)=cid ∧ σ′=σ{x ❀ }
∨ σ(l)=cid ∧ σ′=σ{l ❀ 0}} .

But Eq. (2.8) does not hold because 〈R′,R∗〉α′ permits unexpected transitions.

For instance, we allow ((σ, σ′), (Σ,Σ′)) ∈ 〈R′,R∗〉α′ for the following σ, σ′, Σ and

Σ′.

σ = σ′ def
= {x ❀ 0, l ❀ cid} ; Σ

def
= {x ❀ 0} ; Σ′ def

= {x ❀ 1} .

The high-level environment is allowed to change x even if the thread holds the

lock at the low level. Then the left thread may print out different values at the

two levels, breaking the simulation of Eq. (2.8).

It is possible to define the RGSim relation in another way that allows us to

get rid of the auxiliary variable for this example. Instead of defining separate

rely/guarantee relations at the two levels and using α to relate them, we can

directly define “relational rely/guarantee” relations

r, g ∈ P((LState× LState)× (HState×HState)) .

The new simulation is defined by substituting r and g for 〈R,R∗〉α and 〈G,G∗〉α
in Definition 2.4. It is in the following form.

C �r;g;α;ζ⋉γ C .

It has all the nice properties of our current RGSim relation (including parallel

compositionality) and we no longer need auxiliary variables to prove the simple

example. We can prove the new simulations C1 �α′;α′⋉α′;r;g C1 and C ′
2 �α′;α′⋉α′;r;g

C2. Here C ′
2 results from removing X from C2, α

′ is defined as above and r and g

are as follows.

r
def
= {((σ, σ′), (Σ,Σ′)) | σ(l)=cid =⇒

σ(x)=σ′(x) ∧ σ(l)=σ′(l) ∧ Σ(x)=Σ′(x)} ;
g

def
= {((σ, σ′), (Σ,Σ′)) | σ′=σ ∧ Σ′=Σ ∨ σ(l)=0 ∧ σ′=σ{l ❀ cid} ∧ Σ′=Σ

∨ σ(l)=cid ∧ σ′=σ{x ❀ } ∧ Σ′=Σ

∨ σ(l)=cid ∧ σ′=σ{l ❀ 0} ∧ Σ′ = Σ{x ❀ σ(x)}} .
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Note r requires that if the thread holds the lock at the low level, neither the high-

level or the low-level environment can change x. This relational r does not permit

the unexpected transitions discussed before. It is more expressive than 〈R′,R∗〉α′ ,

but also looks much heavier.

In the next two chapters, we will show more applications of RGSim. We would

use the current RGSim relation because in those applications it is usually easier to

define separate rely/guarantee conditions at the two levels. However, in Chapter 5

on linearizability verification, using relational r and g could make the refinement

proofs more intuitive. We also define the syntax of r and g in Chapter 5 to make

it easier to use them.

2.6 Discussions and Summary

We propose RGSim to verify concurrent program refinement. By describing ex-

plicitly the interference with environments, RGSim is compositional. We can use it

to prove the correctness of concurrent program transformations. We give a mech-

anized formulation of RGSim, and prove its adequacy and compositionality in the

Coq proof assistant [13]. Both the manual and mechanized proofs are available

online [44].

RGSim ensures that the low-level program preserves safety properties (includ-

ing the partial correctness) of the high-level program, but allows a terminating

high-level program to be refined by a low-level program having infinite silent steps

(e.g., while(true) skip;). In the example in Section 2.5, the low-level programs

is allowed to be blocked forever (e.g., at the time when the lock is held but never

released by some other thread). Proving the preservation of the termination behav-

ior would require liveness proofs in a concurrent setting (e.g., proving the absence

of deadlock), which we leave as future work.

The compositionality of RGSim allows us to decompose the refinement for a

large program to refinements for basic refinement units (which are usually instruc-

tions). However, for those refinement units, we have to refer to the semantics of

RGSim (Definition 2.4) rather than syntactic rules to verify them, since Figure 2.7

provides only compositionality rules, with no rules for primitive instructions. This

makes the proofs a bit tedious and complicated. In Chapter 5, we will design a

more complete set of proof rules to verify linearizability of concurrent objects. In

fact, Turon et al. [63] recently designed a program logic for general refinement ver-

ification of concurrent programs. Their logic is based on similar ideas as RGSim

and our logic for linearizability in Chapter 5.
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Chapter 3

Simple Applications of RGSim

Chapter 2 introduced RGSim, a rely-guarantee-based simulation for compositional

verification of concurrent program refinement. In this chapter, we will systemat-

ically study two kinds of applications of RGSim: reasoning about optimizations

in parallel contexts (Section 3.1) and verifying fine-grained implementations of

abstract algorithms and concurrent objects (Section 3.2).

3.1 Relational Reasoning about Optimizations

Verifying compiler optimizations is a natural application of refinement verification.

It requires proving that the target program is a refinement of the source. RGSim

establishes a relational approach to justify optimizations of concurrent programs.

Below we adapt Benton’s work [6] on sequential optimizations to the concurrent

setting.

3.1.1 Optimization Rules

Usually optimizations depend on particular contexts, e.g., the assignment x := E

can be eliminated only in the context that the value of x is never used after

the assignment. In a shared-state concurrent setting, we should also consider

the parallel context for an optimization. RGSim enables us to specify various

sophisticated requirements for the parallel contexts by rely/guarantee conditions.

Based on RGSim, we provide a set of inference rules to characterize and justify

common optimizations (e.g., dead code elimination) with information of both the

sequential and the parallel contexts. Note in this section the target and the source

programs are in the same language.
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Sequential Unit Laws

(C1,R1,G1) �α;ζ⋉γ (C2,R2,G2)

(skip;C1,R1,G1) �α;ζ⋉γ (C2,R2,G2)

(C1,R1,G1) �α;ζ⋉γ (C2,R2,G2)

(C1,R1,G1) �α;ζ⋉γ (skip;C2,R2,G2)

Plus the variants with skip after the code C1 or C2. That is, skips could be

arbitrarily introduced and eliminated.

Common Branch

∀σ1, σ2. (σ1, σ2) ∈ ζ =⇒ B σ2 6=⊥
(C,R,G) �α;ζ1⋉γ (C1,R′,G′) ζ1 = (ζ ∩ (true∧∧B))

(C,R,G) �α;ζ2⋉γ (C2,R′,G′) ζ2 = (ζ ∩ (true∧∧¬B))

(C,R,G) �α;ζ⋉γ (if (B) C1 else C2,R′,G′)

When the if-condition can be evaluated and both branches can be optimized to the

same code C, we can transform the whole if-statement to C without introducing

new behaviors.

Known Branch

(C,R,G) �α;ζ⋉γ (C1,R′,G′) ζ = (ζ ∩ (true∧∧B))

(C,R,G) �α;ζ⋉γ (if (B) C1 else C2,R′,G′)

(C,R,G) �α;ζ⋉γ (C2,R′,G′) ζ = (ζ ∩ (true∧∧¬B))

(C,R,G) �α;ζ⋉γ (if (B) C1 else C2,R′,G′)

Since the if-condition B is true (or false) initially, we can consider the then-

branch (or the else-branch) only. These rules can be derived from the above rule

for common branch.

Dead While

ζ = (ζ ∩ (true∧∧¬B)) ζ ⊆ α Sta(ζ, 〈R1,R∗
2〉α)

(skip,R1, Id) �α;ζ⋉ζ (while (B){C},R2, Id)

We can eliminate the loop, if the loop condition is false (no matter how the

environments update the states) at the loop entry point.

Loop Peeling

(while (B){C},R1,G1) �α;ζ⋉γ (while (B){C},R2,G2)

(if (B) {C;while (B){C}} else skip,R1,G1) �α;ζ⋉γ (while (B){C},R2,G2)
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Loop Unrolling

(while (B){C},R1,G1) �α;ζ⋉γ (while (B){C},R2,G2)

(while (B){C; if (B) C else skip},R1,G1) �α;ζ⋉γ (while (B){C},R2,G2)

Dead Code Elimination

(skip, Id, Id) �α;ζ⋉γ (C, Id,G) Sta({ζ, γ}, 〈R1,R∗
2〉α)

(skip,R1, Id) �α;ζ⋉γ (C,R2,G)

Intuitively (skip, Id, Id) �α;ζ⋉γ (C, Id,G) says that the code C can be eliminated

in a sequential context where the initial and the final states satisfy ζ and γ re-

spectively. If both ζ and γ are stable with respect to the interference from the

environments R1 and R2, then the code C can be eliminated in such a parallel

context as well.

Redundancy Introduction

(c, Id,G) �α;ζ⋉γ (skip, Id, Id) Sta({ζ, γ}, 〈R1,R∗
2〉α)

(c,R1,G) �α;ζ⋉γ (skip,R2, Id)

As we lifted sequential dead code elimination, we can also lift sequential redundant

code introduction to the concurrent setting, so long as the pre- and post-conditions

are stable with respect to the environments. Note that here c is a single instruction.

We should consider the interference from the environments at every intermediate

state when introducing a sequence of redundant instructions.

With these rules, we can prove the correctness of many traditional compiler op-

timizations performed on concurrent programs in appropriate contexts. Below we

give some examples of hoisting loop invariants, strength reduction and induction

variable elimination.

3.1.2 Example: Invariant Hoisting

We first formally prove the example in Section 2.1.5. As we discussed, safely

hoisting the invariant code t:=x+1 requires that the environment R should not

update x nor t.

R def
= {(σ, σ′) | σ(x) = σ′(x) ∧ σ(t) = σ′(t)} .

The guarantee of the program can be specified as arbitrary transitions. Since we

only care about the values of i, n and x, the invariant relation α can be defined

as
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α
def
= {(σ1, σ) | σ1(i) = σ(i) ∧ σ1(n) = σ(n) ∧ σ1(x) = σ(x)} .

We do not need special pre- and post-conditions, thus the correctness of the opti-

mization is formalized as follows.

(C1,R,True) �α;α⋉α (C,R,True) . (3.1)

We could prove (3.1) directly by the RGSim definition and the operational

semantics of the code. But below we give a more convenient proof using the

optimization rules and the compositionality rules instead. We first prove the

following by the optimization rules for dead code elimination and redundancy

introduction.

(t:=x+1,R,True) �α;α⋉γ (skip,R,True)

(skip,R,True) �α;γ⋉η (t:=x+1,R,True)

Here γ and η specify the states at the specific program points.

γ
def
= α ∩ {(σ1, σ) | σ1(t) = σ1(x) + 1} ;

η
def
= γ ∩ {(σ1, σ) | σ(t) = σ(x) + 1} .

Then by the compositionality rules seq andwhile, we can get (C ′
1,R,True) �α;α⋉α

(C ′,R,True), where C ′
1 and C ′ result from adding skips to C1 and C respectively.

C ′
1 :

t := x + 1;

while(i < n) {

skip;

i := i + t;

}

C ′ :

skip;

while(i < n) {

t := x + 1;

i := i + t;

}

Besides, from sequential unit laws and compositionality rules seq and while, we

can prove (C1,R,True) �α;α⋉α (C ′
1,R,True) and (C ′,R,True) �α;α⋉α (C,R,True).

Finally, by the trans rule, we can conclude Eq. (3.1), i.e., the correctness of the

optimization in appropriate contexts. Since R only prohibit updates of x and t,

we can execute C1 and C concurrently with other threads which update i and n

or read x, still ensuring semantics preservation.
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3.1.3 Example: Strength Reduction and Induction Vari-

able Elimination

Target-Level C2

local k, r;

k := 0;

r := 6*n;

while(k<r) {

x := x+k;

k := k+6;

}

⇐

Middle-Level C1

local i, k;

i := 0;

k := 0;

while(i<n) {

x := x+k;

i := i+1;

k := k+6;

}

⇐

Source-Level C

local i;

i := 0;

while(i<n) {

x := x+6*i;

i := i+1;

}

The source program C is first transformed to C1 by strength reduction which

introduces a local variable k and replaces multiplication by addition. The original

induction variable i and the introduced local variable k cannot be updated by

the environments. Then C1 is transformed to the target C2 by eliminating i and

using the new induction variable k in the loop condition. We assume n and r will

not be updated by the target environment, so we can compute the new boundary

(i.e., r:=6*n) outside the loop. Below we give the environments R, R1 and R2 at

the source, intermediate and target levels respectively.

R def
= {(σ, σ′) | σ(i) = σ′(i)}

R1
def
= {(σ1, σ

′
1) | σ1(i) = σ′

1(i) ∧ σ1(k) = σ′
1(k)}

R2
def
= {(σ2, σ

′
2) | σ2(k) = σ′

2(k) ∧ σ2(r) = σ′
2(r) ∧ σ2(n) = σ′

2(n)}
For both optimization phases, we require that the common variables in the source

and target have the same values. This is shown in the invariant relations α (be-

tween C1 and C) and β (between C2 to C1) below.

α
def
= {(σ1, σ) | σ1(i) = σ(i) ∧ σ1(n) = σ(n) ∧ σ1(x) = σ(x)} ;

β
def
= {(σ2, σ1) | σ2(k) = σ1(k) ∧ σ2(n) = σ1(n) ∧ σ2(x) = σ1(x)} .

Thus we formalize the correctness of the two optimization phases as follows.

(C2,R2,True) �β;β⋉β (C1,R1,True) , (C1,R1,True) �α;α⋉α (C,R,True) .

They can be proved directly by the RGSim definition or by applying the optimiza-

tion rules (for dead code elimination and redundancy introduction). The proofs

are similar to those for the previous example of invariant hoisting, and hence

omitted here.

Afterwards, we can compose the proofs of these two phases by the trans rule,

and get
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(C2,R2,True) �α◦β;α◦β⋉α◦β (C,R,True) .

Here α ◦ β = {(σ2, σ) | σ2(n) = σ(n) ∧ σ2(x) = σ(x)} . That is, if the environment

of the source program C does not change i nor n, we can safely apply strength

reduction and induction variable elimination over C to get the target program C2.

3.1.4 Discussions and Related Work

We apply RGSim to justify concurrent optimizations, following Benton [6] who

presents a declarative set of rules for sequential optimizations. Also the proof

rules of RGSim for sequential compositions (seq), conditional statements (if)

and loops (while) coincide with those in Benton’s relational Hoare logic [6] and

Yang’s relational separation logic [72]. Nevertheless, we have not applied RGSim

to verify real-world compilation or more complicated optimization algorithms (e.g.,

lazy code motion) in concurrent settings, which we leave as future work.

Compiler verification for concurrent programming languages can date back

to work in [23, 71], which is about functional languages using message-passing

mechanisms. Recently, Lochbihler [47] presents a verified compiler for Java threads

and prove semantics preservation by a weak bisimulation. He views every heap

update as an observable move, thus does not allow the target and the source to have

different granularities of atomic updates. To achieve parallel compositionality, he

requires the relation to be preserved by any transitions of shared states, i.e., the

environments are assumed arbitrary. As we explained in Section 2.1.2, this is a

too strong requirement in general for many refinement applications, including the

examples discussed in this section.

Burckhardt et al. [11] present a proof method for verifying concurrent program

transformations on relaxed memory models. The method relies on a compositional

trace-based denotational semantics, where the values of shared variables are always

considered arbitrary at any program point. In other words, they also assume

arbitrary environments.

Following Leroy’s CompCert project [42], Ševč́ık et al. [61] verify compilation

from a C-like concurrent language to x86 by simulations. They focus on correctness

of a particular compiler, and there are two phases in their compiler whose proofs

are not compositional.

Our RGSim is a general, compiler-independent and compositional proof tech-

nique for concurrent program refinement. Verifying optimizations is just one of its

applications. We will show more applications of RGSim in the following section

and the next chapter.
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A1 : A2 :
1 local d1;

2 d1 := 0;

3 while (d1 = 0) {

4 atom{

5 if (a = b)

6 d1 := 1;

7 if (a > b)

8 a := a - b;

9 }

10 }

9

1 local d2;

2 d2 := 0;

3 while (d2 = 0) {

4 atom{

5 if (b = a)

6 d2 := 1;

7 if (b > a)

8 b := b - a;

9 }

10 }

(a) abstract code

C1 : C2 :
1 local d1, t11, t12;

2 d1 := 0;

3 while (d1 = 0) {

4 t11 := a;

5 t12 := b;

6 if (t11 = t12)

7 d1 := 1;

8 if (t11 > t12)

9 a := t11 - t12;

10 }

‖

1 local d2, t21, t22;

2 d2 := 0;

3 while (d2 = 0) {

4 t21 := b;

5 t22 := a;

6 if (t21 = t22)

7 d2 := 1;

8 if (t21 > t22)

9 b := t21 - t22;

10 }

(b) concrete code

Figure 3.1 Concurrent GCD.

3.2 Verifying Fine-Grained Implementations of

Abstract Operations

As we mentioned in Chapter 1, verifying the implementation of an abstract al-

gorithm can be reduced to proving refinement from an abstract operation to a

concrete and executable program. In a concurrent setting, we can use RGSim

to verify the fine-grained implementation of an abstract program. Below we first

discuss the verification of a concurrent GCD algorithm [20] which calculates the

greatest common divisor of two variables.

3.2.1 Example: Concurrent GCD

Figure 3.1(b) shows the concurrent GCD implementation. The program uses two

threads to compute the Greatest Common Divisor (GCD) of the shared variables
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a and b. One thread executes C1 which reads the values of a and b, but only

updates a if a > b. The other thread executes C2 which does the reverse. When

a = b, the two threads terminate. This fine-grained GCD program implements the

more abstract program in Figure 3.1(a), where two threads atomically update a

and b respectively. Here we use atom{C} to execute C atomically. Its semantics

follows RGSep [66] (or see Section 5.2).

Our goal is to prove that the concrete and abstract GCD programs always

obtain the same result, i.e., (C1 ‖C2); print(a) and (A19A2); print(a) have the

same outputs. We use print(a) at the two levels to print out the results after

both threads complete their computations.

By adequacy of RGSim and its compositionality, we only need to prove that

the core computations for updating a (or b) are equivalent in C1 and A1 (or C2

and A2). That is, the code from line 4 to line 9 in C1 (denoted by C ′
1) should be

equivalent to the atomic block from line 4 to line 9 in A1 (denoted by A′
1); and

the parts of code from line 4 to line 9 in C2 and A2 should be equivalent too.

We first define the α relation, requiring that the common variables at the low

and high levels have the same values.

α
def
= {(σ,Σ) | σ(a) = Σ(a) ∧ σ(b) = Σ(b) ∧ σ(d1) = Σ(d1) ∧ σ(d2) = Σ(d2)}.

The threads’ rely and guarantee conditions can be specified as follows, where the

rely of one thread is just the guarantee of the other.

R1 = G2
def
=

{(σ, σ′) | σ′(t11) = σ(t11) ∧ σ′(t12) = σ(t12)

∧ σ′(d1) = σ(d1) ∧ σ′(a) = σ(a) ∧ (σ(a) ≥ σ(b) ⇒ σ′(b) = σ(b))}
R2 = G1

def
=

{(σ, σ′) | σ′(t21) = σ(t21) ∧ σ′(t22) = σ(t22)

∧ σ′(d2) = σ(d2) ∧ σ′(b) = σ(b) ∧ (σ(b) ≥ σ(a) ⇒ σ′(a) = σ(a))}
R1 = G2

def
=

{(Σ,Σ′) | Σ′(d1) = Σ(d1) ∧ Σ′(a) = Σ(a) ∧ (Σ(a) ≥ Σ(b) ⇒ Σ′(b) = Σ(b))}
R2 = G1

def
=

{(Σ,Σ′) | Σ′(d2) = Σ(d2) ∧ Σ′(b) = Σ(b) ∧ (Σ(b) ≥ Σ(a) ⇒ Σ′(a) = Σ(a))}

Then we can operationally prove the RGSim relations between C ′
1 and A′

1.

Here α−1 is the inverse relation of α, as defined in Figure 2.6.

(C ′
1,R1,G1) �α;α⋉α (A′

1,R1,G1) , (A′
1,R1,G1) �α−1;α−1⋉α−1 (C ′

1,R1,G1).

By the rules whileseq, we get the RGSim relations between C1 and A2.

(C1,R1,G1) �α;α⋉α (A1,R1,G1) , (A1,R1,G1) �α−1;α−1⋉α−1 (C1,R1,G1).
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Similarly, the relations hold between C2 and A2.

(C2,R2,G2) �α;α⋉α (A2,R2,G2) , (A2,R1,G1) �α−1;α−1⋉α−1 (C2,R1,G1).

When C1 and C2 (or A1 and A2) are parallel composed to compute the GCD

together, the environment of the whole GCD program cannot modify the shared

variables a and b. We let it be the identity transition set Id. The guarantee of

the whole program is just specified as True, a set of arbitrary transitions. We can

prove that both (print(a), Id,True) �α;α⋉α (print(a), Id,True) and the reverse

direction hold. Then by the rules par and seq, we can get

((C1‖C2); print(a), Id,True) �α;α⋉α ((A19A2); print(a), Id,True) ,

and also the reverse direction. By the adequacy of RGSim (Corollary 2.6), we

obtain the final result. For any state transformation T that respects α, we have

(C1‖C2); print(a) ≈T (A19A2); print(a) .

Thus we have proved that the concrete fine-grained and the abstract coarse-

grained GCD programs in Figure 3.1 can obtain the same results from the same

inputs. It is not difficult to find that the abstract program really computes the

GCD of a and b. So we can conclude that the concrete program computes their

GCD as well. This example shows a way to verify a complicated program by

proving that it is equivalent to a simpler program and then verifying the simpler

program.

3.2.2 Verifying Concurrent Objects

A concurrent object provides a set of methods, which can be called in parallel

by clients as the only way to access the object. The correctness on functionality

of an object is usually characterized by linearizability [35]. Informally, lineariz-

ability describes atomic behaviors of object implementations. It requires that

each method call should appear to take effect instantaneously at some moment

between its invocation and return. We can define abstract atomic operations in

a high-level language as object specifications. Then linearizability intuitively es-

tablishes a refinement between the concrete fine-grained implementations and the

corresponding atomic operations in concurrent environments.

We have applied RGSim to verify linearizability of many object implemen-

tations, including the non-blocking counter [64], Treiber’s stack algorithm [62]

and the lock-coupling list [33]. However, RGSim does not support objects with
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non-fixed Linearization Points (LPs), including those using the helping mecha-

nism (e.g., HSY elimination-based stack [30]), or having LPs depending on un-

predictable future executions (e.g., the lazy set algorithm [29]), or involving both

features (e.g., the RGCSS algorithm [66]). As we explained in Section 1.1.2, it is

quite difficult to verify those objects. In Chapter 5, we will extend the RGSim

relation and design a program logic for linearizability, both of which support those

challenging objects with non-fixed LPs as well as simple ones with static LPs that

can be verified using the plain RGSim relation. Since the examples for the plain

RGSim will be completely covered by those in Chapter 5, we omit the proofs here

and encourage readers to study Chapter 5, which contains detailed and formal

explanations about linearizability verification, and more effective and intuitive

example proofs.

In the next chapter, we will study another important application of RGSim:

verifying concurrent garbage collectors.
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Chapter 4

Verifying Concurrent Garbage

Collectors

In this chapter, we first explain in detail how to reduce the problem of verifying

concurrent garbage collectors (GCs) to refinement verification (Section 4.1), and

use RGSim to develop a general GC verification framework (Section 4.2). Then

we apply the framework to prove the correctness of the Boehm et al. concurrent

GC algorithm [9] (Section 4.3).

4.1 Correctness of Concurrent GCs

A concurrent GC is executed by a dedicated thread and performs the collection

work in parallel with user threads (mutators), which access the shared heap via

read, write and allocation operations. To ensure that the GC and the mutators

share a coherent view of the heap, the heap operations from mutators may be

instrumented with extra operations, which provide an interaction mechanism to

allow arbitrary mutators to cooperate with the GC. These instrumented heap

operations are called barriers (e.g., read barriers and write barriers).

A concurrent GC algorithm consists of the GC thread and the corresponding

barriers. It provides a higher-level user-friendly programming model for garbage-

collected languages (e.g., Java). In this high-level model, programmers feel they

access the heap using regular memory operations, and are freed from manually

disposing objects that are no longer in use. They do not need to consider the

implementation details of the GC and the existence of barriers.

We could verify the GC system by using a Hoare-style logic to prove that the

GC thread and the barriers satisfy their specifications. However, we say this is

an indirect approach because it is unclear if the specified correct behaviors would
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indeed preserve the mutators’ intended behaviors and generate the abstract view

for high-level programmers. Usually this part is examined by experts and then

trusted.

Here we propose a more direct approach. We view a concurrent GC algorithm

as a transformation T from a high-level garbage-collected language to a low-level

language. A standard atomic memory operation at the source level is transformed

into the corresponding barrier code at the target level. In the source level, we

assume there is an abstract GC thread that magically turns unreachable objects

into reusable memory. The abstract collector AbsGC is transformed into the

concrete GC code Cgc running concurrently with the target mutators. That is,

T(tgc.AbsGC9t1.C19. . .9tn.Cn)
def
= tgc.Cgc‖ t1.T(C1)‖ . . .‖ tn.T(Cn) ,

where T(C) simply translates some memory access instructions in C into the

corresponding barriers, and leaves the rest unchanged. Note that here we introduce

an abstract GC and assume a finite memory at the source level. This is because

at the target level we assume a finite memory to model the real machine; and if

the source level memory is infinite, the bijective mapping between the memory at

the two levels would become much more complicated.

Then we reduce the correctness of the concurrent GC algorithm to Correct(T),

saying that any mutator program will not have unexpected behaviors when exe-

cuted using this GC algorithm.

4.2 A General Verification Framework Based on

RGSim

The compositionality of RGSim allows us to develop a general framework to prove

Correct(T), which is much more difficult using monolithic proof methods. By the

parallel compositionality of RGSim (the par rule in Figure 2.7), we can decompose

the refinement proofs into proofs for the GC thread and each mutator thread. For

a mutator thread, we can further decompose the refinement proof into proof for

each primitive instruction, using the compositionality of RGSim (the rules seq,

if and while in Figure 2.7).

Verifying the GC thread. The semantics of the abstract GC thread can be

defined by a binary state predicate AbsGCStep.

(Σ,Σ′) ∈ AbsGCStep

(tgc.AbsGC ,Σ) −→ (tgc.AbsGC ,Σ′)
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That is, the abstract GC thread always makes AbsGCStep to change the high-

level state. We can choose different AbsGCStep for different GCs, but usually

AbsGCStep guarantees not modifying reachable objects in the heap.

Thus for the GC thread, we need to show that Cgc is simulated by AbsGC when

executed in their environments. This can be reduced to unary Rely-Guarantee

reasoning about Cgc by proving Rgc;Ggc ⊢ {pgc}Cgc{qgc} in a standard Rely-

Guarantee logic [38] with proper Rgc, Ggc, pgc and qgc, as long as Ggc is a concrete

representation of AbsGCStep. The judgment says given an initial state satisfying

the precondition pgc, if the environment’s behaviors satisfy Rgc, then each step of

Cgc satisfies Ggc, and the postcondition qgc holds at the end if Cgc terminates. In

general, the collector never terminates, thus we can let qgc be false. Ggc and pgc

should be provided by the verifier, where pgc needs to be general enough so that

it can be satisfied by any possible low-level initial state. Rgc encodes the possible

behaviors of mutators, which can be derived, as we will show below.

Verifying mutators. For the mutator thread, since T is syntax-directed on C,

we can reduce the refinement verification for arbitrary mutators to verifying the

refinement on each primitive instruction only, following the compositionality of

RGSim. The proof needs proper rely/guarantee conditions. Let G
t




and Gt

T(
)

denote the guarantees of the source instruction 
 and the target code T(
) for

the mutator thread t respectively. Then we can define the general guarantees for

thread t.

G(t) def
=

⋃



Gt

T(
) ; G(t)
def
=

⋃



Gt




. (4.1)

Its rely conditions R(t) and R(t) should include all the possible guarantees made

by other threads, and the GC’s concrete and abstract behaviors respectively.

R(t)
def
= Ggc ∪ (

⋃
t′ 6=t

G(t′)) ; R(t)
def
= AbsGCStep ∪ (

⋃
t′ 6=t

G(t′)) . (4.2)

The Rgc used to verify the GC code can now be defined.

Rgc
def
=

⋃
t
G(t) . (4.3)

The refinement proof also needs definitions of binary relations α, ζ and γ. The

invariant α relates the low-level and the high-level states and needs to be preserved

by each low-level step. In general, a high-level state Σ can be mapped to a low-

level state σ by giving a concrete local store for the GC thread, adding additional

structures in the heap (to record information for collection), renaming heap cells

(for copying GCs), etc. The relations ζ and γ are parametrized over the thread
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ID t. For each mutator thread t, ζ(t) and γ(t) need to hold at the beginning and

the end of each basic transformation unit (every high-level primitive instruction

in this case) respectively. We let γ(t) be the same as ζ(t) to support sequential

compositions. They need to satisfy GoodT defined below.

GoodT(ζ(t))
def
= InitRelT(ζ(t)) ∧ ∀B. ζ(t) ⊆ (T(B)⇔⇔B) . (4.4)

We require InitRelT(ζ(t)) (see Figure 2.6), i.e., ζ(t) holds over the initial states.

In addition, the target and the source boolean expressions should be evaluated to

the same value under ζ-related states, as required in the if and while rules in

Figure 2.7.

Theorem 4.1 (Concurrent GC Verification Framework). If there exist Gt




, Gt

T(
),

ζ(t), α, Ggc and pgc (for any 
 and t) such that the following hold (where G(t),
G(t), R(t), R(t) and Rgc are defined in (4.1), (4.2) and (4.3), and GoodT(ζ(t))

defined in (4.4) holds):

1. (Correctness of T on mutator instructions)

∀t, 
. (T(
),R(t),G(t)) �α;ζ(t)⋉ζ(t) (
,R(t),G(t)) ;

2. (Verification of the GC code)

Rgc;Ggc ⊢ {pgc}Cgc{false} ;

3. (Side conditions)

Ggc ◦ α−1 ⊆ α−1 ◦ (AbsGCStep)∗; and ∀σ,Σ. σ = T(Σ) =⇒ pgc σ ;

then Correct(T).

That is, to verify a concurrent GC algorithm (viewed as a transformation T),

we need to do the following.

• Define the α and ζ(t) relations, and prove the correctness of T on high-level

primitive instructions. Since T preserves the syntax on most instructions,

it’s often immediate to prove the target instructions are simulated by their

sources. But for instructions that are transformed to barriers, we need to

verify that the barriers implement both the source instructions (by simula-

tion) and the interaction mechanism (shown in their guarantees).

• Find some proper Ggc and pgc, and reason about the GC code in the Rely-

Guarantee logic. We require the GC’s guarantee Ggc should not contain more

behaviors than AbsGCStep (the first side condition), and Cgc can start its

execution from any state σ transformed from a high-level one (the second

side condition).
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Proof of Theorem 4.1. We first prove the following from the premises 2 and 3 of

the theorem.

(Cgc,Rgc,Ggc) �α;ζgc⋉ζgc (AbsGC ,True,AbsGCStep)

Here ζgc
def
= {(σ,Σ) | σ = T(Σ)}. The proof directly follows the RGSim definition.

Then with the premise 1 and the compositionality of RGSim, we can get the

following by induction over the program structure.

∀C1, . . . ,Cn. (tgc.Cgc‖ t1.T(C1)‖ . . .‖ tn.T(Cn), Id,True)

�α;ζ⋉ζ (tgc.AbsGC9t1.C19. . .9tn.Cn, Id,True).

Here ζ
def
= ζgc∩ (

⋂
t
ζ(t)). Finally, from the adequacy of RGSim (Corollary 2.6), we

can conclude Correct(T).

4.3 Example: Boehm et al. Concurrent GC Al-

gorithm

We illustrate the applications of the verification framework (Theorem 4.1) by prov-

ing the correctness of a mostly-concurrent mark-sweep garbage collector proposed

by Boehm et al. [9]. Variants of the algorithm have been used in practice (e.g., by

IBM [5]).

4.3.1 Overview of the GC Algorithm

The GC runs both the mark and sweep phases concurrently with the mutators.

In the mark phase, it does a depth-first tracing and marks the objects which

are reachable from the roots (i.e., the mutators’ local pointer variables that may

contain references to the heap objects). Later in the sweep phase, it scans the heap

and reclaims unmarked objects. During the tracing, the connectivity between

objects might be changed by the mutators, thus a write barrier is required to

notify the collector of those modified objects. Boehm et al.’s algorithm gives each

object a dirty bit (called a card) and its write barrier dirties the card of the object

being updated. Then, between the mark and sweep phases, the GC runs a short

stop-the-world phase, where it suspends all the mutators and re-traces from the

dirty objects which have been marked (called card-cleaning). Thus all reachable

objects have been marked before the sweep phase, ensuring the correctness of the

GC.

We show the code of the GC thread in Figures 4.1 and 4.2. We assume each

object contains m pointer fields pt1, . . . , ptm, a data field, and two auxiliary color
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1 constant int WHITE, BLACK, BLUE; // colors

2 constant int N; // total number of threads

3 constant int M; // size of heap

4

5 Collection() { local mstk;

6 while (true) {

7 Initialize();

8 Trace();

9 CleanCard();

10 atomic{ ScanRoot(); CleanCard(); }

11 Sweep();

12 }

13 }

14

15 Initialize() {

16 local i, c; i := 1;

17 while (i <= M) {

18 i.dirty := 0; c := i.color;

19 if (c = BLACK) { i.color := WHITE; }

20 i := i + 1;

21 }

22 }

23

24 Trace() {

25 local t, rt, i; t := 1;

26 while (t <= N) {

27 rt := get_root(t);

28 foreach i in rt do { MarkAndPush(i); }

29 t := t + 1;

30 TraceStack();

31 }

32 }

33

34 TraceStack() {

35 local i, j;

36 while (!is_empty(mstk)) {

37 i := pop(mstk);

38 j := i.pt1; MarkAndPush(j);

39 ...

40 j := i.ptm; MarkAndPush(j);

41 }

42 }

Figure 4.1 Boehm et al. GC code.
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43 MarkAndPush(i) {

44 local c;

45 if (i != 0) {

46 c := i.color;

47 if (c = WHITE) {

48 i.color := BLACK; push(i, mstk);

49 }

50 }

51 }

52

53 CleanCard() {

54 local i, c, d; i := 1;

55 while (i <= M) {

56 c := i.color; d := i.dirty;

57 if (d = 1) {

58 i.dirty := 0;

59 if (c = BLACK) { push(i, mstk); }

60 }

61 i := i + 1;

62 }

63 TraceStack();

64 }

65

66 ScanRoot() {

67 local t, rt, i; t := 1;

68 while (t <= N) {

69 rt := get_root(t);

70 foreach i in rt do { MarkAndPush(i); }

71 t := t + 1;

72 }

73 }

74

75 Sweep() {

76 local i, c; i := 1;

77 while (i <= M) {

78 c := i.color;

79 if (c = WHITE) { free(i); }

80 i := i + 1;

81 }

82 }

Figure 4.2 Boehm et al. GC code (continued).
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update(x, fd, E) { // fd ∈ {pt1, ..., ptm}

atomic{ x.fd := E; aux := x; }

atomic{ x.dirty := 1; aux := 0; }

}

Figure 4.3 Write barrier for Boehm et al. GC.

and dirty fields. The color field has three possible values and is used for two

purposes: for marking, we use BLACK for a marked object and WHITE for an un-

marked one; and for allocation, we use BLUE for an unallocated object which will

neither be traced nor be reclaimed, but can be allocated later. New objects are

created BLACK, and when reclaiming an object, we just set its color to BLUE. The

dirty field is the card bit whose value can be 0 (not dirty) or 1 (dirty). We also

assume the total number of mutator threads is N (their IDs are 1, 2, . . . , N) and the

heap domain is [1..M].

To make the GC code more readable, we divide it into several methods in

Figures 4.1 and 4.2, which should be viewed as macros. The GC thread executes

Collection() and repeats the collection cycle (the loop body in the method) for-

ever. In each collection cycle, it first clears the dirty cards and resets the colors

of all the objects (the method call of Initialize()). After the initialization, the

GC enters the mark phase by calling Trace(). The command rt := get root(t)

(line 27 in Figure 4.1) allows the GC to read the values of all the pointer variables

in the thread t’s store at once to a set rt, and foreach i in rt do C (line 28)

allows to execute C for every value i in rt. Our atomic get root tries to reflect

the real-world GC implementation [5], where the GC stops a mutator thread to

scan its roots. Then a mark stack mstk is used to do the depth-first tracing in the

method TraceStack(). For simplicity, we assume there are primitive commands

push(x, mstk) and x := pop(mstk) to manipulate mstk. The stop-the-world phase

(line 10) is implemented by an atomic block atomic{C} that executes C without

interference from mutator threads. Here the roots are re-scanned in ScanRoot(),

because the write barrier is not applied to the roots and we should assume con-

servatively that they have been modified. Finally in the sweep phase (the call of

Sweep() at line 11), the GC can use free(x) to reclaim the object x. Usually in

practice, there is also a concurrent card-cleaning phase (the call of CleanCard()

at line 9) before the stop-the-world card-cleaning (at line 10) to reduce the pause

time of the latter.

The write barrier is shown in Figure 4.3, where the dirty field is set after

modifying the object’s pointer field. Here we use a write-only auxiliary variable aux
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(HExpr) E ::= x | n | nil | E+E | E−E | . . .
(HBExp) B ::= true | false | E=E | !B | . . .
(HInstr) 
 ::= print(E) | x :=E | x := y.fd | x.fd := E | x := new()

(HStmts) C ::= skip | 
 | C1; ;C2 | if B then C1 else C2 | while B do C

(HProg) W ::= tgc.AbsGC9t1.C19. . .9tn.Cn

(HField) fd ∈ {pt1, . . . ,ptm, data} (MutID) t ∈ [1..N ]

(a) the language

(Loc) l ∈ {L1, . . . , LM ,nil}
(HStore) s ∈ PVar ⇀ HVal

(HHeap) h ∈ Loc ⇀ HObj

(HState) Σ ∈ HThrds ×HHeap

(HVal) V ∈ Int ∪ Loc

(HObj) O ∈ HField ⇀ HVal

(HThrds) Π ∈ MutID ⇀ HStore

(b) program states

Figure 4.4 High-level language and state model.

for each mutator thread to record the current object that the mutator is updating.

We add aux for the purpose of verification only, which can be safely deleted after

the proof is completed. It helps specify some fine-grained and temporal property

of the write barrier in the guarantees. For instance, a mutator should ensure that

after it sets a pointer field of an object x to another object y, it must first set

x’s dirty field before updating other pointers (in particular, those pointing to

y). Otherwise, the GC may not know that y is newly reachable from x and may

finally reclaim y. In Figure 4.3, we set aux to the object x when its pointer field

is updated, and specify in the mutator’s guarantee G that when aux = x, it must

set x’s dirty field (see Gt

set dirty in Figure 4.12(b)). The GC does not use read

barriers nor allocation barriers. Allocation can be implemented using a standard

concurrent list algorithm. To be more focused on verifying the GC algorithm itself,

we model allocation as an abstract instruction x := new() which can magically

find an unallocated (BLUE) object in the heap.

4.3.2 The Transformation

We first present the detailed high-level and low-level languages and state models in

Figures 4.4 and 4.5 respectively, which are instantiations of the generic languages

in Figure 2.2.

• An object has m pointer fields and a data field from the high-level view,

whereas a concrete object also has two auxiliary fields color and dirty for
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(LExpr) E ::= x | n | E+E | E−E | . . .
(LBExp) B ::= true | false | E=E | !B | is empty(x) | . . .
(LInstr) c ::= print(E) | x :=E | x := y.fd | x.fd := E | x := new()

| x := get root(y) | free(x) | push(x, y) | x := pop(y)

(LStmts) C ::= skip | c | C1;C2 | if (B) C1 else C2 | while (B) C

| atomic{C} | foreach x in y do C

(LProg) W ::= tgc.Cgc‖t1.C1‖ . . .‖tn.Cn

(LField) fd ∈ {pt1, . . . ,ptm, data, color, dirty}

(a) the language

(LVal) v ∈ Int ∪ P(Int) ∪ Seq(Int)

(LObj) o ∈ LField ⇀ LVal

(LThrds) π ∈ (MutID ∪ {tgc}) ⇀ LStore

(LStore) s ∈ PVar ⇀ LVal× {0, 1}
(LHeap) h ∈ [1..M ] ⇀ LObj

(LState) σ ∈ LThrds × LHeap

(b) program states

Figure 4.5 Low-level language and state model.

the collection.

• The set AbsGCStep of behaviors of the high-level abstract GC thread is

defined in Figure 4.6(a), saying that the mutator stores and the reachable

objects in the heap remain unmodified. Here Reachable(l)(Π,h) means the

object at the location l is reachable in h from the roots in Π.

• The low-level concrete GC thread could use privileged commands, such as

x := get root(y) and free(x), to control the mutator threads and manage

the heap.

• High-level mutators can use x := y.fd to read a field of an object, x.fd := E

to write the value of E to a field of an object and x := new() to allocate

a new object. If the instruction x.fd := E updates a pointer field (i.e.,

fd ∈ {pt1, . . . , ptm}), then it will be transformed to the write barrier in

Figure 4.3. Note here E is restricted to be either nil (null pointers) or

pointer variables.

• The high-level language is typed in the sense that heap locations and integers

are regarded as distinct kinds (or types) of values. We present the high-level

operational semantics in Figure 4.6(b). Here we use sameType(V,V′) to

mean that the two values V and V′ are of the same type.
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Root(t, S)
def
= λΣ. Σ = (Π ⊎ {t ❀ st},h) ∧ S = {l | ∃x.st(x) = l}

Edge(l1, l2)
def
= λΣ. Σ = (Π,h) ∧ ∃fd ∈ {pt1, . . . ,ptm}. h(l1)(fd) = l2

Pathk(l1, l2)
def
=

{
l1 = l2 if k = 0
∃l3. Edge(l1, l3) ∧ Pathk−1(l3, l2) if k > 0

Path(l1, l2)
def
= ∃k. Pathk(l1, l2)

Reachable(t, l)
def
= ∃S, l′. Root(t, S) ∧ l′ ∈ S ∧ Path(l′, l) ∧ l 6= nil

Reachable(l)
def
= ∃t ∈ [1..N ]. Reachable(t, l)

AbsGCStep
def
= {((Π,h), (Π,h′)) | ∀l. Reachable(l)(Π,h) =⇒ h(l) = h

′(l)}

(a) definition of AbsGCStep

s(x) = l h(l) = O JEK
s

= V O(fd) = V′ sameType(V,V′)

(x.fd := E, (Π ⊎ {t ❀ s},h)) −→ t (skip , (Π ⊎ {t ❀ s},h{l ❀ O{fd ❀ V}}))

x 6∈ dom(s) or s(x) 6∈ dom(h) or JEK
s

=⊥ or ¬sameType(h(s(x))(fd), JEK
s

)

(x.fd := E, (Π ⊎ {t ❀ s},h)) −→ t abort

l 6∈ dom(h) l 6= nil s(x) = l′ s

′ = s{x ❀ l}
h

′ = h ⊎ {l ❀ {pt1 ❀ nil, . . . ,ptm ❀ nil, data ❀ 0}}
(x := new(), (Π ⊎ {t ❀ s},h)) −→ t (skip , (Π ⊎ {t ❀ s

′},h′))

¬(∃l.l 6∈ dom(h) ∧ l 6= nil) s(x) = l′ s

′ = s{x ❀ nil}
(x := new (), (Π ⊎ {t ❀ s},h)) −→ t (skip , (Π ⊎ {t ❀ s

′},h))

x 6∈ dom(s) or ¬∃l.s(x) = l

(x := new(), (Π ⊎ {t ❀ s},h)) −→ t abort

(Ci,Σ) −→ ti
(C′

i,Σ
′) or (Σ,Σ′) ∈ AbsGCStep ∧ C

′
i = Ci

(tgc.AbsGC9t1.C19. . . ti.Ci . . .9tn.Cn,Σ) −→ (tgc.AbsGC9t1.C19. . . ti.C
′
i . . .9tn.Cn,Σ

′)

(Ci,Σ) −→ ti
abort

(tgc.AbsGC9t1.C19. . . ti.Ci . . .9tn.Cn,Σ) −→ abort

(b) selected operational semantics rules

Figure 4.6 High-level garbage-collected machine.
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JnK(s,tag) =





n if tag = 0 or tag = 2
0 if tag = 1 and n = 0
⊥ otherwise

JxK(s,tag) =

{
n if s(x) = (n, b) and (tag = b ∨ tag = 2)
⊥ otherwise

JE1 + E2K(s,tag) =





n1 + n2 if JE1K(s,tag) = n1 and JE2K(s,tag) = n2

and (tag = 0 ∨ tag = 2)
⊥ otherwise

Jis empty(x)K(s,tag) =





true if tag = 0 and s(x) = (ǫ, 0)
false if tag = 0 and s(x) = (n ::A, 0)
⊥ otherwise

Figure 4.7 Expression evaluation on the low-level machine.

• On the low-level machine, we allow the GC to perform pointer arithmetic,

so we do not distinguish locations and integers. A low-level value v can be

an integer, a set or a sequence of integers. We use P( ) for the power set

and Seq( ) for the set of sequences. Every low-level variable is given an extra

bit to preserve its high-level type information (0 for non-pointers and 1 for

pointers), so that the GC can easily get the roots. The low-level mutators

are still prohibited from pointer arithmetic. An expression E is evaluated

(shown in Figure 4.7) under the store s with an extra tag tag to indicate

whether it is used as an object location in the heap (tag = 1 if E is used

as a heap location; and tag = 0 otherwise). When tag = 2, we do not care

about the usage of the expression, and such an expression will be used in the

GC code since the GC has the privilege to use an integer as an address and

vice versa. We present part of the low-level operational semantics rules in

Figure 4.8. To formulate the semantics of foreach x in y do C, we assume

x and y are temporary variables and not updated by C. At the beginning of

each iteration, we set x to an arbitrary item in the set y, and after executing

C we remove that item from y. The foreach loop terminates when y becomes

empty.

• We do not provide infinite heaps; instead there are onlyM valid high-level lo-

cations and the low-level heap domain is [1..M ]. High-level mutators can use

nil for null pointers and it will be translated to 0 on the low-level machine.

We assume there is a bijective function Loc2Int from high-level locations to

low-level integers.

Loc2Int : Loc ↔ [0..M ]
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t ∈ [1..N ] s(x) = ( , b) JEK(s,b) = n s′ = s{x ❀ (n, b)}
(x := E, (π ⊎ {t ❀ s}, h)) −→ t (skip, (π ⊎ {t ❀ s′}, h))

s(x) = ( , b) JEK(s,2) = n s′ = s{x ❀ (n, b)}
(x := E, (π ⊎ {tgc ❀ s}, h)) −→ tgc (skip, (π ⊎ {tgc ❀ s′}, h))

s(y) = (ny, 1) h(ny)(fd) = n s(x) = ( , b)
fd ∈ {pt1, . . . ,ptm} =⇒ b = 1 fd ∈ {data} =⇒ b = 0 s′ = s{x ❀ (n, b)}

(x := y.fd , (π ⊎ {t ❀ s}, h)) −→ t (skip, (π ⊎ {t ❀ s′}, h))

s(x) = (n, 1) h(n) = o fd ∈ {pt1, . . . ,ptm} =⇒ JEK(s,1) = n′

fd ∈ {data} =⇒ JEK(s,0) = n′ fd ∈ {color, dirty} =⇒ JEK(s,2) = n′

(x.fd := E, (π ⊎ {t ❀ s}, h)) −→ t (skip, (π ⊎ {t ❀ s}, h{n ❀ o{fd ❀ n′}}))

s(y) = (t, 0) s(x) = ( , 0) π(t) = st S = {n | ∃x.st(x) = (n, 1)}
(x := get root(y), (π ⊎ {tgc ❀ s}, h)) −→ tgc (skip, (π ⊎ {tgc ❀ s{x ❀ (S, 0)}}, h))

x ∈ dom(s) s(y) = (∅, 0)
(foreach x in y do C, (π ⊎ {tgc ❀ s}, h)) −→ tgc (skip, (π ⊎ {tgc ❀ s}, h))

s(x) = ( , b) s(y) = ({n1, . . . , nk}, 0) s′ = s{x ❀ (n1, b)}
(foreach x in y do C, (π ⊎ {tgc ❀ s}, h)) −→ tgc

(C; y := y\{x}; foreach x in y do C, (π ⊎ {tgc ❀ s′}, h))

(C, (π ⊎ {t ❀ s}, h)) −→∗
t (skip, (π ⊎ {t ❀ s′}, h′))

(atomic{C}, (π ⊎ {t ❀ s}, h)) −→ t (skip, (π ⊎ {t ❀ s′}, h′))

t ∈ [1..N ] s(x) = ( , 1) h(n)(color) = BLUE s′ = s{x ❀ (n, 1)}
h′ = h{n ❀ {pt1 ❀ 0, . . . ,ptm ❀ 0, data ❀ 0, color ❀ BLACK, dirty ❀ 0}}

(x := new(), (π ⊎ {t ❀ s}, h)) −→ t (skip, (π ⊎ {t ❀ s′}, h′))

t ∈ [1..N ] s(x) = ( , 1) ¬(∃n. h(n)(color) = BLUE) s′ = s{x ❀ (0, 1)}
(x := new(), (π ⊎ {t ❀ s}, h)) −→ t (skip, (π ⊎ {t ❀ s′}, h))

s(x) = (n, 1) h(n) = o

(free(x), (π ⊎ {tgc ❀ s}, h)) −→ tgc (skip, (π ⊎ {tgc ❀ s}, h{n ❀ o{color ❀ BLUE}}))

s(x) = (n′, b) s(y) = (A, 0) s′ = s{y ❀ (n′ ::A, 0)}
(push(x, y), (π ⊎ {tgc ❀ s}, h)) −→ tgc (skip, (π ⊎ {tgc ❀ s′}, h))

s(x) = ( , b) s(y) = (n ::A, 0) s′ = s{x ❀ (n, b), y ❀ (A, 0)}
(x := pop(y), (π ⊎ {tgc ❀ s}, h)) −→ tgc (skip, (π ⊎ {tgc ❀ s′}, h))

Figure 4.8 Selected operational semantics rules on the low-level machine.
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T(Σ)
def
= ({t ❀ T(s) | (t ❀ s) ∈ Π} ⊎ {tgc ❀ sgc init},T(h)) , if Σ = (Π,h) ∧WfState(Σ)

where WfState(Π,h)
def
= ∀l. Reachable(l)(Π,h) =⇒ l ∈ dom(h)

sgc init
def
= {mstk ❀ ǫnp, rt ❀ ∅np, i ❀ 0p, j ❀ 0p, c ❀ 0np, d ❀ 0np, t ❀ 0np}

T(s)(x)
def
=





nnp if s(x) = n

np if s(x) = l ∧ Loc2Int(l) = n

0p if x = aux

T(h)(i)
def
=





{pt1 ❀ n1, . . . ,ptm ❀ nm, data ❀ n, color ❀ WHITE, dirty ❀ 0}
if ∃l. l ∈ dom(h) ∧ Loc2Int(l) = i ∧ 1 ≤ i ≤ M

∧ h(l) = {pt1 ❀ l1, . . . ,ptm ❀ lm, data ❀ n}
∧ Loc2Int(l1) = n1 ∧ . . . ∧ Loc2Int(lm) = nm

{pt1 ❀ 0, . . . ,ptm ❀ 0, data ❀ 0, color ❀ BLUE, dirty ❀ 0}
if ∃l. l 6∈ dom(h) ∧ Loc2Int(l) = i ∧ 1 ≤ i ≤ M

Figure 4.9 Transformation T on initial states for Boehm et al. GC.

It satisfies Loc2Int(nil) = 0.

The transformationT is defined as follows. For code, the high-level abstract GC

thread is transformed to the GC thread shown in Figures 4.1 and 4.2. Each instruc-

tion x.fd := E in mutators is transformed to the write barrier update(x, fd,T(E)),

where fd is a pointer field of x. T over expressions E returns 0 if E is nil, and keeps

the syntax otherwise. Other instructions and the program structures of mutators

are unchanged.

We also need to transform the initial high-level state to the low level. The

transformation T(Σ) is defined in Figure 4.9.

• First we require the high-level initial state to be well-formed (WfState(Σ)),

i.e., reachable locations cannot be dangling pointers.

• High-level locations are transformed to integers by the bijective function

Loc2Int.

• Variables are transformed to the low level using an extra bit to preserve the

high-level type information (0 for non-pointers and 1 for pointers). Usually

we use vnp and vp short for (v, 0) and (v, 1) respectively.

• High-level objects are transformed to the low level by adding the color and

dirty fields with initial values WHITE and 0 respectively. Other addresses

in the low-level heap domain [1..M ] are filled out using unallocated objects

whose colors are BLUE and all the other fields are initialized by 0.
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store map(s, s)
def
= ∀x 6= aux. (∀n. s(x) = nnp ⇐⇒ s(x) = n)

∧ (∀n. s(x) = np ⇐⇒ ∃l. Loc2Int(l) = n ∧ s(x) = l)

obj map(o,O)
def
= ∃n1, . . . , nm, n, c, l1, . . . , lm. Loc2Int(l1) = n1 ∧ . . . ∧ Loc2Int(lm) = nm

∧ o = {pt1 ❀ n1, . . . ,ptm ❀ nm, data ❀ n, color ❀ c, dirty ❀ }
∧ c 6= BLUE ∧O = {pt1 ❀ l1, . . . ,ptm ❀ lm, data ❀ n})

unalloc(o,h, l)
def
= (o = {pt1 ❀ , . . . ,ptm ❀ , data ❀ , color ❀ BLUE, dirty ❀ })

∧ l 6∈ dom(h)

heap map(h,h)
def
= ∀i, l. 1 ≤ i ≤ M ∧ Loc2Int(l) = i

=⇒ obj map(h(i),h(l)) ∨ unalloc(h(i),h, l)

α
def
= {((π ⊎ {tgc ❀ }, h), (Π,h)) |

∀t. store map(π(t),Π(t)) ∧ heap map(h,h) ∧WfState(Π,h)}

Figure 4.10 Relation α for Boehm et al. GC.

• The concrete GC thread is given an initial store sgc init where its local vari-

ables are initialized by 0 (for integer and pointer variables), ǫ (for the mark

stack mstk) or ∅ (for the root set rt).

To prove Correct(T) in our framework, we apply Theorem 4.1, prove the re-

finement between low-level and high-level mutators, and verify the GC code using

a unary Rely-Guarantee-based logic.

4.3.3 Refinement Proofs for Mutator Instructions

We first define the α and ζ(t) relations. In α (see Figure 4.10), the relations

between low-level and high-level stores and heaps are enforced by store map and

heap map respectively. Their definitions reflect the state transformations in Fig-

ure 4.9. We ignore the values of those high-level-invisible structures, including the

GC’s local variables, the color and dirty fields for non-blue objects and all the

fields of blue objects. The relation α also requires the well-formedness of high-level

states. Here we still use Loc2Int to relate integers and locations.

For each mutator thread t, the ζ(t) relation enforced at the beginning and the

end of each transformation unit (each high-level instruction) is stronger than α.

It requires that the value of the auxiliary variable aux (see Figure 4.3) be a null

pointer (0p):

ζ(t)
def
= α ∩ {((π, h), (Π,h)) | π(t)(aux) = 0p} .

To define the guarantees of the mutator instructions, we first introduce some

separation logic assertions in Figure 4.11 to describe states. Following Parkinson
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(PVarList) O ::= • | x,O
(StateAssert) p, q ∈ LThrds × LStore× LHeap → Prop

(a) state assertions

B
def
= λ(π, s, h). JBK(s,2) = true

emph
def
= λ(π, s, h). dom(h) = ∅

ownnp(x)
def
= λ(π, s, h). dom(s) = {x} ∧ s(x) = ( , 0)

ownp(x)
def
= λ(π, s, h). dom(s) = {x} ∧ s(x) = ( , 1)

own(x)
def
= λ(π, s, h). dom(s) = {x}

p ∗ q def
= λ(π, s, h). ∃π1, s1, h1, π2, s2, h2. p(π1, s1, h1) ∧ q(π2, s2, h2)

∧π = π1 ⊕ π2 ∧ s = s1 ⊎ s2 ∧ h = h1 ⊕ h2

t.x = E
def
= λ(π, s, h). ∃n, b. π(t)(x) = (n, b) ∧ JEK(s,2) = n

E1.fd 7→ E2
def
= λ(π, s, h). ∃n, n′. JE1K(s,2) = n′ ∧ dom(h) = {n′}

∧h(n′)(fd) = n ∧ dom(h(n′)) = {fd} ∧ JE2K(s,2) = n

E1.fd →֒ E2
def
= (E1.fd 7→ E2) ∗ true

Onp;Op 
 p
def
= (ownnp(x1) ∗ . . . ∗ ownnp(xi) ∗ ownp(y1) ∗ . . . ∗ ownp(yj)) ∧ p

where Onp = x1, . . . , xi, • and Op = y1, . . . , yj , •
x ∈ S

def
= ∃X.S = X ⊎ {x}

⊛x∈S .p(x)
def
= (S = φ ∧ emp) ∨ (∃z, S′. (S = {z} ⊎ S′) ∧ (⊛x∈S′ .p(x)) ∗ p(z))

(b) shorthand notations for some state assertions (⊎ and ⊕ defined below)

f1⊥f2
def
= (dom(f1) ∩ dom(f2) = ∅)

f1 ⊎ f2
def
= f1 ∪ f2 , if f1⊥f2

h1 ⊕ h2
def
= curry(uncurry(h1) ∪ uncurry(h2)) , if uncurry(h1)⊥uncurry(h2)

π1 ⊕ π2
def
= {t ❀ (π1(t) ⊎ π2(t)) | t ∈ dom(π1)}

if dom(π1) = dom(π2) ∧ ∀t ∈ dom(π1). π1(t)⊥π2(t)

σ1 ⊕ σ2
def
= (π, h) , if σ1 = (π1, h1) ∧ σ2 = (π2, h2) ∧ π1 ⊕ π2 = π ∧ h1 ⊕ h2 = h

(c) disjoint unions

p⋉t q
def
= {((π ⊎ {t ❀ s}, h), (π ⊎ {t ❀ s′}, h′)) |

∃s1, h1, s2, h2, s′1, h′1. p(π, s1, h1) ∧ q(π, s′1, h
′
1)

∧ (s = s1 ⊎ s2) ∧ (h = h1 ⊎ h2) ∧ (s′ = s′1 ⊎ s2) ∧ (h′ = h′1 ⊎ h2)}
p⋉t q provided p′

def
= (p ⋉t q) ∩ ((p ∗ p′)⋉t (q ∗ p′))

(d) actions

Figure 4.11 Semantics of basic assertions.
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et al. [55], we treat program variables as resource, and use ownp(x) and ownnp(x)

for the current thread’s ownership of the variable x when it is a pointer and a

non-pointer respectively. Assertions are interpreted under (π, s, h), where s is the

store of the current thread, π consists of the stores of all the other threads and

h is the shared heap. We use E1.fd 7→ E2 to specify a single-object single-field

heap with E2 stored in the field fd of the object E1. The separating conjunction

p ∗ q means p and q hold on disjoint states. We define the disjoint union of states

in Figure 4.11(c). We use f1 ⊎ f2 as usual to denote the union of two partial

functions when their domains are disjoint. Since heaps are curried functions that

first map locations to objects, which then map field names to values, they can be

transformed to an uncurried form by the uncurry operator. We then use h1⊕h2 to

denote the union when their domains of uncurry(h1) and uncurry(h2) are disjoint.

The disjoint union of states is defined based on the disjoint unions of the shared

heaps and the stores for each thread. We use E1.fd →֒ E2 for (E1.fd 7→ E2) ∗ true
and ⊛x∈S.p(x) for iterated separating conjunction over the set S. We overload

the notations to the high-level machine and use E1.fd Z⇒ E2 for a single-object

single-field heap at the high level.

Following RGSep [66], we define two forms of actions in Figure 4.11(d). p⋉t q

represents the update of some state satisfying p to some state satisfying q, where

only the current thread t’s store and the shared heap could be modified. The

stores π of other threads should remain unchanged, and there may be parts of the

current thread’s store and the shared heap which are not affected by the action.

p⋉t q provided p′ ensures that the context state satisfying p′ is not changed by the

action.

In Figure 4.12, we give the guarantees of the high-level mutator instructions

and the transformed code, which are defined following their operational semantics.

We use (xp = n) short for (x = n)∧ownp(x) and (xnp = n) for (x = n)∧ownnp(x).

When the context is clear, we omit the superscript. The predicates blueO and

newO denote a blue object and a newly allocated object, which are defined in

Figure 4.14. Each action just accesses the local store of the mutator and will not

touch the GC store.

The refinement between the write barrier at the low level and the pointer

update instruction at the high level is formulated as

(update(x, fd, E),R(t),Gt

write barrier) �α;ζ(t)⋉ζ(t) (x.fd := E,R(t),Gt

write pt) ,

where Gt

write barrier
def
= Gt

write pt∪Gt

set dirty, i.e., the guarantee of the low-level two-step

write barrier. Gt

write pt is the guarantee of the high-level atomic write operation.
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G
t
assgn int

def
= ∃x, n, n′. (x = n ∧ emph)⋉t (x = n′ ∧ emph)

G
t
assgn pt

def
= ∃x, l, l′. (x = l ∧ emph)⋉t (x = l′ ∧ emph)

provided (l′ = nil ∨ ∃y. y = l′ ∨ ∃y, fd. y.fd Z⇒ l′)

G
t

write data
def
= ∃x, n, n′. (x.data Z⇒ n)⋉t (x.data Z⇒ n′)

G
t
write pt

def
= ∃x, fd, l, l′. (x.fd Z⇒ l)⋉t (x.fd Z⇒ l′) provided (l′ = nil ∨ ∃y. y = l′)

G
t
new

def
= ∃x. (x = ∧ emph)⋉t (x = l ∧ l.pt1 Z⇒ nil ∗ . . . ∗ l.ptm Z⇒ nil ∗ l.data Z⇒ 0)

G(t)
def
= G

t
assgn int ∪G

t
assgn pt ∪G

t

write data ∪G
t
write pt ∪G

t
new

(a) high-level guarantees

Gt
assgn int

def
= ∃x, n, n′. (xnp = n ∧ emph)⋉t (x

np = n′ ∧ emph) provided (auxp = 0)

Gt
assgn pt

def
= ∃x, n, n′. (xp = n ∧ emph)⋉t (x

p = n′ ∧ emph)

provided (auxp = 0 ∗ (n′ = 0 ∨ ∃y. yp = n′

∨∃y, fd . fd ∈ {pt1, . . . ,ptm} ∧ y.fd 7→ n′ ∨ n = n′))

Gt

write data
def
= ∃x, n, n′. (x.data 7→ n)⋉t (x.data 7→ n′) provided (auxp = 0)

Gt
write pt

def
= ∃x, fd , n, n′. (auxp = 0 ∗ x.fd 7→ n)⋉t (aux

p = x ∗ x.fd 7→ n′)

provided ((n′ = 0 ∨ ∃y. yp = n′) ∧ fd ∈ {pt1, . . . ,ptm})
Gt

set dirty
def
= ∃n. (auxp = n ∗ n.dirty 7→ )⋉t (aux

p = 0 ∗ n.dirty 7→ 1)

Gt
new

def
= ∃x, n, n′. (xp = n ∗ blueO(n′))⋉t (x

p = n′ ∗ newO(n′)) provided (auxp = 0)

G(t) def
= Gt

assgn int ∪ Gt
assgn pt ∪ Gt

write data ∪ Gt
write pt ∪ Gt

set dirty ∪ Gt
new

(b) low-level guarantees

Figure 4.12 Guarantees of mutator instructions.

Recall R(t) and R(t) are defined in Eq. (4.2) in Section 4.2. Since the transfor-

mation of other high-level instructions is identity, the corresponding refinement

proofs are simple. For example, we can prove

(x := new(),R(t),Gt
new ∪ Gt

assgn pt) �α;ζ(t)⋉ζ(t) (x := new(),R(t),Gt
new ∪G

t
assgn pt) .

4.3.4 Rely-Guarantee Reasoning about the GC Code

We use a unary logic to verify the GC thread. The proof details here are or-

thogonal to our simulation-based proof (but it is RGSim that allows us to derive

Theorem 4.1, which then links proofs in the unary logic with relational proofs).

Thus below we only give a sketch of the assertion language, the unary logic, the

precondition and the guarantee of the GC thread, the key invariants and the proof

structure.

The unary program logic we use to verify the GC thread is a standard Rely-

Guarantee logic adapted to the target language. The assertions are defined in
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{(xnp =X ′) ∗ (1≤ynp≤N)}x := get root(y){(xnp =X) ∗ (1≤ynp≤N ∧ root(y,X))}

{x.color 7→ }free(x){x.color 7→ BLUE}

{y,Onp;Op 
 x = X ∧ y = Y }push(x, y){y,Onp;Op 
 x = X ∧ y = X ::Y }

{y,Onp;Op 
 x = X ∧ y = X ′ ::Y }x := pop(y){y,Onp;Op 
 x = X ′ ∧ y = Y }

{p}C{q} (p⋉ q) ⇒ G
Id;G ⊢ {p}atomic{C}{q}

Id;G ⊢ {p}atomic{C}{q} Sta({p, q},R)

R;G ⊢ {p}atomic{C}{q}

p ⇒ ownnp(y) ∗ true R;G ⊢ {p ∗ own(x) ∧ x ∈ y}C; y := y\{x} {p ∗ own(x)}
R;G ⊢ {p ∗ own(x)}foreach x in y do C{p ∗ own(x) ∧ y = ∅}

Figure 4.13 Selected inference rules for GC verification.

Figure 4.11 and discussed before. We show the inference rules in Figure 4.13.

Rules on the top half are for sequential reasoning. Most are exactly the same as

separation logic [59] and omitted here. The figure only shows some rules we added

for the GC-specific commands (e.g., x := get root(y)) and some particular heap

manipulation rules adapted to our low-level machine model (e.g., free(x) just sets

the object’s color to BLUE). The concurrency rules in the bottom half follow

standard rely-guarantee reasoning. Since primitive instructions should be viewed

as atomic code, we could apply the two rules for atomic{C} to verify them. The

soundness of the logic with respect to the operational semantics is straightforward

and we omit the proofs here.

To verify the GC code, we first give the precondition pgc and the guarantee

Ggc of the GC. The GC starts its executions from a low-level well-formed state,

i.e., pgc
def
= wfstate. Just corresponding to the high-level WfState definition (see

Figure 4.9), the low-level wfstate predicate says that none of the reachable objects

are BLUE, as follows.

wfstate
def
= ⊛x∈[1..M ].obj(x) ∧ (∀x. reachable(x) =⇒ notBlue(x)) .

Here obj(x), reachable(x) and notBlue(x) are all defined in Figure 4.14. obj(x)

means x is a low-level heap location with the pt1, . . . , ptm, data, color and dirty

fields, and reachable(x) is defined similarly to the high-level definition Reachable(l)

in Figure 4.6. It is easy to see that any low-level initial state transformed from

the high level (see Figure 4.9) is well-formed. We define Ggc as follows.
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obj(x)
def
= x.pt1 7→ ∗ . . . ∗ x.ptm 7→ ∗ x.data 7→ ∗ x.color 7→ ∗ x.dirty 7→ ∗ true

blueO(x)
def
= x.pt1 7→ ∗ . . . ∗ x.ptm 7→ ∗ x.data 7→ ∗ x.color 7→ BLUE ∗ x.dirty 7→

newO(x)
def
= x.pt1 7→ 0 ∗ . . . ∗ x.ptm 7→ 0 ∗ x.data 7→ 0 ∗ x.color 7→ BLACK ∗ x.dirty 7→0

black(x)
def
= x.color →֒ BLACK

white(x)
def
= x.color →֒ WHITE

dirty(x)
def
= x.dirty →֒ 1

notBlue(x)
def
= ∃c. (x.color →֒ c ∧ c 6= BLUE)

notWhite(x)
def
= ∃c. (x.color →֒ c ∧ c 6= WHITE)

notDirty(x)
def
= x.dirty →֒ 0

root(t, S)
def
= λ(π, s, h). ∃st. st = π(t) ∧ S = {n | ∃x. st(x) = (n, 1) ∧ x 6= aux}

edge(x, y)
def
= ∃fd ∈ {pt1, . . . ,ptm}. (x.fd →֒ y)

pathk(x, y)
def
=

{
x = y if k = 0
∃z. edge(x, z) ∧ pathk−1(z, y) if k > 0

path(x, y)
def
= ∃k. pathk(x, y)

reachable(t, x)
def
= ∃S, y. root(t, S) ∧ y ∈ S ∧ path(y, x) ∧ x 6= 0

reachable(x)
def
= ∃t ∈ [1..N ]. reachable(t, x)

wfstate
def
= ⊛x∈[1..M ].obj(x) ∧ (∀x. reachable(x) =⇒ notBlue(x))

whiteEdge(x, fd , y)
def
= (x.fd →֒ y) ∧ white(y) ∧ fd ∈ {pt1, . . . ,ptm}

whiteEdge(x, y)
def
= ∃fd . whiteEdge(x, fd , y)

todirty(x, n)
def
= ∃t, S. (t.aux = x ∧ root(t, S) ∧ n ∈ S)

instk(n,A)
def
= ∃n′, A′. A = n′ ::A′ ∧ (n = n′ ∨ instk(n,A′))

stkBlack(A)
def
= ∀x. instk(x,A) =⇒ black(x)

reachBlack
def
= ∀x. reachable(x) =⇒ black(x)

ptfdSta(x.fd , y)
def
= ∃n. (x.fd →֒ n) ∧ (y = n ∨ dirty(x) ∨ n = 0 ∨ todirty(x, n))

newOSta(x)
def
= obj(x) ∧ black(x) ∧ ∀fd ∈ {pt1, . . . ,ptm}. ptfdSta(x.fd , 0)

rtBlack(t)
def
= ∃S. root(t, S) ∧ ∀n ∈ S. black(n)

rtBlack
def
= ∀t ∈ [1..N ]. rtBlack(t)

markRt(n)
def
= ∀t ∈ [1..n]. rtBlack(t)

clearColor(n)
def
= ∀x ∈ [1..n]. (x.color →֒ BLACK =⇒ newOSta(x))

clearDirty(n)
def
= ∀x ∈ [1..n]. notDirty(x)

reclaim(n)
def
= ∀x ∈ [1..n]. notWhite(x)

reachInv
def
= ∀x, y. reachable(x) ∧ black(x) ∧ whiteEdge(x, y)

=⇒ dirty(x) ∨ todirty(x, y)

reachStk(A)
def
= ∀x, y. reachable(x) ∧ black(x) ∧ whiteEdge(x, y)

=⇒ dirty(x) ∨ todirty(x, y) ∨ instk(x,A)

reachTomk(A, xp, Sf , xn)
def
=

∀x, fd , y. reachable(x) ∧ black(x) ∧ whiteEdge(x, fd , y)
=⇒ dirty(x) ∨ todirty(x, y) ∨ instk(x,A) ∨ (x = xp ∧ fd ∈ Sf ) ∨ (y = xn)

Figure 4.14 Useful assertions for verifying Boehm et al. GC.
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{wfstate}
Collection() {

local mstk: Seq(Int);

Loop Invariant: {wfstate ∗ (ownnp(mstk) ∧ mstk = ǫ)}
while (true) {

Initialize();

{(wfstate ∧ reachInv) ∗ (ownnp(mstk) ∧ mstk = ǫ)}
Trace();

{(wfstate ∧ reachInv) ∗ (ownnp(mstk) ∧ mstk = ǫ)}
CleanCard();

{(wfstate ∧ reachInv) ∗ (ownnp(mstk) ∧ mstk = ǫ)}
atomic{

ScanRoot();{
∃X. (wfstate ∧ reachStk(X) ∧ stkBlack(X) ∧ rtBlack)
∗ (ownnp(mstk) ∧ mstk = X)

}

CleanCard();

}

{(wfstate ∧ reachBlack) ∗ (ownnp(mstk) ∧ mstk = ǫ)}
Sweep();

}

}

{false}

Figure 4.15 Proof outline of Collection().

Ggc
def
= {((π ⊎ {tgc ❀ s}, h), (π ⊎ {tgc ❀ s′}, h′)) |

∀n. reachable(n)(π, h) =⇒
⌊h(n)⌋ = ⌊h′(n)⌋ ∧ h(n).color 6= BLUE ∧ h′(n).color 6= BLUE} .

The GC guarantees not modifying the mutator stores. For any mutator-reachable

object, the GC does not update its fields coming from the high-level mutator (i.e.,

the pointer fields and the data field), nor does it reclaim the object. Here ⌊ ⌋ lifts
a low-level object to a new one that contains mutator data only.

⌊o⌋ def
= {pt1 ❀ o(pt1), . . . , ptm ❀ o(ptm), data ❀ o(data)} .

We could prove that Ggc does not contain more behaviors than AbsGCStep.

Ggc ◦ α−1 ⊆ α−1 ◦ AbsGCStep .

We present the proof of the top-level collection cycle in Figure 4.15. One of the

key invariants used in the proofs is reachInv (defined in Figure 4.14). It says, if a

reachable BLACK object x points to a WHITE object y, then either x is dirty or a mu-

tator is going to dirty x (the predicate todirty(x, y) holds). The latter occurs when

the mutator thread t has done the first step of its write barrier update(x, fd , y).

We have t.aux = x and from the mutator’s guarantees (Figure 4.12(b)), we know

t must be going to dirty x.
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Each instruction in the GC code is atomic and can be verified by applying

the rules for atomic{C} in Figure 4.13. As required by the second rule for

atomic{C}, we need to stabilize the pre- and post-conditions in the verifica-

tion. For example, when reading a pointer field of an object to a local variable,

the postcondition should be stabilized as follows since the parallel mutators might

update the field.

Rgc;Ggc ⊢

{
∃X, Y. (j = Y ) ∗ (i.pt1 →֒ X)

}

j := i.pt1;{
∃X. (j = X) ∗ ptfdSta(i.pt1, X)

} (4.5)

Here ptfdSta(i.pt1, X) is defined in Figure 4.14. It says either the pt1 field of i is

X , or i is (or is going to be) marked as dirty. Similarly, when reading the color

of an object, the postcondition should take into account the mutators’ possible

update of the color field via allocation.

Rgc;Ggc ⊢

{
∃X, Y. (c = X) ∗ (i.color →֒ Y )

}

c := i.color;{
∃X, Y. (c = X) ∗ (i.color →֒ Y )

∧ (X = Y ∨ (X = BLUE ∧ newOSta(i)))

} (4.6)

As defined in Figure 4.14, newOSta(i) says i points to a new object whose color

field is BLACK, and each pointer field is either 0 or updated (in this case, the object

is dirty).

The module MarkAndPush(i) will be called several times in the GC code,

so we first give its general specification here. When the object i is WHITE,

MarkAndPush(i) colors it BLACK and pushes it onto the mark stack.

Rgc;Ggc ⊢

{
∃A. wfstate ∧ reachTomk(A, xp, Sf , i)

∧ stkBlack(A) ∧ (i = 0 ∨ obj(i))

}

MarkAndPush(i);{
∃A. wfstate ∧ reachTomk(A, xp, Sf , 0)

∧ stkBlack(A) ∧ (i = 0 ∨ notWhite(i))

} (4.7)

As defined in Figure 4.14, reachTomk(A, xp, Sf , xn) means, if a reachable BLACK

object x points to a WHITE object y via the field fd , then one of the following cases

holds.

(1) dirty(x)∨ todirty(x): x is (or is going to be) marked as dirty, as required in
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reachInv.

(2) instk(x,A): x is on the stack A.

(3) x = xp ∧ fd ∈ Sf : x is xp, and fd is a field in Sf .

(4) y = xn: y is xn.

The case (2) will be useful during tracing when some objects have been colored

BLACK and pushed onto the stack. We define reachStk to express that only cases

(1) and (2) are satisfied. We will discuss the uses of the last two cases later.

Every collection cycle in Figure 4.15 starts from a well-formed state (wfstate)

with an empty mark stack mstk in the GC’s local store. Then the GC does the

following in order.

1. Concurrent initialization (Initialize(), shown in Figure 4.16). We use

clearColor(n) to mean that the GC has done color-clearing from locations 1

to n in the heap, but there might still be BLACK objects since the mutators

could allocate an BLACK object after the GC’s clearing. We could prove

reachInv holds when the GC has cleared the colors of all the objects in the

heap, as shown in the following lemma.

Lemma 4.2. wfstate ∧ clearColor(M) =⇒ reachInv.

That is, after initialization, if a BLACK reachable object x points to a WHITE

object y, then x must be a newly-allocated object whose pointer field is

updated and dirty bit is (or is going to be) set to 1.

2. Concurrent mark-phase (Trace(), shown in Figure 4.17).

(a) The GC first calls MarkAndPush(i) to mark and push every root object.

We need the following two lemmas to relate the unified pre- and post-

conditions of MarkAndPush(i) in judgment (4.7) and the actual pre-

and post-conditions when calling the module.

Lemma 4.3. reachStk(X) =⇒ reachTomk(X, 0, ∅, i).
Lemma 4.4. reachTomk(X, 0, ∅, 0) =⇒ reachStk(X).

Then by the consequence rule, we can reuse the proof of MarkAndPush(i).

(b) Then the GC calls the module TraceStack() (Figure 4.18) to perform

the depth-first traversal. The loop invariant reachStk holds at each time

before the GC pops an object from the mark stack. Suppose the top

object i on the mark stack points to a WHITE object x. The GC does

the following in order:
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{wfstate}
Initialize() {

local i: [1..M], c: {BLACK, WHITE, BLUE};

i := 1;

Loop Invariant: {(wfstate ∧ clearColor(i − 1) ∧ 1 ≤ i ≤ M + 1) ∗ ownnp(c)}
while (i <= M) { ... } // See Figure 4.1 for the full code

}

{wfstate ∧ reachInv} // using Lemma 4.2

Figure 4.16 Proof outline of Initialize().

{(wfstate ∧ reachInv) ∗ (ownnp(mstk) ∧ mstk = ǫ)}
Trace() {

local t: [1..N], rt: Set(Int), i: [0..M];

t := 1;

Loop Invariant:

{
(wfstate ∧ reachInv) ∗ (ownnp(mstk) ∧ mstk = ǫ)
∗ (ownnp(t) ∧ 1 ≤ t ≤ N + 1) ∗ ownnp(rt) ∗ ownp(i)

}

while (t <= N) {

rt := get_root(t);

Foreach Invariant: {FInv}
foreach i in rt do {

{FInv ∧ i ∈ rt} // using Lemma 4.3
MarkAndPush(i);

{FInv ∧ i ∈ rt} // using Lemma 4.4
}

t := t + 1;{
∃X. (wfstate ∧ reachStk(X) ∧ stkBlack(X)) ∗ (ownnp(mstk) ∧ mstk = X)
∗ (ownnp(t) ∧ 1 ≤ t ≤ N + 1) ∗ ownnp(rt) ∗ ownp(i)

}

TraceStack();{
(wfstate ∧ reachInv) ∗ (ownnp(mstk) ∧ mstk = ǫ)
∗ (ownnp(t) ∧ 1 ≤ t ≤ N + 1) ∗ ownnp(rt) ∗ ownp(i)

}

}

}

{(wfstate ∧ reachInv) ∗ (ownnp(mstk) ∧ mstk = ǫ)}
where FInv

def
=

∃X. (wfstate ∧ reachStk(X) ∧ stkBlack(X)) ∗ (ownnp(mstk) ∧ mstk = X)
∗ (ownnp(t) ∧ 1 ≤ t ≤ N) ∗ (ownnp(rt) ∧ ∀n ∈ rt. 0 ≤ n ≤ M) ∗ ownp(i)

Figure 4.17 Proof outline of Trace().
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i. Pop i. Then the BLACK object i that points to x is not on the stack

now.

ii. Read the pt1 field of i to a local variable j. Then ptfdSta(i.pt1, j)

holds as we explained in judgment (4.5). Also we know x must be

either j, or pointed to by i via fields pt2, . . . , ptm. Thus we have

reachTomk(mstk, i, {pt2, . . . , ptm}, j) holds. Formally, the follow-

ing lemma holds:

Lemma 4.5.

A. reachStk(i :: X) ⇐⇒ reachTomk(X, i, {pt1, . . . , ptm}, 0);
B. reachTomk(X, i, Sf , 0) =⇒ reachTomk(X, i, Sf , j);

C. reachTomk(X, i, Sf , j) ∧ ptfdSta(i.fd , j) ∧ fd ∈ Sf

=⇒ reachTomk(X, i, Sf\{fd}, j).
iii. MarkAndPush(j). We can reuse the proof of this module again.

iv. Mark and push other children. The proof is similar to the above two

steps, so we omit the discussions. Finally, reachStk holds because

no reachable WHITE object needs to rely on the reachability from i

(it could be reachable from a child of i which is on the stack now).

After tracing, we can ensure reachInv still holds. That is, if a BLACK object

x points to a WHITE object, then x must be (or is going to be) dirty and its

pointer field is updated by the mutators.

3. Concurrent card-cleaning (CleanCard(), as shown in Figure 4.19). We reuse

the proof of TraceStack() via the frame rule. We can conclude reachInv is

maintained at the end of this phase.

4. Stop-the-world card-cleaning.

(a) The GC first re-scans the roots (ScanRoot(), shown in Figure 4.20) as

if they were dirty. Then reachStk and rtBlack hold. rtBlack says all the

root objects are BLACK. Moreover, all the objects on the stack are BLACK

(denoted by stkBlack). The atomic MarkAndPush(i) is proved similarly

to the concurrent one in (4.7) with the same pre- and post-conditions.

(b) Then the GC cleans the cards (the atomic CleanCard(), shown in Fig-

ure 4.21) without the interference from the mutators. At the end, the

mark stack is empty and all the reachable objects are BLACK (denoted

by reachBlack). The proof for the atomic TraceStack() is similar to

the proof of the concurrent one and omitted here.
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{∃X. (wfstate ∧ reachStk(X) ∧ stkBlack(X)) ∗ (ownnp(mstk) ∧ mstk = X)}
TraceStack() {

local i: [1..M], j: [0..M];

Loop Invariant:

{
∃X. (wfstate ∧ reachStk(X) ∧ stkBlack(X))
∗ (ownnp(mstk) ∧ mstk = X) ∗ ownp(i) ∗ ownp(j)

}

while (!is_empty(mstk)) {

i := pop(mstk);{
∃X ′. (wfstate ∧ reachStk(i :: X ′) ∧ stkBlack(X ′) ∧ obj(i))
∗ (ownnp(mstk) ∧ mstk = X ′) ∗ ownp(j)

}

j := i.pt1;{
∃X ′. (wfstate ∧ reachStk(i :: X ′) ∧ stkBlack(X ′) ∧ obj(i)

∧ ptfdSta(i.pt1, j) ∧ (j = 0 ∨ obj(j))) ∗ (ownnp(mstk) ∧ mstk = X ′)

}

{
∃X ′. (wfstate ∧ reachTomk(X ′, i, {pt2, . . . ,ptm}, j) ∧ stkBlack(X ′)

∧ (j = 0 ∨ obj(j)) ∧ 1 ≤ i ≤ M) ∗ (ownnp(mstk) ∧ mstk = X ′)

}

// using Lemma 4.5
MarkAndPush(j);{
∃X ′. (wfstate ∧ reachTomk(X ′, i, {pt2, . . . ,ptm}, 0) ∧ stkBlack(X ′)

∧ (j = 0 ∨ notWhite(j)) ∧ 1 ≤ i ≤ M) ∗ (ownnp(mstk) ∧ mstk = X ′)

}

...

j := i.ptm; MarkAndPush(j);{
∃X ′. (wfstate ∧ reachTomk(X ′, i, ∅, 0) ∧ stkBlack(X ′)

∧ (j = 0 ∨ notWhite(j))) ∗ (ownnp(mstk) ∧ mstk = X ′)

}

}

}

{(wfstate ∧ reachInv) ∗ (ownnp(mstk) ∧ mstk = ǫ)}

Figure 4.18 Proof outline of TraceStack().

{(wfstate ∧ reachInv) ∗ (ownnp(mstk) ∧ mstk = ǫ)}
CleanCard() {

local i: [1..M], c: {BLACK, WHITE, BLUE}, d: {1, 0};

i := 1;

Loop Invariant: {LInv}
while (i <= M) { ... } // See Figure 4.1 for the full code

{LInv}
TraceStack();

{(wfstate ∧ reachInv) ∗ (ownnp(mstk) ∧ mstk = ǫ) ∗ ownp(i) ∗ ownnp(c) ∗ ownnp(d)}
}

{(wfstate ∧ reachInv) ∗ (ownnp(mstk) ∧ mstk = ǫ)}
where LInv

def
=

∃X. (wfstate ∧ reachStk(X) ∧ stkBlack(X)) ∗ (ownnp(mstk) ∧ mstk = X)
∗ (ownp(i) ∧ 1 ≤ i ≤ M + 1) ∗ ownnp(c) ∗ ownnp(d)

Figure 4.19 Proof outline of CleanCard().
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{(wfstate ∧ reachInv) ∗ (ownnp(mstk) ∧ mstk = ǫ)}
ScanRoot() {

local t: [1..N], rt: Set(Int), i: [0..M];

t := 1;

Loop Invariant:

{
∃X. (Inv ∧ 1 ≤ t ≤ N + 1)
∗ (ownnp(mstk) ∧ mstk = X) ∗ ownp(i) ∗ ownnp(rt)

}

while (t <= N) {

rt := get_root(t);

Foreach Invariant:{
∃X,Y. (Inv ∧ 1 ≤ t ≤ N ∧ root(t, Y ) ∧ ∀n ∈ (Y \rt). black(n) ∧ rt ⊆ Y )
∗ (ownnp(mstk) ∧ mstk = X) ∗ ownp(i)

}

foreach i in rt do { MarkAndPush(i); }

t := t + 1;

}

}

{∃X. (wfstate ∧ reachStk(X) ∧ stkBlack(X) ∧ rtBlack) ∗ (ownnp(mstk) ∧ mstk = X)}
where Inv

def
= wfstate ∧ reachStk(X) ∧ stkBlack(X) ∧markRt(t − 1)

Figure 4.20 Proof outline of ScanRoot() in an atomic block.

{∃X. (wfstate ∧ reachStk(X) ∧ stkBlack(X) ∧ rtBlack) ∗ (ownnp(mstk) ∧ mstk = X)}
CleanCard() {

local i: [1..M], c: {BLACK, WHITE, BLUE}, d: {1, 0};

i := 1;

Loop Invariant:{
∃X. (wfstate ∧ reachStk(X) ∧ stkBlack(X) ∧ rtBlack ∧ clearDirty(i− 1)

∧ 1 ≤ i ≤ M + 1) ∗ (ownnp(mstk) ∧ mstk = X) ∗ ownnp(c) ∗ ownnp(d)

}

while (i <= M) { ... } // See Figure 4.1 for the full code{
∃X. (wfstate ∧ reachStk(X) ∧ stkBlack(X) ∧ rtBlack ∧ clearDirty(M))
∗ (ownnp(mstk) ∧ mstk = X) ∗ ownnp(c) ∗ ownnp(d)

}

TraceStack();{
(wfstate ∧ reachInv ∧ rtBlack ∧ clearDirty(M))
∗ (ownnp(mstk) ∧ mstk = ǫ) ∗ ownnp(c) ∗ ownnp(d)

}

}

{(wfstate ∧ reachBlack) ∗ (ownnp(mstk) ∧ mstk = ǫ)}

Figure 4.21 Proof outline of CleanCard() in an atomic block.

{wfstate ∧ reachBlack}
Sweep() {

local i: [1..M], c: {BLACK, WHITE, BLUE};

i := 1;

Loop Invariant:
{(wfstate ∧ reachBlack ∧ reclaim(i− 1) ∧ 1 ≤ i ≤ M + 1) ∗ ownnp(c)}
while (i <= M) { ... } // See Figure 4.1 for the full code

}

{wfstate ∧ reachBlack ∧ reclaim(M)}

Figure 4.22 Proof outline of Sweep().
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5. Concurrent sweep-phase (Sweep(), shown in Figure 4.22). No matter how

the mutators interleave with the GC, all the white objects remain unreach-

able. Thus the reclamation is safe that guarantees Ggc. After sweep, the

state is still well-formed.

4.4 Related Work

Vechev et al. [69] define transformations to generate concurrent GCs from an ab-

stract collector. Afterwards, Pavlovic et al. [56] present refinements to derive con-

crete concurrent GCs from specifications. These methods focus on describing the

behaviors of variants (or instantiations) of a correct abstract collector (or a spec-

ification) in a single framework, assuming all the mutator operations are atomic.

By comparison, we provide a general correctness notion and a proof method for

verifying concurrent GCs and the interactions with mutators (where the barriers

could be fine-grained). Furthermore, the correctness of their transformations or

refinements is expressed in a GC-oriented way (e.g., the target GC should mark

no less objects than the source), which cannot be used to justify other refinement

applications.

Kapoor et al. [39] verify Dijkstra’s GC using concurrent separation logic. To

validate the GC specifications, they also verify a representative mutator in the

same system. In contrast, we reduce the problem of verifying a concurrent GC to

verifying a transformation, ensuring semantics preservation for all mutators.

Our GC verification framework is inspired by McCreight et al. [49], who propose

a framework for separate verification of stop-the-world and incremental GCs and

their mutators, but their framework does not handle concurrency.
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Chapter 5

Verifying Linearizability

In this chapter we verify linearizability [35] of concurrent objects. As we mentioned

in Section 1.1.2, the most intuitive approach is to find the Linearization Point

(LP) where the object method takes effect. However, for objects with helping

mechanism and/or future-dependent LPs, we cannot statically locate their LPs

in the implementation code. Verifying linearizability of those objects is a well-

known challenging problem. In this chapter, we propose a Hoare-style program

logic for modular verification of linearizability with non-fixed LPs. We design a

new simulation as the meta-theory of the logic, which extends the RGSim relation

with the support for non-fixed LPs. Both the logic and the simulation ensure a

contextual refinement, which is equivalent to linearizaiblity.

We first analyze the challenges in the logic design and informally explain our

approach in Section 5.1. Then we give the basic technical setting in Section 5.2,

including a formal operational definition of linearizability and its equivalence to a

contextual refinement. We present our program logic in Section 5.3 and the new

simulation in Section 5.4. Finally in Section 5.5 we apply our logic to verify 12

classic algorithms, two of which are used in the java.util.concurrent package.

5.1 Challenges and Our Approach

Below we start from a simple program logic for linearizability with fixed LPs, and

extend it to support algorithms with non-fixed LPs. We also discuss the problems

with the underlying meta-theory, which establishes the soundness of the logic with

respect to linearizability.
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5.1.1 Basic Logic for Fixed LPs

We first show a simple and intuitive logic which follows the LP approach. As

a working example, Figure 5.1(a) shows the implementation of push in Treiber

stack [62] (let’s first ignore the blue code at line 7’). The stack object is imple-

mented as a linked list pointed to by S, and push(v) repeatedly tries to update

S to point to the new node using compare-and-swap (cas) until it succeeds. The

atomic instruction cas(&S, t, x) reads the value from the location of S, com-

pares it with an expected value t, writes out a new value x if the two match, and

returns whether the update succeeds.

To verify linearizability, we first locate the LP in the code. The LP of push(v)

is at the cas statement when it succeeds (line 7). That is, the successful cas can

correspond to the abstract atomic PUSH(v) operation: Stk := v::Stk; and all the

other concrete steps cannot. Here we simply represent the abstract stack Stk as a

sequence of values with “::” for concatenation. Then push(v) can be linearized

at the successful cas since it is the single point where the operation takes effect.

We can encode the above reasoning in an existing (unary) concurrent pro-

gram logic, such as Rely-Guarantee reasoning [38] and CSL [52]. Inspired by

Vafeiadis [66], we embed the abstract operation γ and the abstract state σa as aux-

iliary states on the concrete side, so the program state now becomes (σ, (γ, σa)),

where σ is the original concrete state. Then we instrument the concrete imple-

mentation with an auxiliary command linself (shorthand for “linearize self”) at

the LP to update the auxiliary state. Intuitively, linself will execute the abstract

operation γ over the abstract state σa, as described in the following operational

semantics rule.

(γ, σa) ❀ (end, σ′
a)

(linself , (σ, (γ, σa))) −→ (skip, (σ, (end, σ′
a)))

Here ❀ encodes the transition of γ at the abstract level, and end is a termi-

nation marker. We insert linself into the same atomic block with the concrete

statement at the LP, such as line 7’ in Figure 5.1(a), so that the concrete and

abstract sides are executed simultaneously. Here the atomic block 〈C〉 means

C is executed atomically. Then we reason about the instrumented code using a

traditional concurrent logic extended with a new inference rule for linself .

The idea is intuitive, but it cannot handle more advanced algorithms with non-

fixed LPs, including the algorithms with the helping mechanism and those whose

locations of LPs depend on the future interleavings. Below we analyze the two

challenges in detail and explain our solutions using two representative algorithms,

the HSY stack and the pair snapshot.
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1 push(int v) {

2 local x, t, b;

3 x := new node(v);

4 do {

5 t := S;

6 x.next := t;

7 <b := cas(&S,t,x);

7’ if(b) linself;>

8 } while(!b);

9 }

(a) Treiber stack

1 readPair(int i, j) {

2 local a, b, v, w;

3 while(true) {

4 <a := m[i].d; v := m[i].v;>

5 <b := m[j].d; w := m[j].v;

5’ trylinself;>

6 if(v = m[i].v) {

6’ commit(cid ֌ (end, (a, b)));
7 return (a, b); }

8 } }

9 write(int i, d) {

10 <m[i].d := d; m[i].v++;> }

(c) pair snapshot

1 push(int v) {

2 local p, him, q;

3 p := new threadDescriptor(cid, PUSH, v);

4 while(true) {

5 if (tryPush(v)) return;

6 loc[cid] := p;

7 him := rand(); q := loc[him];

8 if (q != null && q.id = him && q.op = POP)

9 if (cas(&loc[cid], p, null)) {

10 <b := cas(&loc[him], q, p);

10’ if(b) {lin(cid); lin(him);}>
11 if (b) return; }

12 ...

13 } }

(b) HSY elimination-based stack

Figure 5.1 LPs and instrumented auxiliary commands.

5.1.2 Support Helping Mechanism with Pending Thread

Pool

HSY elimination-based stack [30] is a typical example using the helping mecha-

nism. Figure 5.1(b) shows part of its push method implementation. The basic

idea behind the algorithm is to let a push and a pop cancel out each other.

At the beginning of the method in Figure 5.1(b), the thread allocates its thread

descriptor (line 3), which contains the thread ID, the name of the operation to be

performed, and the argument. The current thread cid first tries to perform Treiber

stack’s push (line 5). It returns if succeeds. Otherwise, it writes its descriptor in

the global loc array (line 6) to allow other threads to eliminate its push. The

elimination array loc[1..n] has one slot for each thread, which holds the pointer
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to a thread descriptor. The current thread cid randomly reads a slot him in loc

(line 7). If the descriptor q says him is doing pop, cid tries to eliminate itself

with him by two cas instructions. The first clears cid’s entry in loc so that no

other thread could eliminate with cid (line 9). The second attempts to mark the

entry of him in loc as “eliminated with cid” (line 10). If successful, it should be

the LPs of both the push of cid and the pop of him, with the push happening

immediately before the pop.

The helping mechanism may cause the current thread to linearize the opera-

tions of other threads, which cannot be expressed in the basic logic in Section 5.1.1.

It also breaks modularity and makes thread-local verification difficult. For the

thread cid, its concrete step could correspond to the steps of both cid and him at

the abstract level. For him, a step from its environment could fulfill its abstract

operation. We must ensure in the thread-local verification that the two threads

cid and him always take consistent views on whether and how the abstract opera-

tion of him is done. For example, if we let a concrete step in cid fulfill the abstract

pop of him, we must know him is indeed doing pop and its pop has not been done

before. Otherwise, we will not be able to compose cid and him in parallel.

We extend the basic logic to express the helping mechanism. First we introduce

a new auxiliary command lin(t) to linearize a specific thread t. For instance, in

Figure 5.1(b) we insert line 10’ at the LP to execute both the push of cid and

the pop of him at the abstract level. We also extend the auxiliary state to record

both abstract operations of cid and him. More generally, we embed a pending

thread pool U , which maps threads to their abstract operations. It specifies a set

of threads whose operations might be helped by others. Then under the new state

(σ, (U, σa)), the semantics of lin(t) just executes the thread t’s abstract operation

in U , similarly to the semantics of linself discussed before.

The shared pending thread pool U allows us to recover the thread modularity

when verifying the helping mechanism. A concrete step of cid could fulfill the

operation of him in U as well as its own abstract operation; and conversely, the

thread him running in parallel could check U to know if its operation has been

finished by others (such as cid) or not. We gain consistent abstract information of

other threads in the thread-local verification. Note that the need of U itself does

not break modularity because the required information of other threads’ abstract

operations can be inferred from the concrete state. In the HSY stack example, we

know him is doing pop by looking at its thread descriptor in the elimination array.

In this case U can be viewed as an abstract representation of the elimination array.
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5.1.3 Try-Commit Commands for Future-Dependent LPs

Another challenge is to reason about optimistic algorithms whose LPs depend on

the future interleavings.

We give a toy example, pair snapshot [58], in Figure 5.1(c). The object is an

array m, each slot of which contains two fields: d for the data and v for the version

number. The write(i,d) method (line 9) updates the data stored at address i

and increments the version number instantaneously. The readPair(i,j) method

intends to perform an atomic read of two slots i and j in the presence of concurrent

writes. It reads the data at slots i and j separately at lines 4 and 5, and validate

the first read at line 6. If i’s version number has not been increased, the thread

knows that when it read j’s data at line 5, i’s data had not been updated. This

means the two reads were at a consistent state, thus the thread can return. We

can see that the LP of readPair should be at line 5 when the thread reads j’s

data, but only if the validation at line 6 succeeds. That is, whether we should

linearize the operation at line 5 depends on the future unpredictable behavior of

line 6.

As discussed a lot in previous work (e.g., [1, 66]), the future-dependent LPs

cannot be handled by introducing history variables, which are auxiliary variables

storing values or events in the past executions. We have to refer to events coming

from the unpredictable future. Thus people propose prophecy variables [1, 66] as

the dual of history variables to store future behaviors. But as far as we know,

there is no semantics of prophecy variables suitable for Hoare-style local and com-

positional reasoning.

Instead of resorting to prophecy variables, we follow the speculation idea [65].

For the concrete step at a potential LP (e.g., line 5 of readPair), we execute the

abstract operation speculatively and keep both the result and the original abstract

configuration. Later based on the result of the validation (e.g., line 6 in readPair),

we keep the appropriate branch and discard the other.

For the logic, we introduce two new auxiliary commands: trylinself is to do

speculation, and commit(p) will commit to the appropriate branch satisfying the

assertion p. In Figure 5.1(c), we insert lines 5’ and 6’, where cid ֌ (end, (a, b))

means that the current thread cid should have done its abstract operation and

would return (a, b). We also extend the auxiliary state to record the multiple

possibilities of abstract operations and abstract states after speculation.

Furthermore, we can combine the speculation idea with the pending thread

pool. We allow the abstract operations in the pending thread pool as well as the

current thread to speculate. Then we could handle some trickier algorithms such
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(a) simple simulation

LPs of t and t′
t

t
t′

(b) pending thread pool

potential LP commit
. . .

. . .

. . . ✔

✘

(c) speculation

Figure 5.2 Simulation diagrams for linearizability verification.

as RDCSS [27], in which the location of LP for thread t may be in the code of

some other thread t′ and also depend on the future behaviors of t′. Please see

Section 5.5 for one such example.

5.1.4 Simulation as Meta-Theory

The LP proof method can be understood as building simulations between the

concrete implementations and the abstract atomic operations, such as the simple

weak simulation in Figure 5.2(a). The lower-level and higher-level arrows are the

steps of the implementation and of the abstract operation respectively, and the

dashed lines denote the simulation relation. We use dark nodes and white nodes

at the abstract level to distinguish whether the operation has been finished or

not. The only step at the concrete side corresponding to the single abstract step

should be the LP of the implementation (labeled “LP” in the diagram). Since our

program logic is based on the LP method, we can expect simulations to justify its

soundness. In particular, we want a thread-local simulation which can handle both

the helping mechanism and future-dependent LPs and can ensure linearizability.

First, to ensure linearizability, the thread-local simulation has to be composi-

tional. To this end, we adopt the ideas in our RGSim relation and parameterize

the simple simulation with the interference from the environments in the form of

rely/guarantee conditions. We can prove that the compositional RGSim relation

ensures a contextual refinement, which is equivalent to linearizability.

To support helping in the simulation, we should allow the LP step at the

concrete level to correspond to an abstract step made by a thread other than the

one being verified. This requires information about code and thread-local states of

environment threads at the abstract side, which unfortunately is not provided in

traditional thread-local simulations (including RGSim). To address the problem,

we introduce the pending thread pool at the abstract level of the simulation, just
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as in the development of our logic in Section 5.1.2. The new simulation is shown

in Figure 5.2(b). We can see that a concrete step of thread t could help linearize

the operation of t′ in the pending thread pool as well as its own operation. Thus

the new simulation intuitively supports the helping mechanism.

As forward simulations, neither of the simulations in Figure 5.2(a) and (b)

supports future-dependent LPs. For each step along the concrete execution in

those simulations, we need to decide immediately whether the step is at the LP,

and cannot postpone the decision to the future. As discussed a lot in previous

work (e.g., [1, 12, 17, 48]), we have to introduce backward simulations or hybrid

simulations to support future-dependent LPs. Here we exploit the speculation

idea and develop a forward-backward simulation [48]. As shown in Figure 5.2(c),

we keep both speculations after the potential LP, where the higher black nodes

result from executing the abstract operation and the lower white nodes record

the original abstract configuration. Then at the validation step we commit to the

correct branch.

We combine the above ideas and develop a new compositional simulation with

the support of non-fixed LPs as the meta-theory of our logic. We will discuss our

simulation formally in Section 5.4.

5.2 Basic Technical Settings and Linearizability

In this section, we formalize linearizability of an object implementation with re-

spect to its abstract operations, and show that linearizability is equivalent to a

contextual refinement. We first define a programming language that supports

concurrent objects. It is an instantiation of the generic language in Figure 2.2

introduced for refinement verification.

5.2.1 Language and Semantics

As shown in Figure 5.3, a program W contains several client threads in parallel,

each of which could call the methods declared in the object Π. A method is

defined as a pair (x, C), where x is the formal argument and C is the method

body. For simplicity, we assume there is only one object in W and each method

takes one argument only, but it is easy to extend our work with multiple objects

and arguments.

Each method returns a value to the client using the command return E, unless

it does not terminate. We use a runtime command noret to abort methods that

terminate but do not execute a return statement. It is automatically appended to
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(MName) f ∈ String

(Expr) E ::= x | n | E + E | . . .

(BExp) B ::= true | false | E = E | !B | . . .

(Instr) c ::= x := E | x := [E] | [E] := E | print(E)
| x := cons(E, . . . , E) | dispose(E) | . . .

(Stmt) C ::= skip | c | x := f(E) | return E | fret(n) | noret

| 〈C〉 | C;C | if (B) C else C | while (B){C}
(Prog) W ::= skip | let Π in C ‖ . . .‖C

(ODecl) Π ::= {f1 ❀ (x1, C1), . . . , fn ❀ (xn, Cn)}

Figure 5.3 Syntax of the programming language.

(ThrdID) t ∈ Nat

(Store) s ∈ PVar ⇀ Int (Heap) h ∈ Nat ⇀ Int

(Mem) σ ::= (s, h)

(CallStk) κ ::= (sl, x, C) | ◦
(ThrdPool) K ::= {t1 ❀ κ1, . . . , tn ❀ κn}

(PState) S ::= (σc, σo,K)

(LState) ς ::= (σc, σo, κ)

(Evt) e ::= (t, f, n) | (t, ret, n) | (t,obj) | (t,obj,abort)
| (t,out, n) | (t, clt) | (t, clt,abort)

(ETrace) T ::= ǫ | e ::T

Figure 5.4 States and event traces.

the method code and is not supposed to be used by programmers. The command

return E will first calculate the return value n and reduce to fret(n), another

runtime command automatically generated during executions. We separate the

evaluation of E from returning its value n to the client, to allow interference

between the two steps.

Other commands are mostly standard (see [20, 59]). Commands x := [E]

and [E] := E ′ do memory load and store. Memory allocation and free are done

by x := cons(E1, . . . , En) and dispose(E). The atomic block 〈C〉 executes C

atomically. Clients can also use print(E) to produce externally observable events.

We do not allow the object’s methods to produce external events. To simplify the

semantics, we also assume there are no nested method calls.

Figure 5.4 gives the model of program states. Here we partition a global state

S into the client memory σc, the object memory σo and a thread pool K. Memory
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σ consists of a store s which maps variables to integers and a heap h which maps

locations (i.e., natural numbers) to integers. A client can only access the client

memory σc, unless it calls object methods. The thread pool maps each thread

ID t to its local call stack frame. A call stack κ could be either empty (◦) when
the thread is not executing a method, or a triple (sl, x, C), where sl maps the

method’s formal argument and local variables (if any) to their values, x is the

caller’s variable to receive the return value, and C is the caller’s remaining code

to be executed after the method returns. We define ⊚ as a special thread pool

where the call stacks of all threads are ◦. To give a thread-local semantics (see

Figure 5.5(b)), we also define the thread local view ς of the state.

The set of events e defined in Figure 5.4 includes not only externally observ-

able events, but also unobservable events which can help define linearizability. A

method invocation event (t, f, n) is produced when thread t executes x := f(E),

where n is the value of the argument E. Each step of the method body produces

(t, obj). When the method returns, a return event (t, ret, n) is produced with the

return value n. print(E) generates an output (t, out, n), and any other client step

generates (t, clt). For steps that abort (e.g., invalid memory access), fault events

are produced: (t, obj, abort) by the object code and (t, clt, abort) by the client

code. Note that here we explicitly distinguish the faults caused by the methods

and by the clients. This allows us to clearly know where to place the blame when

the program aborts, and then to discuss the safety of the object. Only outputs and

the two kinds of faults are externally observable. Method invocations, returns and

object faults are called history events, which will be used to define linearizability

below. We write tid(e) for the thread ID in the event e. We also define several

predicates to specify the kind of e, as summarized below.

• e is an invocation event: is inv(e) holds iff there exist t, f and n such that

e = (t, f, n).

• e is a return event: is ret(e) holds iff there exist t and n such that e =

(t, ret, n).

• e is an object fault: is obj abt(e) holds iff there exists t such that e =

(t, obj, abort).

• e is a response event: is res(e) holds iff either is ret(e) or is obj abt(e) holds.

• e is an object event: is obj(e) holds iff there exists t such that e = (t, obj),

or is inv(e), or is res(e) holds.

• e is a client fault: is clt abt(e) holds iff there exists t such that e = (t, clt, abort).
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(let Π in skip‖ . . .‖skip,S) 7−→ (skip,S)

(Ci, (σc, σo,K(i)))
e−→ i,Π (C ′

i, (σ
′
c, σ

′
o, κ

′))) K′ = K{i ❀ κ′}
(let Π in C1‖ . . . Ci . . .‖Cn, (σc, σo,K))

e7−→ (let Π in C1‖ . . . C
′
i . . .‖Cn, (σ

′
c, σ

′
o,K′))

(Ci, (σc, σo,K(i)))
e−→ i,Π abort

(let Π in C1‖ . . . Ci . . .‖Cn, (σc, σo,K))
e7−→ abort

(a) program transitions

Π(f) = (y,C) JEKsc = n x ∈ dom(sc) κ = ({y ❀ n}, x,E[ skip ])

(E[x := f(E) ], ((sc, hc), σo, ◦))
(t,f,n)−−−−→

t,Π (C;noret, ((sc, hc), σo, κ))

f 6∈ dom(Π) or JEKsc undefined or x 6∈ dom(sc)

(E[x := f(E) ], ((sc, hc), σo, ◦))
(t,clt,abort)−−−−−−−−→

t,Π abort

κ = (sl, x, C) s′c = sc{x ❀ n}

(fret(n), ((sc, hc), σo, κ))
(t,ret,n)−−−−−→

t,Π (C, ((s′c, hc), σo, ◦))

JEKsc = n

(E[print(E) ], ((sc, hc), σo, ◦))
(t,out,n)−−−−−→

t,Π (E[ skip ], ((sc, hc), σo, ◦))

(C, (so ⊎ sl, ho)) −_ t (C
′, (s′o ⊎ s′l, h

′
o)) dom(sl) = dom(s′l)

(C, (σc, (so, ho), (sl, x, Cc)))
(t,obj)−−−−→

t,Π (C ′, (σc, (s
′
o, h

′
o), (s

′
l, x, Cc)))

σo = (so, ho) (C, (so ⊎ sl, ho)) −_ t abort

(C, (σc, σo, (sl, x, Cc)))
(t,obj,abort)−−−−−−−−→

t,Π abort

(C, σc) −_ t (C
′, σ′

c)

(C, (σc, σo, ◦))
(t,clt)−−−−→

t,Π (C ′, (σ′
c, σo, ◦))

(b) thread transitions

JEKs = n

(E[ return E ], (s, h)) −_ t (fret(n), (s, h)) (noret, σ) −_ t abort

(C, σ) −_∗
t (skip, σ

′)

(E[ 〈C〉 ], σ)−_t (E[ skip ], σ′)

(C, σ) −_∗
t (fret(n), σ

′)

(E[ 〈C〉 ], σ)−_t (fret(n), σ
′)

(C, σ) −_∗
t abort

(E[ 〈C〉 ], σ)−_t abort

(c) local thread transitions

Figure 5.5 Selected operational semantics rules.
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T JW, (σc, σo)K def
=

{T | ∃W ′,S ′. (W, (σc, σo,⊚))
T7−→∗ (W ′,S ′) ∨ (W, (σc, σo,⊚))

T7−→∗ abort}
HJW, (σc, σo)K def

= {get hist(T ) | T ∈ T JW, (σc, σo)K }
OJW, (σc, σo)K def

= {get obsv(T ) | T ∈ T JW, (σc, σo)K }

Figure 5.6 Generation of finite event traces.

• e is a fault: is abt(e) holds iff either is obj abt(e) or is clt abt(e) holds.

• e is a client event: is clt(e) holds iff there exist t and n such that e = (t, clt),

or e = (t, out, n), or e = (t, clt, abort) holds.

An event trace T is a finite sequence of events. We write T (i) for the i-th

event of T , and |T | for the length of the trace. T |t represents the sub-trace of T

consisting of all events whose thread ID is t. We use get hist(T ) to project T to

the sub-trace consisting of all the history events, and get obsv(T ) for the sub-trace

of all the observable events. A traces of history events is called a history.

Figure 5.5 gives selected rules of the operational semantics. We have three

kinds of transitions. We write (W,S) e7−→ (W ′,S ′) for the top-level program

transitions and (C, ς)
e−→ t,Π (C ′, ς ′) for the transitions of thread t with the object

Π. We also introduce the local transitions (C, σ) −_ t (C
′, σ′) to describe steps

inside or outside method calls of thread t. It accesses only the object memory and

method local variables (for the case inside method calls), or only client memory

(for the other case). We then lift a local transition to a thread transition that

produces an event (t, obj) or (t, clt). All three transitions also include steps that

lead to the error state abort. To describe the operational semantics for threads,

we use an execution context E, where

(ExecContext) E ::= [ ] | E;C

The hole [ ] shows the place where the execution of code occurs. E[C ] represents

the code that results from placing C into the hole. The semantics defined in

Figure 5.5 is mostly straightforward. Note that we append noret at the end

of method body when the thread invokes the method. Since noret aborts the

program, a safe method implementation must end with a return statement.

In Figure 5.6, we define T JW, (σc, σo)K for the prefix-closed set of finite event

traces produced by the executions of W with the initial state (σc, σo,⊚). We use

(W,S) T7−→ ∗ (W ′,S ′) for zero or multiple-step program transitions that generate
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the trace T . We also define HJW, (σc, σo)K and OJW, (σc, σo)K to get histories and

finite observable traces produced by the executions.

5.2.2 Object Specification and Linearizability Definition

Before formalizing linearizability, we first define the abstract operations ΠA of an

object, which we consider as the specification. ΠA is of the same type as the

concrete implementation Π (see Figure 5.3), but requires that each method body

should be an atomic operation of the form 〈C〉 and it should be always safe and

deterministic to execute it. To simplify the presentation, we write γ for the method

declaration in ΠA. That is,

γ ::= (x, 〈C〉)
ΠA ::= {f1 ❀ γ1, . . . , fn ❀ γn}

Note that the atomic block 〈C〉 may contain the command return E. In this

case, 〈C〉 would reduce to fret(n), as shown in the operational semantics in Fig-

ure 5.5(c). We write σa for the object memory at the abstract level, and assume

the program variables used in the abstract operations are different from those in

the concrete implementations. The semantics of the client program with ΠA is the

same as the one in Figure 5.5, but replaces the concrete object memory σo by the

abstract object memory σa.

Linearizability [35] is defined using the notion of histories, which are special

event traces T consisting of only history events (i.e., method invocations and

responses).

We say a response e2 matches an invocation e1, written as match(e1, e2), iff

they have the same thread ID.

match(e1, e2)
def
= is inv(e1) ∧ is res(e2) ∧ (tid(e1) = tid(e2))

A history T is sequential, i.e., seq(T ) holds, iff the first event of T is an invoca-

tion, and each invocation, except possibly the last, is immediately followed by a

matching response. It is inductively defined as follows.

seq(ǫ)

is inv(e)

seq(e :: ǫ)

match(e1, e2) seq(T )

seq(e1 :: e2 :: T )

Then T is well-formed iff the sub-history T |t for every thread t is sequential.

well formed(T )
def
= ∀t. seq(T |t) .

80



T is complete iff it is well-formed and every invocation has a matching response.

An invocation is pending in T if no matching response follows it. We handle pend-

ing invocations in an incomplete history T following the standard linearizability

definition [35]. We append zero or more return events to T , and drop the remain-

ing pending invocations. Then we get a set of complete histories, which is denoted

by completions(T ). Formally, we need to first define extensions(T ) and truncate(T ).

Definition 5.1 (Extensions of a History). extensions(T ) is a set of well-formed

histories where we extend T by appending return events. It is inductively defined

as follows.

well formed(T )

T ∈ extensions(T )

T ′ ∈ extensions(T ) is ret(e) well formed(T ′ ::e)

T ′ ::e ∈ extensions(T )

Definition 5.2 (Completions of a History). truncate(T ) is the maximal complete

sub-history of T . It is inductively defined by dropping the pending invocations in

T .

truncate(ǫ)
def
= ǫ

truncate(e ::T )
def
=

{
e :: truncate(T ) if is res(e) or ∃i. match(e, T (i))

truncate(T ) otherwise

Then completions(T )
def
= {truncate(T ′) | T ′ ∈ extensions(T )} .

Then we can formulate the linearizability relation between two well-formed

histories, which is a core notion used in the linearizability definition of an object.

Definition 5.3 (Linearizable Histories). T �lin T
′ iff both the following hold.

1. ∀t. T |t = T ′|t.

2. There exists a bijection π : {1, . . . , |T |} → {1, . . . , |T ′|} such that ∀i. T (i) =
T ′(π(i)) and

∀i, j. i < j ∧ is res(T (i)) ∧ is inv(T (j)) =⇒ π(i) < π(j) .

That is, T is linearizable with respect to T ′ if the latter is a permutation of

the former, preserving the order of events in the same threads and the order of

the non-overlapping method calls.

An object Π is linearizable iff each of its concurrent histories after completions

is linearizable with respect to some legal sequential history. We generate the con-

current histories of Π by all the possible clients that may use the object, according

to the operational semantics in Figure 5.5. Figure 5.6 defines HJW, (σc, σo)K to get
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the set of histories from the executions of W . Similarly, HJW, (σc, σa)K generates

histories when using the abstract object. Then, a legal sequential history T is

a sequential history generated by some client using the abstract object ΠA with

some initial memory σa. It satisfies the following.

ΠA ⊲ (σa, T )
def
=

∃n, C1, . . . , Cn, σc. T ∈ HJ(let ΠA in C1‖ . . .‖Cn), (σc, σa)K ∧ seq(T )

Definition 5.4 (Linearizability of Objects). The object implementation Π is lin-

earizable with respect to ΠA under a refinement mapping ϕ, denoted by Π �ϕ ΠA,

iff

∀n, C1, . . . , Cn, σc, σo, σa, T.

T ∈ HJ(let Π in C1‖ . . .‖Cn), (σc, σo)K ∧ (ϕ(σo) = σa)

=⇒ ∃Tc, T
′. Tc ∈ completions(T ) ∧ ΠA ⊲ (σa, T

′) ∧ Tc �lin T
′

Here the partial mapping ϕ : Mem ⇀ Mem relates the concrete object memory to

the abstract one.

The side condition ϕ(σo) = σa in the above definition requires the initial con-

crete object memory σo to be well-formed in that it represents some valid abstract

object memory σa. For instance, ϕ may need σo to contain a linked list and relate

it to an abstract mathematical set in σa for a set object.

5.2.3 Contextual Refinement and Linearizability

Next we define a contextual refinement between the concrete object and its speci-

fication, and prove its equivalence to linearizability. This equivalence will serve as

the basis of our logic soundness with respect to linearizability.

Informally, the contextual refinement says, substituting the concrete object Π

for its specification ΠA in any context (i.e., in a client program) does not add ob-

servable behaviors. Below we use OJW, (σc, σo)K to represent the set of observable

event traces generated during the executions of W . It is defined in Figure 5.6

similarly as HJW, (σc, σo)K, but now the traces consist of observable events only

(output events, client faults or object faults).

Definition 5.5 (Basic Contextual Refinement). Π ⊑ϕ ΠA iff

∀n, C1, . . . , Cn, σc, σo, σa. (ϕ(σo) = σa) =⇒
OJ(let Π in C1‖ . . .‖Cn), (σc, σo)K ⊆ OJ(let ΠA in C1‖ . . .‖Cn), (σc, σa)K .

Theorem 5.6 (Basic Equivalence). Π �ϕ ΠA ⇐⇒ Π ⊑ϕ ΠA.
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The proof of Theorem 5.6 follows Filipović et al. [21] and Gotsman and Yang [25],

and is sketched in Appendix B.

The theorem gives us another point of view to understand linearizability. Since

linearizability implies the contextual refinement, we can modularly verify a client

by replacing the linearizable object implementation with its specification. On the

other hand, since contextual refinement also implies linearizability, we can use

proof methods (such as RGSim) for the former to verify the latter.

5.3 Logic for Linearizability

To prove object linearizability, we first instrument the object implementation by

introducing auxiliary states and auxiliary commands, which relate the concrete

code with the abstract object. Our program logic extends LRG [20] with a rela-

tional interpretation of assertions and new rules for auxiliary commands. Although

our logic is based on LRG [20], this approach is mostly independent with the base

logic. Similar extensions can also be made over other logics, such as RGSep [66].

Our logic is proposed to verify object methods only. Verified object methods

are guaranteed to be a contextual refinement of their abstract atomic operations,

which ensures linearizability of the object. We will discuss verification of whole

programs consisting of both client code and object code at the end of Section 5.3.3.

5.3.1 Instrumented Code and States

In Figure 5.7, we show the syntax of the instrumented code and its state model.

As explained in Section 5.1, the new program state Σ for the instrumented method

code consists of two parts, the physical object state σ and the auxiliary data ∆.

∆ is a nonempty set of (U, σa) pairs, each pair representing a speculation of the

situation at the abstract level. Here σa is the abstract object memory at the specific

speculation. U is a pending thread pool recording the remaining operation to be

fulfilled by each thread. It maps a thread ID to its remaining abstract operation,

which is either (γ, n) (the operation γ needs to be executed with argument n) or

(end, n) (the operation has been finished with the return value n).

Below we informally explain the effects over ∆ of the newly introduced com-

mands. We leave their formal semantics to Section 5.3.4. The auxiliary command

linself executes the unfinished abstract operation of the current thread in every U

in ∆, and changes the abstract object memory σa correspondingly. lin(E) executes

the abstract operation of the thread with ID E. linself or lin(E) is executed when

we know for sure that a step is the linearization point. The trylinself command
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(InsStmt) C̃ ::= skip | c | return E | noret | linself | lin(E)

| trylinself | trylin(E) | commit(p) | 〈C̃〉
| C̃; C̃ | if (B) C̃ else C̃ | while (B){C̃}

(RelState) Σ ::= (σ,∆)

(SpecSet) ∆ ::= {(U1, σ1), . . . , (Un, σn)}
(PendThrds) U ::= {t1 ❀ Υ1, . . . , tn ❀ Υn}

(AbsOp) Υ ::= (γ, n) | (end, n)

(RelAss) p, q, I ::= B | own(x) | own(x) | emp

| E 7→ E | E Z⇒ E | E ֌ (γ,E) | E ֌ (end, E)
| p ∗ q | p⊕ q | p ∨ q | . . .

(RelAct) R,G ::= [p] | p⋉ q | p ∝ q | R ∗R | . . .

Figure 5.7 Instrumented code, relational state model and assertion language.

introduces uncertainty. Since we do not know if the abstract operation of the cur-

rent thread is fulfilled or not at the current point, we consider both possibilities.

For each (U, σa) pair in ∆ that contains unfinished abstract operation of the cur-

rent thread, we add in ∆ a new speculation (U ′, σ′
a) where the abstract operation

is done and σ′
a is the resulting abstract object memory. Since the original (U, σa)

is also kept, we have both speculations in ∆. Similarly, the trylin(E) command

introduces speculations about the thread E. For simplicity, we assume the thread

ID E in lin(E) or trylin(E) will not use variables in the abstract object memory.

When we have enough knowledge p about the situation of the abstract operations

and memory, the commit(p) step keeps only the subset of speculations consistent

with p and drops the rest. Here p is a logical assertion about the state Σ, which

is explained below.

5.3.2 Assertions

Syntax of assertions is shown in Figure 5.7. Following rely-guarantee style reason-

ing [38], assertions are either single state assertions p and q or binary rely/guarantee

conditions R and G. Note here states refer to the relational states Σ defined in

Figure 5.7.

Figure 5.8(b) shows the semantics of the single state assertions. We use stan-

dard separation logic assertions to describe the concrete object memory σ. Fol-

lowing Parkinson et al. [55], we treat program variables as resource (just as in

Section 4.3) and use own(x) for the ownership of the variable x in the concrete

code. E1 7→ E2 specifies a singleton heap with E2 stored at the location E1.
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f⊥g iff dom(f) ∩ dom(g) = ∅
(s1, h1)⊥(s2, h2) iff s1⊥s2 ∧ h1⊥h2 (s1, h1) ⊎ (s2, h2)

def
= (s1 ⊎ s2, h1 ⊎ h2)

∆1⊥∆2 iff ∀U1, σ1, U2, σ2. (U1, σ1) ∈ ∆1 ∧ (U2, σ2) ∈ ∆2 =⇒ U1⊥U2 ∧ σ1⊥σ2

∆1 ∗∆2
def
= {(U1 ⊎ U2, σ1 ⊎ σ2) | (U1, σ1) ∈ ∆1 ∧ (U2, σ2) ∈ ∆2}

Σ1 ∗Σ2
def
= (σ1 ⊎ σ2,∆1 ∗∆2) , if Σ1 = (σ1,∆1),Σ2 = (σ2,∆2), σ1⊥σ2 and ∆1⊥∆2

Σ1 ⊕ Σ2
def
= (σ,∆1 ∪∆2) , if Σ1 = (σ,∆1) and Σ2 = (σ,∆2)

(a) auxiliary definitions

((s, h),∆) |= B iff ∀U, sa, ha. (U, (sa, ha)) ∈ ∆ =⇒ JBKs⊎sa = true

((s, h),∆) |= own(x) iff (dom(s) = {x}) ∧ (∀U, sa, ha. (U, (sa, ha)) ∈ ∆ =⇒ (sa = ∅))
((s, h),∆) |= own(x) iff (s = ∅) ∧ (∀U, sa, ha. (U, (sa, ha)) ∈ ∆ =⇒ (dom(sa) = {x}))
((s, h),∆) |= emp iff (s = ∅) ∧ (h = ∅) ∧ (∆ = {(∅, (∅, ∅))})
((s, h),∆) |= E1 7→ E2 iff ∃l, n. JE1Ks = l ∧ JE2Ks = n ∧ h = {l ❀ n} ∧∆ = {(∅, (∅, ∅))}
((s, h),∆) |= E1 Z⇒ E2 iff ∃sa, ha, l, n. ∆ = {(∅, (sa, ha))} ∧ s = ∅ ∧ h = ∅

∧ JE1Ksa = l ∧ JE2Ksa = n ∧ ha = {l ❀ n}

((s, h),∆) |= E1 ֌ (γ,E2) iff ∃U, sa, t, n. ∆ = {(U, (sa, ∅))} ∧ h = ∅
∧ JE1Ks⊎sa = t ∧ JE2Ks⊎sa = n ∧ U = {t ❀ (γ, n)}

((s, h),∆) |= E1 ֌ (end, E2) iff ∃U, sa, t, n. ∆ = {(U, (sa, ∅))} ∧ h = ∅
∧ JE1Ks⊎sa = t ∧ JE2Ks⊎sa = n ∧ U = {t ❀ (end, n)}

Σ |= p ∗ q iff ∃Σ1,Σ2. Σ = Σ1 ∗Σ2 ∧ Σ1 |= p ∧ Σ2 |= q

Σ |= p⊕ q iff ∃Σ1,Σ2. Σ = Σ1 ⊕ Σ2 ∧ Σ1 |= p ∧ Σ2 |= q

(b) semantics of state assertions

(Σ,Σ′) |= [p] iff Σ |= p ∧ Σ = Σ′

(Σ,Σ′) |= p⋉ q iff Σ |= p ∧Σ′ |= q

(Σ,Σ′) |= p ∝ q iff ∃Σ1,Σ
′
1. (Σ = Σ1 ⊕ Σ) ∧ (Σ′ = Σ′

1 ⊕ Σ) ∧ Σ1 |= p ∧ Σ′
1 |= q

(Σ,Σ′) |= R1 ∗R2 iff
∃Σ1,Σ2,Σ

′
1,Σ

′
2. (Σ = Σ1 ∗ Σ2) ∧ (Σ′ = Σ′

1 ∗ Σ′
2) ∧ (Σ1,Σ

′
1) |= R1 ∧ (Σ2,Σ

′
2) |= R2

Id
def
= [true] Emp

def
= emp⋉ emp True

def
= true⋉ true

[G]I
def
= (G ∨ Id) ∗ Id ∧ (I ⋉ I)

(c) semantics of actions

Figure 5.8 Semantics of assertions.

85



New assertions are introduced to specify ∆. own(x) means the ownership

of the abstract variable x at every speculation in ∆. We assume the store for

the abstract operations is always disjoint with the concrete store. We generalize

the boolean expression B to specify both stores, so that we can describe the

relationships between concrete variables and abstract ones. E1 Z⇒ E2 specifies the

heap of the sole speculation in ∆, with an empty pending thread pool U , while

E1 ֌ (γ, E2) and E1 ֌ (end, E2) specify the single thread E1 in U .

The semantics of separating conjunction p ∗ q is similar as in separation logic,

except that it is now lifted to assertions over the relational states Σ. Note that

the underlying “disjoint union” over ∆ for separating conjunction should not be

confused with the normal disjoint union operator over sets. The former (denoted

as ∆1 ∗ ∆2 in Figure 5.8(a)) describes the split of pending thread pools and/or

abstract object memory. For example, the left side ∆ in the following equation

specifies two speculations of threads t1 and t2 (we assume the abstract object

memory is empty and omitted here), and it can be split into two sets ∆1 and ∆2

on the right side, each of which describes the speculations of a single thread.

{
t1 Υ1

t2 Υ2

,
t1 Υ1

t2 Υ′
2

}
=

{
t1 Υ1

}

∗{
t2 Υ2 , t2 Υ′

2

}

The most interesting new assertion is p⊕ q, where p and q specify two differ-

ent speculations. It is this assertion that reflects uncertainty about the abstract

level. However, the readers should not confuse ⊕ with disjunction. It is more like

conjunction since it says ∆ contains both speculations satisfying p and those sat-

isfying q. As an example, the above equation could be formulated at the assertion

level using ∗ and ⊕.

(t1 ֌ Υ1 ∗ t2 ֌ Υ2)⊕ (t1 ֌ Υ1 ∗ t2 ֌ Υ′
2)

⇔ t1 ֌ Υ1 ∗ (t2 ֌ Υ2 ⊕ t2 ֌ Υ′
2)

Rely and guarantee assertions specify transitions over Σ. Their semantics is

given in Fig. 5.8(c). Following LRG [20], we use [p] for identity transitions with

the states satisfying p. The action p ⋉ q says that the initial states satisfy p

and the resulting states satisfy q. Besides, we introduce a new action p ∝ q

to specify the speculative behaviors. It requires the initial state to contain the

speculations p. Then the action adds new speculations q to the state, and keep

all the original speculations. For instance, (t ֌ Υ) ∝ (t ֌ Υ′) represents the

speculative execution of the operation Υ by thread t. After the action, we have
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p ⇛t q

⊢t {p}linself{q}
(linself)

p ⇒ (E = E) p ⇛E q

⊢t {p}lin(E){q}
(lin)

p ⇛t q

⊢t {p}trylinself{p⊕ q}
(tryself)

p ⇒ (E = E) p ⇛E q

⊢t {p}trylin(E){p ⊕ q}
(try)

SpecExact(p) q1|p =⊲ q2

⊢t {q1}commit(p){q2}
(commit)

⊢t {t ֌ (end, E)}E[ return E ]{t ֌ (end, E)}
(ret)

⊢t {p}C̃{q}
⊢t {p ∗ r}C̃{q ∗ r}

(frame)
⊢t {p}C̃{q} ⊢t {p′}C̃{q′}

⊢t {p⊕ p′}C̃{q ⊕ q′}
(Spec-Conj)

⊢t {p}C̃{q}
Emp,Emp, emp ⊢t {p}C̃{q}

(env)

⊢t {p}C̃{q} (p⋉ q) ⇒ G ∗ True p ∨ q ⇒ I ∗ true I ⊲ G

[I], G, I ⊢t {p}〈C̃〉{q}
(atom)

[I], G, I ⊢t {p}〈C̃〉{q} Sta({p, q}, R ∗ Id) I ⊲ R

R,G, I ⊢t {p}〈C̃〉{q}
(atom-r)

R,G, I ⊢t {p}C̃1{q} R,G, I ⊢t {q}C̃2{r}
R,G, I ⊢t {p}C̃1; C̃2{r}

(p-seq)

R,G, I ⊢t {p}C̃{q} Sta(r,R′ ∗ Id) I ′ ⊲ {R′, G′} r ⇒ I ′ ∗ true
R ∗R′, G ∗G′, I ∗ I ′ ⊢t {p ∗ r}C̃{q ∗ r}

(p-frame)

Figure 5.9 Selected inference rules.

both the original operation Υ and the result Υ′ as speculations. We will show

more use of the assertions in the examples of Section 5.5.

5.3.3 Inference Rules

The rules of our logic are shown in Figure 5.9. Each judgment is parameterized

with the ID t of the current thread. Rules on the top half are for sequential

Hoare-style reasoning. They are proposed to verify code C̃ in the atomic block

〈C̃〉.
In the linself rule, we use p ⇛t q to execute the abstract operation of the
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U(t) = (end, n)

(U, σ) 99Kt (U, σ)

U(t) = ((x, 〈C〉), n)
(〈C〉, (s ⊎ {x ❀ n}, h)) −_ t (fret(n

′), (s′, h′))

(U, (s, h)) 99Kt (U{t ❀ (end, n′)}, (s′\{x}, h′))

∅ →t ∅
(U, σ) 99Kt (U

′, σ′) ∆ →t ∆
′

{(U, σ)} ⊎∆ →t {(U ′, σ′)} ∪∆′

p ⇛E q iff
∀s, h,∆, t. (((s, h),∆) |= p) ∧ (JEKs = t) =⇒ ∃∆′. (∆ →t ∆

′) ∧ ((s, h),∆′) |= q

∆|∆p

def
=

{(U, σ) | (U, σ) ∈ ∆ ∧ ∃Up, σp, U1, σ1. (Up, σp) ∈ ∆p ∧ U = Up ⊎ U1 ∧ σ = σp ⊎ σ1}
(σ,∆)|p = ∆′ iff ∃σp,∆p, σ1. ((σp,∆p) |= p) ∧ (σ = σp ⊎ σ1) ∧ (∆|∆p

= ∆′)

q1|p =⊲ q2 iff ∀σ,∆. (σ,∆) |= q1 =⇒ ∃∆′. ((σ,∆)|p = ∆′) ∧ (σ,∆′) |= q2

DomExact(∆) iff ∀U, σ, U ′, σ′. (U, σ) ∈ ∆ ∧ (U ′, σ′) ∈ ∆ =⇒
(dom(U) = dom(U ′)) ∧ (dom(σ) = dom(σ′))

SpecExact(p) iff ∀∆,∆′. (( ,∆) |= p) ∧ (( ,∆′) |= p) =⇒
(∆ = ∆′) ∧ DomExact(∆)

Precise(p) iff ∀σ1,∆1, σ2,∆2, σ
′
1,∆

′
1, σ

′
2,∆

′
2.

((σ1 ⊎ σ2 = σ′
1 ⊎ σ′

2) ∧ ((σ1, ) |= p) ∧ ((σ2, ) |= p) =⇒ (σ1 = σ2))∧
((∆1 ∗∆2 = ∆′

1 ∗∆′
2) ∧ (( ,∆1) |= p) ∧ (( ,∆1) |= p) =⇒ (∆1 = ∆2))

Sta(p,R) iff ∀Σ,Σ′. (Σ |= p) ∧ ((Σ,Σ′) |= R) =⇒ Σ′ |= p

I ⊲ R iff ([I] ⇒ R) ∧ (R ⇒ I ⋉ I) ∧ Precise(I)

Figure 5.10 Auxiliary definitions for the inference rules.

current thread t, which transforms the abstract states satisfying p to new ones

satisfying q. It is formally defined in Figure 5.10, where the transitions over ∆ is

written as ∆ →t ∆
′. For each (U, σ) pair in ∆, if the abstract operation of thread

t has not been done, we will execute the atomic code and update the (U, σ) pair

correspondingly. The lin rule is similar. Its side condition p ⇒ (E = E) requires

that the initial state contain the resource used to evaluate E (with variables as

resource, E = E is no longer a tautology). The tryself rule allows the current

thread t to speculate. The resulting state contains both the case q where the

abstract operation is done and the original case p. The try rule is similar.

The commit rule allows us to commit to specific speculations and drop the

rest. commit(p) keeps only the speculations satisfying p. We require p to satisfy

SpecExact, which is defined in Figure 5.10. Informally, p should specify an exact

set ∆ of speculations, all of which should describe the same set of threads and the

same domain of abstract object memory (i.e., DomExact(∆) holds). For instance,
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the following p1 satisfies SpecExact, while neither p2 or p3 does.

p1
def
= t ֌ (γ, n) ⊕ t ֌ (end, n′)

p2
def
= t ֌ (γ, n) ∨ t ֌ (end, n′)

p3
def
= t1 ֌ (γ1, n1) ⊕ t2 ֌ (γ2, n2)

In all of our examples in Section 5.5, the assertion p in commit(p) describes a

singleton speculation, so SpecExact(p) trivially holds. In the commit rule, we use

q1|p =⊲ q2 to filter out the wrong speculations which are not consistent with p in

the initial state q1. The result state of the remaining speculations satisfies q2. The

key of its formal definition in Figure 5.10 is the filter ∆|∆p
. Here ∆ is the initial

set of speculations satisfying q1, and ∆p is the set of speculations satisfying p.

Since SpecExact(p) holds, we know ∆p describes an exact domain of threads and

abstract memory. This filter allows ∆ to contain some extra resource of threads

and abstract memory other than those described in p. For instance, the following

∆ talks about two threads t1 and t2, while p (and ∆p) could mention t1 only.

∆ :

{
t1 (γ1, n1)

t2 (γ2, n2)
,

t1 (end, n′
1)

t2 (end, n′
2)

}

Let p be t1 ֌ (γ1, n1). Then the filter ∆|∆p
will keep only the left speculation

and discard the other. Thus the following judgment holds.

⊢t {(t1 ֌ (γ1, n1) ∗ t2 ֌ (γ2, n2))⊕ (t1 ֌ (end, n′
1) ∗ t2 ֌ (end, n′

2))}
commit(t1 ֌ (γ1, n1))

{t1 ֌ (γ1, n1) ∗ t2 ֌ (γ2, n2)}

If p is t1 ֌ (γ1, n1)⊕ t1 ֌ (end, n′
1), the filter ∆|∆p

will keep both speculations

and the following judgment holds.

⊢t {(t1 ֌ (γ1, n1) ∗ t2 ֌ (γ2, n2))⊕ (t1 ֌ (end, n′
1) ∗ t2 ֌ (end, n′

2))}
commit(t1 ֌ (γ1, n1)⊕ t1 ֌ (end, n′

1))

{(t1 ֌ (γ1, n1) ∗ t2 ֌ (γ2, n2))⊕ (t1 ֌ (end, n′
1) ∗ t2 ֌ (end, n′

2))}

Before the current thread returns, it must know its abstract operation has

been done, as required in the ret rule. We also have a standard frame rule

as in separation logic for local reasoning. Besides, the spec-conj rule allows

us to separately consider different speculations. It is like the conjunction rule in

traditional Hoare logic.

Rules in the bottom half of Figure 5.9 show how to do rely-guarantee style

concurrency reasoning, which are very similar to those in LRG [20]. As in LRG,

we use a precise invariant I to specify the boundary of the well-formed shared
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resource. When there is no resource sharing (i.e., C̃ only accesses its private re-

source), we can apply the env rule and verify C̃ as if it was sequential code.

Here the rely/guarantee conditions are Emp and the invariant is emp (defined in

Figure 5.8), showing the shared resource is empty. The atom rule says we could

reason sequentially about code in the atomic block. Then we can lift it to the con-

current setting as long as its effects over the shared resource satisfy the guarantee

G, which is fenced by the invariant I. The fence I ⊲ G is defined in Figure 5.10.

In this step we assume the environment does not update shared resource, thus

using [I] as the rely condition. To allow general environment behaviors R, we

should apply the atom-r rule later. The rule requires that R be fenced by I and

the pre- and post-conditions be stable with respect to R ∗ Id, R for the shared

resource and Id for the private (i.e., the environment does not touch the private

resource of the current thread). The stability Sta is defined in Figure 5.10, and

here Sta({p, q}, R ∗ Id) requires both p and q be stable with respect to R ∗ Id. We

also show the p-seq rule for sequential compositions and the p-frame rule for

local reasoning in concurrent settings. They have the same forms as in LRG, but

note the assertions here are interpreted over the relational states Σ.

Linking with client program verification. Our relational logic is introduced

for object verification, but it can also be used to verify client code, since it is just

an extension over the general-purpose concurrent logic LRG (which includes the

rule for parallel composition). Moreover, as we will see in Section 5.4, our logic

ensures contextual refinement. Therefore, to verify a programW , we could replace

the object implementation with the abstract operations and verify the correspond-

ing abstract program W ′ instead. Since W ′ abstracts away the concrete object

representation and method implementation details, this approach provides us with

“separation and information hiding” [54] over the object, but still keeps enough

information (i.e., the abstract operations) about the method calls in concurrent

client verification.

5.3.4 Semantics and Partial Correctness

We first show some key operational semantics rules for the instrumented code C̃

under the relational state model Σ in Figure 5.11.

A single step execution of the instrumented code by thread t is represented as

(C̃,Σ) −֒→
t
(C̃ ′,Σ′). When we reach the return E command (the second rule in

Figure 5.11), we must know for sure that the abstract operation of thread t has

been done. That is, in every speculation U in ∆, we always know U(t) is end
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(C, σ) −_ t (C
′, σ′) C 6= E[ return ]

(C, (σ,∆)) −֒→ t (C
′, (σ′,∆))

JEKs = n ∀U. (U, ) ∈ ∆ =⇒ U(t) = (end, n)

(E[ return E ], ((s, h),∆)) −֒→ t (skip, ((s, h),∆))

∆ →t ∆
′

(E[ linself ], (σ,∆)) −֒→ t (E[ skip ], (σ,∆′))

JEKs = t′ ∆ →t′ ∆
′

(E[ lin(E) ], ((s, h),∆)) −֒→ t (E[ skip ], ((s, h),∆′))

∆ →t ∆
′

(E[ trylinself ], (σ,∆)) −֒→ t (E[ skip ], (σ,∆ ∪∆′))

JEKs = t′ ∆ →t′ ∆
′

(E[ trylin(E) ], ((s, h),∆)) −֒→ t (E[ skip ], ((s, h),∆ ∪∆′))

SpecExact(p) (σ,∆)|p = ∆′

(E[ commit(p) ], (σ,∆)) −֒→ t (E[ skip ], (σ,∆′))

(C̃,Σ) −֒→ t (C̃
′,Σ′)

(C̃,Σ)
R−֒→ t (C̃

′,Σ′)

(Σ,Σ′) |= R

(C̃,Σ)
R−֒→ t (C̃,Σ′)

Figure 5.11 Operational semantics in the relational state model.

with the same return value E. Meanings of the auxiliary commands have been

explained before. Here we use ∆ →t ∆
′ to characterize the changes over ∆ made

by executing thread t’s abstract operations. The semantics of commit(p) requires

p to satisfy SpecExact and uses (σ,∆)|p = ∆′ to filter out the wrong speculations.

These auxiliary definitions are given in Figure 5.10.

Based on the thread-local semantics, we could next define the transitions

(C̃,Σ)
R−֒→

t
(C̃,Σ), which describe the behaviors of thread t with interference

R from the environment.

Semantics preservation by the instrumentation. It is easy to see that the

newly introduced auxiliary commands do not change the physical state σ, nor do

they affect the program control flow. Thus the instrumentation does not change

program behaviors, unless the auxiliary commands are inserted into the wrong

places and they get stuck, but this can be prevented by our program logic.
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Soundness with respect to partial correctness. Following LRG [20], we

could give the semantics of the logic judgment as R,G, I |=t {p}C̃{q}, which en-

codes the partial correctness of C̃ with respect to the pre- and post-conditions. We

first define |=t {p}C̃{q}, the semantics of the judgment for sequential reasoning.

Definition 5.7 (Sequential Judgment Semantics). |=t {p}C̃{q} holds iff for any

Σ such that Σ |= p, both the following are true.

1. For any Σ′, if (C̃,Σ) −֒→∗
t
(skip,Σ′), then Σ′ |= q .

2. (C̃,Σ) 6−֒→∗
t
abort .

Definition 5.8 (Concurrent Judgment Semantics). R,G, I |=t {p}C̃{q} holds iff

for any Σ such that Σ |= p, both the following are true.

1. For any Σ′, if (C̃,Σ) ֒
R∗Id−−→∗

t
(skip,Σ′), then Σ′ |= q .

2. For any n, (C̃,Σ, R ∗ Id) guaranteesn
t
(G ∗ True) .

Here the property (C̃,Σ, R) guaranteesn
t
G is inductively defined as follows.

1. (C̃,Σ, R) guarantees0
t
G always holds.

2. (C̃,Σ, R) guaranteesk+1
t G iff all of the following hold.

(a) (C̃,Σ) 6−֒→
t
abort .

(b) For any Σ′, if (Σ,Σ′) |= R, then (C̃,Σ′, R) guaranteesk
t
G .

(c) For any C̃ ′ and Σ′, if (C̃,Σ) −֒→
t
(C̃ ′,Σ′), then (Σ,Σ′) |= G and

(C̃ ′,Σ′, R) guaranteesk
t
G .

Informally, (C̃,Σ, R) guaranteesn
t
G says, executing in an initial state Σ and

an environment R, the thread t’s code C̃ does not abort within n steps and each

state transition made by C̃ satisfies G. Then R,G, I |=t {p}C̃{q} requires all

executions that satisfy the assumptions about the initial state and the environment

interference also satisfy the guarantee and the postcondition. That is, given an

initial state satisfying p and the environment R, the executions of C̃ do not abort,

all its steps satisfy G and the final states satisfy q if it terminates. We can prove

that our logic ensures partial correctness, i.e., the judgment implies its semantics.

Theorem 5.9 (Partial Correctness). If R,G, I ⊢t {p}C̃{q}, then R,G, I |=t

{p}C̃{q}.

Theorem 5.9 is proved by induction over the derivation of R,G, I ⊢t {p}C̃{q}.
In the next section, we give a stronger soundness of the logic, i.e., soundness with

respect to linearizability.
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5.4 Soundness via Simulation

Our logic intuitively relates the concrete object code with its abstract level speci-

fication. In this section we formalize the intuition and prove that the logic indeed

ensures object linearizability. The proof is constructed in the following steps. We

propose a new rely-guarantee-based forward-backward simulation between the con-

crete code and the abstract operation. We prove the simulation is compositional

and implies contextual refinement between the two sides, and our logic indeed

establishes such a simulation. Thus the logic establishes contextual refinement.

Finally we get linearizability following Theorem 5.6.

Below we first define a rely-guarantee-based forward-backward simulation. It

extends RGSim with the support of the helping mechanism and speculations.

Definition 5.10 (New Simulation for Method). R,G, I |=t (x, C) �p γ iff

∀σ,∆. (σ,∆) |= (t ֌ (γ, x) ∗ p) =⇒ R,G, I |=t (C;noret, σ) �p ∆ .

Whenever R,G, I |=t (C, σ) �p ∆, then (σ,∆) |= I ∗ true and the following are

true.

1. If C 6= E[ return ], then both the following hold.

(a) For any C ′, σ′′, σF and ∆F , if (C, σ ⊎ σF ) −_ t (C
′, σ′′) and ∆⊥∆F ,

then there exist σ′ and ∆′ such that σ′′ = σ′⊎σF , (∆∗∆F ) ⇒ (∆′∗∆F ),

((σ,∆), (σ′,∆′)) |= (G ∗ True) and R,G, I |=t (C
′, σ′) �p ∆

′.

(b) For any σF , (C, σ ⊎ σF ) 6−_ t abort.

2. For any σ′ and ∆′, if ((σ,∆), (σ′,∆′)) |= (R ∗ Id), then
R,G, I |=t (C, σ

′) �p ∆
′.

3. If C = E[ return E ] and σ = (s, h), then there exists n′ such that JEKs = n′

and (σ,∆) |= (t ֌ (end, n′) ∗ own(x) ∗ p).

As in RGSim, R,G, I |=t (x, C) �p γ says, the concrete implementation C is

simulated by the abstract operation γ under the interference with the environment,

which is specified by R and G. The new simulation holds if the executions of the

concrete code C are related to the speculative executions of some ∆. The ∆ could

specify abstract operations of other threads that might be helped, as well as the

current thread t. Initially, the abstract operation of t is γ, with the same argument

as the concrete side x. The abstract operations of other threads can be known

from the precondition p.

93



For each step of the concrete code C, we require it to be safe, and correspond

to some steps of ∆, as shown in the first condition in Definition 5.10. We define

the transition ∆ ⇒ ∆′ as follows.

∆ ⇒ ∆′ iff

∀U ′, σ′. (U ′, σ′) ∈ ∆′ =⇒ ∃U, σ. (U, σ) ∈ ∆ ∧ (U, σ) 99K∗ (U ′, σ′) ,

where (U, σ) 99K (U ′, σ′)
def
= ∃t. (U, σ) 99Kt (U ′, σ′)

and (U, σ) 99Kt (U
′, σ′) has been defined in Figure 5.10.

It says, any (U ′, σ′) pair in ∆′ should be “reachable” from ∆. This allows us

to execute the abstract operation of some thread t′ (which could be the current

thread t or some others), or drop some (U, σ) pair in ∆. The former is like a step

of trylin(t′) or lin(t′), depending on whether or not we keep the original abstract

operation of t′. The latter can be viewed as a commit step, in which we discard

the wrong speculations.

Inspired by Vafeiadis [68], we directly embed the framing aspect of separation

logic in Definition 5.10. We introduce the explicit frame states σF and ∆F at the

concrete and abstract levels to represent the remaining parts of the states owned

by other threads running in parallel. The concrete code and the abstract operation

of the current thread should not change the frame states during their executions.

We also require the related steps at the two levels to satisfy the guarantee

G ∗True, G for the shared part and True (arbitrary transitions) for the local part.

Symmetrically, the second condition in Definition 5.10 says, the simulation should

be preserved under the environment interference R ∗ Id, R for the shared part and

Id (identity transitions) for the local part.

Finally, when the method returns (the last condition in Definition 5.10), we

require the current thread t has finished its abstract operation, and the return

values match at the two levels.

Like RGSim, our new simulation is compositional, thus can ensure a contextual

refinement between the implementation and the abstract operation, as shown in

the following lemma.

Lemma 5.11 (Simulation Implies Contextual Refinement). For any Π, ΠA and

ϕ, suppose there exist R, G, I and p such that the following hold for all t.

1. For any f such that Π(f) = (x, C), we have Rt, Gt, I |=t Π(f) �pt ΠA(f)

and x 6∈ dom(I).

2. Rt =
∨

t′ 6=t
Gt′, I ⊲ {Rt, Gt}, pt ⇒ I, and Sta(pt, Rt).

3. ⌊ϕ⌋ ⇒ ∧
t
pt.
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Er(linself )
def
= skip Er(trylinself)

def
= skip Er(lin(E))

def
= skip

Er(trylin(E))
def
= skip Er(commit(p))

def
= skip Er(C)

def
= C

Er(〈C̃〉) def
= 〈Er(C̃) 〉 Er(C̃1; C̃2)

def
= Er(C̃1); Er(C̃2)

Er(if (B) C̃1 else C̃2)
def
= if (B) Er(C̃1) else Er(C̃2)

Er(while (B){C̃}) def
= while (B){Er(C̃) }

Figure 5.12 Erasure of auxiliary commands.

Then Π ⊑ϕ ΠA.

Here x 6∈ dom(I) means the formal argument x is always in the local state,

and ⌊ϕ⌋ lifts ϕ to a state assertion: ⌊ϕ⌋ def
= {(σ, {(∅, σa)}) | ϕ(σ) = σa}.

Lemma 5.11 allows us to prove the contextual refinement Π ⊑ϕ ΠA by showing

the simulation Rt, Gt, I |=t Π(f) �pt ΠA(f) for each method f , where R, G and p

are defined over the shared states fenced by the invariant I, and the interference

constraint Rt =
∨

t′ 6=t
Gt′ holds following Rely-Guarantee reasoning [38]. Its proof

is similar to the compositionality proofs of RGSim, but now we need to be careful

with the helping between threads and the speculations.

Lemma 5.12 (Logic Ensures Simulation for Method). For any t, x, C, γ, R, G,

I and p, if there exists C̃ such that Er(C̃) = (C;noret) and

R,G, I ⊢t {t ֌ (γ, x) ∗ p} C̃ {t ֌ (end, ) ∗ own(x) ∗ p} ,

then R,G, I |=t (x, C) �p γ.

Here we use Er(C̃) to erase the instrumented auxiliary commands in C̃. It is

defined in Figure 5.12.

Lemma 5.12 shows that, verifying C̃ in our logic establishes the simulation

between the original code and the abstract operation. Its proof is based on Theo-

rem 5.9, i.e., our logic ensures the standard rely-guarantee-style partial correctness

of the instrumented code. Then we build the simulation by projecting the instru-

mented semantics (Figure 5.11) to the concrete semantics of C (Figure 5.5) and

the speculative steps ⇒ of ∆.

Finally, from Lemmas 5.11 and 5.12, we get the soundness theorem of our logic,

which says our logic can verify linearizability.

Theorem 5.13 (Logic Soundness). For any Π, ΠA and ϕ, suppose there exist R,

G, I and p such that the following hold for all t.

1. For any f , if Π(f) = (x, C), there exists C̃ such that
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Objects Helping Fut. LP Java pkg HS book

Treiber stack [62]
√

HSY stack [30]
√ √

MS two-lock queue [51]
√

MS lock-free queue [51]
√ √ √

DGLM queue [17]
√

Lock-coupling list [33]
√

Optimistic list [33]
√

Heller et al. lazy list [29]
√ √ √

Harris-Michael lock-free list [26, 50]
√ √ √ √

Pair snapshot [58]
√

CCAS [65]
√ √

RDCSS [27]
√ √

Table 5.1 Verified algorithms using our logic.

Rt, Gt, I ⊢t {t ֌ (ΠA(f), x) ∗ pt} C̃ {t ֌ (end, ) ∗ own(x) ∗ pt} ,

Er(C̃) = (C;noret), and x 6∈ dom(I).

2. Rt =
∨

t′ 6=t
Gt′, pt ⇒ I, and Sta(pt, Rt).

3. ⌊ϕ⌋ ⇒ ∧
t
pt.

Then Π ⊑ϕ ΠA, and thus Π �ϕ ΠA.

5.5 Examples

Our logic gives us an effective approach to verify linearizability. As shown in

Table 5.1, we have verified 12 algorithms, including two stacks, three queues, four

lists and three algorithms on atomic memory reads or writes. Table 5.1 summarizes

their features, including the helping mechanism (Helping) and future-dependent

LPs (Fut. LP). Some of them are used in the java.util.concurrent package

(Java pkg). The last column (HS book) shows whether it occurs in Herlihy and

Shavit’s classic textbook on concurrent algorithms [33]. We have almost covered

all the fine-grained stacks, queues and lists in the book. We can see that our logic

supports various objects ranging from simple ones with static LPs to sophisticated

ones with non-fixed LPs. Although many of the examples can be verified using

other approaches, we provide the first program logic which is proved sound and

useful enough to verify all of these algorithms.

In general we verify linearizability in the following steps. First we instrument

the code with the auxiliary commands such as linself , trylin(E) and commit(p)
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1 readPair(int i, j) {

{I ∗ (cid ֌ (γ, (i, j)))}
2 local a, b, v, w, done := false;

{((¬done) ∗ I ∗ (cid ֌ (γ, (i, j))⊕ true)) ∨ (done ∗ I ∗ (cid ֌ (end, (a, b))))}
3 while(!done) {

{(¬done) ∗ I ∗ (cid ֌ (γ, (i, j))⊕ true)}
4 < a := m[i].d; v := m[i].v; >

{∃v′. (¬done) ∗ (I ∧ readCell(i, a, v; v′)) ∗ (cid ֌ (γ, (i, j))⊕ true)}
5 < b := m[j].d; w := m[j].v; trylinself; >

{∃v′. (¬done) ∗ (I ∧ readCell(i, a, v; v′) ∧ readCell(j, b, w; )) ∗ afterTry}
6 if (v = m[i].v) {

{I ∗ (cid ֌ (end, (a, b))⊕ true)}
7 commit(cid֌ (end, (a, b)));

{I ∗ (cid ֌ (end, (a, b)))}
8 done := true;

9 }

10 }

{I ∗ (cid ֌ (end, (a, b)))}
11 return (a, b);

{I ∗ (cid ֌ (end, (a, b)))}
12 }

Auxiliary definitions:

readCell(i, d, v; v′)
def
= (cell(i, d, v) ∨ (cell(i, , v′) ∧ v < v′)) ∗ true

absRes(a, b; v, v′)
def
= (cid ֌ (end, (a, b)) ∧ v ≤ v′) ∨ (cid ֌ (end, ( , b)) ∧ v < v′)

afterTry
def
= cid ֌ (γ, (i, j)) ⊕ absRes(a, b; v, v′) ⊕ true

Figure 5.13 Proof outline of readPair in pair snapshot.

at proper program points. The instrumentation should not be difficult based

on the intuition of the algorithm. Then, we specify the assertions (as in Theo-

rem 5.13) and reason about the instrumented code by applying our inference rules,

just like the usual partial correctness verification in LRG. In our experience, han-

dling the auxiliary commands usually would not introduce much difficulty over

the plain verification with LRG. Below we sketch the proofs of three representa-

tive examples: the pair snapshot, MS lock-free queue and the CCAS algorithm.

The complete proofs of all the 12 algorithms we have verified can be found in the

technical report [43].

5.5.1 Pair Snapshot

As discussed in Section 5.1.3, the pair snapshot algorithm has a future-dependent

LP. In Fig. 5.13, we show the proof of readPair for the current thread cid. We

will use γ for its abstract operation, which atomically reads the cells i and j at

the abstract level.
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First, we insert trylinself and commit as highlighted in Figure 5.13. The

commit command says, when the validation at line 6 succeeds, we must have

cid ֌ (end, (a, b)) as a possible speculation. This actually requires a correct

instrumentation of trylinself . In Figure 5.13, we insert it at line 5 because line 5

is the only place where executing γ could return (a, b) at the abstract level. We

cannot replace it by a linself , because if the later validation at line 6 fails, we

have to restart to do the original abstract operation γ.

After the instrumentation, we can define the precise invariant I, the rely R

and the guarantee G. The invariant I simply maps every memory cell (d, v) at

the concrete level to a cell with data d at the abstract level, as shown below.

I
def
= ⊛i∈[1..size].(∃d, v. cell(i, d, v))

where cell(i, d, v)
def
= (m[i] 7→ (d, v)) ∗ (m[i] Z⇒ d))

Every thread guarantees that when writing a cell, it also increases the version

number. Thus G is defined as follows.

G
def
= [Write]I Write

def
= ∃i, v. cell(i, , v)⋉ cell(i, , v + 1)

Here we use [G]I short for (G∨ Id) ∗ Id∧ (I ⋉ I) (as defined in Figure 5.8(c)). The

rely condition R is the same as the guarantee G.

Then we specify the pre- and post-conditions, and reason about the instru-

mented code using our inference rules. The proof in Figure 5.13 follows the intu-

ition of the algorithm. Note that we relax cid ֌ (γ, (i, j)) in the precondition of

the method to cid ֌ (γ, (i, j))⊕ true to ensure the loop invariant (the assertion

above line 3). The latter says, cid may not have finished its abstract operation,

or cid has speculatively finished it but needs to redo it.

The readPair method in the pair snapshot algorithm is “read-only” in the

sense that the abstract operation does not update the abstract object memory.

This perhaps means that it does not matter to linearize the method multiple times.

In Section 5.5.3 we will verify an algorithm, CCAS, which has future-dependent

LPs and is not “read-only”. We can still “linearize” a method with side effects

multiple times.

5.5.2 MS Lock-Free Queue

The widely-used MS lock-free queue [51] also has future-dependent LPs. We show

its code in Figure 5.14.

The queue is implemented as a linked list with Head and Tail pointers. Head

always points to the first node (a sentinel) in the list, and Tail points to either
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1 enq(v) {

2 local x, t, s, b;

3 x := cons(v, null);

4 while (true) {

5 t := Tail; s := t.next;

6 if (t = Tail) {

7 if (s = null) {

8 b:=cas(&(t.next),s,x);

9 if (b) {

10 cas(&Tail, t, x);

11 return; }

12 }else cas(&Tail, t, s);

13 }

14 }

15 }

16 deq() {

17 local h, t, s, v, b;

18 while (true) {

19 h := Head; t := Tail;

20 s := h.next;

21 if (h = Head)

22 if (h = t) {

23 if (s = null)

24 return EMPTY;

25 cas(&Tail, t, s);

26 }else {

27 v := s.val;

28 b:=cas(&Head,h,s);

29 if(b) return v; }

30 } }

Figure 5.14 MS lock-free queue code.

the last or second to last node. The enq method appends a new node at the tail

of the list and advances Tail. The deq method replaces the sentinel node by its

next node and returns the value in the new sentinel. If the list contains only the

sentinel node, meaning the queue is empty, then deq returns EMPTY.

The algorithm employs the helping mechanism for the enq method to swing

the Tail pointer when it lags behind the end of the list. A thread should first

try to help the half-finished enq by advancing Tail (lines 12 and 25 in Fig. 5.14)

before doing its own operation. But this helping mechanism would not affect the

LP of enq which is statically located at line 8 when the cas succeeds, since the

new node already becomes visible in the queue after being appended to the list,

and updating Tail will not affect the abstract queue. We simply instrument line 8

as follows to verify enq.

< b := cas(&(t.next), s, x); if (b) linself; >

On the other hand, the original queue algorithm [51] checks Head or Tail

(line 6 or 21 in Figure 5.14) to make sure that its value has not been changed

since its local copy was read (at line 5 or 19), and if it fails, the operation will

restart. This check can improve efficiency of the algorithm, but it makes the LP

of the deq method for the empty queue case depend on future executions. That

LP should be at line 20, if the method returns EMPTY at the end of the same

iteration. In fact, when we read null from h.next at line 20 (indicating the

abstract queue must be empty there), we do not know how the iteration would

terminate at that time. If the later check over Head at line 21 fails, the operation
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I
def
= ∃h, t, A. (Q = A) ∗ (Head = h) ∗ (Tail = t) ∗ lsq(h, t, A) ∗ garb(h)

lsq(h, t, A)
def
= ∃v,A′, A′′. (v ::A = A′ ::A′′) ∧ ls(h,A′, t) ∗ tls(t, , A′′)

ls(x,A, y)
def
=

(x = y ∧A = ǫ ∧ emp) ∨ (x 6= y ∧ ∃z, v,A′. A = v ::A′ ∧ node(x, v, z) ∗ ls(z,A′, y))

ls(x, y)
def
= ∃A. ls(x,A, y) garb(h)

def
= ∃g. (GH = g) ∗ ls(g, h)

tls(t, x,A)
def
= ∃v, v′. (A = v ∧ node(t, v, x) ∧ x = null) ∨ (A = v ::v′ ∧ last2(t, v, x, v′))

tls(t, x)
def
= ∃A. tls(t, x,A) tls(t)

def
= tls(t, )

last2(t, v, x, v′)
def
= node(t, v, x) ∗ node(x, v′, null)

last2(t, x)
def
= last2(t, , x, ) last2(t)

def
= last2(t, )

node(x, v, y)
def
= x 7→ (v, y) node(x, y)

def
= node(x, , y)

R = G
def
= [Enq ∨ Deq ∨ Swing ]I

Enq
def
= ∃v, v′, A, t, x. ((Q = A) ∗ (Tail = t) ∗ node(t, v, null))

⋉ ((Q = A ::v′) ∗ (Tail = t) ∗ last2(t, v, x, v′))
Deq

def
= ∃v,A, h, t, x, y.

((Q = v ::A) ∗ (Head = h) ∗ node(h, x) ∗ node(x, v, y) ∗ (Tail = t) ∧ h 6= t)
⋉ ((Q = A) ∗ (Head = x) ∗ node(h, x) ∗ node(x, v, y) ∗ (Tail = t))

Swing
def
= ∃v, v′, t, x. ((Tail = t) ∗ last2(t, v, x, v′))⋉ ((Tail = x) ∗ last2(t, v, x, v′))

Figure 5.15 Invariant and rely/guarantee conditions for MS lock-free queue.

would restart and line 20 (which we just executed) may not be the LP. We use

our try-commit instrumentation to handle this future-dependent LP. We insert

trylinself at line 20, as follows.

< s := h.next; if (h = t && s = null) trylinself; >

Before the method returns EMPTY, we commit to the finished abstract operation,

i.e., we insert commit(cid ֌ (end, EMPTY)) just before line 24. Also, when we

know we have to do another iteration, we can commit to the original DEQ operation,

i.e., we insert commit(cid ֌ DEQ) at the end of the loop body (just before line 30).

For the case of nonempty queues, the LP of the deq method is statically at

line 28 when the cas succeeds. Thus we can instrument linself there, as shown

below.

< b := cas(&Head, h, s); if (b) linself; >

After the instrumentation, we define I, R and G and verify the code using our

logic rules. As shown in Figure 5.15, the invariant I relates the concrete linked

list to the abstract queue. We represent the abstract queue by a value sequence Q.
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readTail(t, n)
def
= (Tail = t) ∗ tls(t, n) ∨ readTailEnvAdv(t, n)

readTailEnvAdv(t, n)
def
= ∃x. node(t, n) ∗ ls(n, x) ∗ (Tail = x) ∗ tls(x)

readTail(t)
def
= readTail(t, ) readTailEnvAdv(t)

def
= readTailEnvAdv(t, )

readTailNext(t, n)
def
= readTail(t, n) ∨ readTailNextNullEnv(t, n)

readTailNextNullEnv(t, n)
def
= (n = null) ∧ ((Tail = t) ∗ last2(t)) ∨ readTailEnvAdv(t))

readTailNextNull(t, n)
def
=

((Tail = t) ∗ node(t, n) ∧ (n = null)) ∨ readTailNextNullEnv(t, n)

readTailNextNonnull(t, n)
def
= ((Tail = t) ∗ last2(t, n)) ∨ readTailEnvAdv(t, n)

readHead(h, x)
def
= ((h = x) ∧ (Head = x)) ∨ readHeadEnv(h, x)

readHeadEnv(h, n, x)
def
= (h 6= x) ∧ node(h, n) ∗ ls(n, x) ∗ (Head = x)

readHead(h)
def
= readHead(h, ) readHeadEnv(h, x)

def
= readHeadEnv(h, n, x)

readHeadTail(h, t)
def
= (∃x. readHead(h, x) ∗ ls(x, t) ∗ readTail(t)) ∨ readHeadTailEnv(h, t)

readHeadTailEnv(h, t)
def
=

∃x, y, z. ls(h, t) ∗ node(t, x) ∗ ls(x, y) ∗ (Head = y) ∗ ls(y, z) ∗ (Tail = z) ∗ tls(z)
readHeadNextAfterTail(h, n, t)

def
=

(Head = h) ∗ (((h = t) ∧ readTailNext(t, n)) ∨ (node(h, n) ∗ ls(n, t) ∗ readTail(t)))
∨ (∃x. readHeadEnv(h, n, x) ∗ ls(x, t) ∗ readTail(t)) ∨ readHeadNextEnv(h, n, t)

readHeadNextEnv(h, n, t)
def
=

∃x, y, z. (((h = t) ∧ node(t, x) ∧ ((x = n) ∨ (n = null))
∨ (node(h, n) ∗ ls(n, t) ∗ node(t, x))) ∗ ls(x, y) ∗ (Head = y) ∗ ls(y, z) ∗ (Tail = z)

readHeadNextVal(h, n, v)
def
=

((Head = h) ∗ node(h, n) ∗ node(n, v, ) ∗ (Tail = n))
∨ (∃x, t. (Head = h) ∗ node(h, n) ∗ node(n, v, x) ∗ ls(x, t) ∗ (Tail = t))
∨ (∃x, t. readHeadEnv(h, n, x) ∗ ls(x, t) ∗ (Tail = t))

Figure 5.16 Auxiliary definitions in the proofs of MS lock-free queue.

The abstract ENQ(v) operation is an atomic command <Q := Q::v>. The abstract

atomic DEQ() returns EMPTY if Q is empty and takes out the first node otherwise,

as shown below.

DEQ() { local v;

< if (Q = ǫ) { v := EMPTY; }

else { v := head(Q); Q := tail(Q); }

return v;

>

}

In the definition of I, the predicate lsq requires that the values of the nodes in

the concrete list (except the sentinel node) form the sequence Q. Recall that Tail

101



1 enq(v) {

2 local x, t, s, b;{
I ∗ (cid ֌ (ENQ, v))

}

3 b := false; x := cons(v, null);{
((¬b) ∗ I ∗ toEnq) ∨ (b ∗ I ∗ (cid ֌ end))

}

4 while (!b) {{
(¬b) ∗ I ∗ toEnq

}

5 < t := Tail; >{
(¬b) ∗ (I ∧ readTail(t) ∗ true) ∗ toEnq

}

6 s := t.next;{
(¬b) ∗ (I ∧ readTailNext(t, s) ∗ true) ∗ toEnq

}

7 if (t = Tail) {{
(¬b) ∗ (I ∧ readTailNext(t, s) ∗ true) ∗ toEnq

}

8 if (s = null) {{
(¬b) ∗ (I ∧ readTailNextNull(t, s) ∗ true) ∗ toEnq

}

9 < b := cas(&(t.next), s, x); if (b) linself; >{
(b ∗ (I ∧ readTailNextNonnull(t, x) ∗ true) ∗ (cid ֌ end))
∨ ((¬b) ∗ (I ∧ readTailNextNullEnv(t, s) ∗ true) ∗ toEnq)

}

10 if (b) {{
b ∗ (I ∧ readTailNextNonnull(t, x) ∗ true) ∗ (cid ֌ end)

}

11 cas(&Tail, t, x);{
b ∗ I ∗ (cid ֌ end)

}

12 }{
(b ∗ I ∗ (cid ֌ end)) ∨ ((¬b) ∗ I ∗ toEnq)

}

13 } else {{
(¬b) ∗ (I ∧ readTailNextNonnull(t, s) ∗ true) ∗ toEnq

}

14 cas(&Tail, t, s);{
(¬b) ∗ I ∗ toEnq

}

15 }

16 }

17 }{
I ∗ (cid ֌ end)

}

18 }

Here toEnq
def
= node(x, v, null) ∗ (cid ֌ (ENQ, v)) .

Figure 5.17 Proof outline of enq in MS lock-free queue.

points to either the last node, or the second to last node (see the predicate tls used

in the definition of lsq). Besides, to formulate the shared resource in the precise

invariant, we introduce an auxiliary variable GH to help collect the “garbage”

nodes that have been removed from the list (the predicate garb). The auxiliary

variable GH is set to Head during the initialization of the object and is no longer

modified afterwards. Then all the dequeued nodes form a list segment from GH to

the current Head, since the deq operation does not update the next pointer of a

dequeued node.

The rely/guarantee condition R and G specify the related transitions at the
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1 deq() {

2 local v, s, h, t, b;{
I ∗ (cid ֌ DEQ)

}

3 b := false;{
((¬b) ∗ I ∗ (cid ֌ DEQ)) ∨ (b ∗ I ∗ (cid ֌ (end, v)))

}

4 while (!b) {{
(¬b) ∗ I ∗ (cid ֌ DEQ)

}

5 < h := Head; >{
(¬b) ∗ (I ∧ readHead(h) ∗ true) ∗ (cid ֌ DEQ)

}

6 < t := Tail; >{
(¬b) ∗ (I ∧ readHeadTail(h, t) ∗ true) ∗ (cid ֌ DEQ)

}

7 < s := h.next; if (h = t && s = null) trylinself; >



(¬b) ∗ (I ∧ readHeadNextAfterTail(h, s, t) ∗ true)
∗ ((h = t ∧ s = null ∧ (cid ֌ DEQ⊕ cid ֌ (end, EMPTY)))

∨ ((h 6= t ∨ s 6= null) ∧ (cid ֌ DEQ)))





8 if (h = Head) {

9 if (h = t) {

10 if (s = null) {{
(¬b) ∗ I ∗ (h = t ∧ s = null ∧ (cid ֌ DEQ⊕ cid ֌ (end, EMPTY)))

}

11 commit(cid֌ (end, EMPTY));{
(¬b) ∗ I ∗ (cid ֌ (end, EMPTY))

}

12 v := EMPTY; b := true;{
b ∗ I ∗ (cid ֌ (end, v))

}

13 } else {{
(¬b) ∗ (I ∧ readTailNextNonnull(t, s) ∗ true) ∗ (cid ֌ DEQ)

}

14 cas(&Tail, t, s);{
(¬b) ∗ I ∗ (cid ֌ DEQ)

}

15 }

16 } else {{
(¬b) ∗ (I ∧ readHeadNextAfterTail(h, s, t) ∗ true) ∗ (cid ֌ DEQ) ∧ (h 6= t)

}

17 v := s.val;{
(¬b) ∗ (I ∧ readHeadNextVal(h, s, v) ∗ true) ∗ (cid ֌ DEQ)

}

18 < b := cas(&Head, h, s); if (b) linself; >{
((¬b) ∗ I ∗ (cid ֌ DEQ)) ∨ (b ∗ I ∗ (cid ֌ (end, v)))

}

19 }

20 } else {{
(¬b) ∗ I ∗ ((cid ֌ DEQ⊕ cid ֌ (end, EMPTY)) ∨ (cid ֌ DEQ))

}

21 commit(cid֌ DEQ);{
(¬b) ∗ I ∗ (cid ֌ DEQ)

}

22 }

23 }{
I ∗ (cid ֌ (end, v))

}

24 return v;{
I ∗ (cid ֌ (end, v))

}

25 }

Figure 5.18 Proof outline of deq in MS lock-free queue.
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1 CCAS(o, n) {

2 local r, d;

3 d := cons(cid, o, n);

4 r := cas1(&a, o, d);

5 while(IsDesc(r)) {

6 Complete(r);

7 r := cas1(&a, o, d);

8 }

9 if(r = o) Complete(d);

10 return r;

11 }

12 Complete(d) {

13 local b;

14 b := flag;

15 if (b)

16 cas1(&a, d, d.n);

17 else

18 cas1(&a, d, d.o);

19 }

20 SetFlag(b) {

21 flag := b;

22 }

Figure 5.19 CCAS code.

concrete and the abstract levels, which simply include all the actions over the

shared states in the algorithm. As defined in Figure 5.15, the actions Enq and

Deq correspond to the LPs at line 8 of the enq method and at line 28 of deq

respectively. They modify both the concrete list and the abstract queue. The

Enq action transfers the new node from the thread local memory to the shared

part, while Deq keeps the removed node in the shared memory to allow concurrent

accesses. Note Deq requires that Head and Tail should not point to the same node

before the action. This ensures Head and Tail will not cross (e.g., Head points to

the last node but Tail points to the second to last node in the list) after the Deq

action, which preserves the invariant I. The action Swing advances Tail when it

lags behind the last node of the list. It does not update the abstract queue.

Figures 5.17 and 5.18 show the proof outlines of enq and deq respectively. The

auxiliary assertions used in the proofs are defined in Figure 5.16. The proofs follow

the intuition of the algorithm, and are similar to the partial correctness proofs in

LRG, but now we need to specify the abstract queue and abstract operations in

assertions and reason about instrumented commands.

5.5.3 Conditional CAS

Conditional Compare-And-Swap (CCAS) [65] is a simplified version of the RDCSS

algorithm [27]. It involves both the helping mechanism and future-dependent LPs.

We show its code in Figure 5.19.

The object contains an integer variable a and a boolean bit flag. The method

SetFlag (line 20 in Figure 5.19) sets the bit directly. The method CCAS takes two

arguments: an expected current value o of the variable a and a new value n. It

atomically updates a with the new value n if flag is true and a indeed has the
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value o; and does nothing otherwise. CCAS always returns the (actual) old value

of a.

The implementation in Figure 5.19 uses a variant of the cas instruction, which

we write as cas1. Instead of a boolean value indicating whether it succeeds,

cas1(&a,o,n) returns the old value stored in a. When starting a CCAS, a thread

first allocates its descriptor (line 3), which contains the thread ID and the argu-

ments for CCAS. It then tries to put its descriptor in a using cas1 (line 4). If

successful, we know a’s actual old value r equals the expected value o, so the

if-condition at line 9 will succeed. Then the thread calls the auxiliary Complete

function, which restores a to the new value n (line 16) or to the original value o

(line 18), depending on whether flag is true. If the cas1 instruction at line 4

finds a contains a descriptor (i.e., IsDesc holds), the current thread will try to

help complete the operation in the descriptor (line 6) before doing its own. Since

we disallow nested function calls to simplify the language, the auxiliary Complete

function should be viewed as a macro.

The LPs of the algorithm are at lines 4, 7 and 14. If a contains a different

value from o at lines 4 and 7, then CCAS fails and they are LPs of the current

thread. We can instrument these lines as follows.

< r := cas1(&a, o, d); if(r!=o && !IsDesc(r)) linself; >

If the descriptor d gets placed in a, then the LP should be in the Complete function.

Since any thread can call Complete to help the operation, the LP should be at

line 14 of the thread which will succeed at line 16 or 18. It is a future-dependent

LP which may be in other threads’ code. We instrument line 14 using trylin(d.id)

to speculatively execute the abstract operation for the thread in d, which may not

be the current thread. That is, line 14 becomes

< b := flag; if (a = d) trylin(d.id); >

The condition a=d requires that the abstract operation in the descriptor has not

been finished. Then at lines 16 and 18, we commit to the correct guess. We show

the instrumentation at line 16 below (where s is a local variable).

< s := cas1(&a, d, d.n);

if(s = d) commit(d.id ֌(end, d.o) ∗ (aa = d.n)); >

That is, when the cas1 instruction succeeds, it should be possible that the thread

in d has finished its operation, and the current abstract a (denoted by aa to be

distinguished from the concrete variable a) contains the new value n. Line 18 is

instrumented similarly, as shown below.
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I
def
= (flag = flaga) ∗ (aVal ∨ aDesc) ∗ garb

aVal
def
= (a = aa) ∧ ¬IsDesc(a) aDesc

def
= ∃d, t, o, n. aDesc(d, t, o, n)

aDesc(d, t, o, n)
def
= (a = d) ∗ d 7→ (t, o, n)
∗ (notDone(t, o, n) ∨ trySucc(t, o, n) ∨ tryFail(t, o, n) ∨ tryBoth(t, o, n))

notDone(t, o, n)
def
= t ֌ (CCAS, o, n) ∗ (aa = o)

endSucc(t, o, n)
def
= t ֌ (end, o) ∗ (aa = n) endFail(t, o)

def
= t ֌ (end, o) ∗ (aa = o)

trySucc(t, o, n)
def
= notDone(t, o, n)⊕ endSucc(t, o, n)

tryFail(t, o, n)
def
= notDone(t, o, n) ⊕ endFail(t, o)

tryBoth(t, o, n)
def
= notDone(t, o, n)⊕ endSucc(t, o, n)⊕ endFail(t, o)

Figure 5.20 Invariant for CCAS.

< s := cas1(&a, d, d.o);

if(s = d) commit(d.id ֌(end, d.o) ∗ (aa = d.o)); >

Then we define I, R and G, and verify the code by applying our inference

rules. As shown in Figure 5.20, the invariant I describes flag and a at the

concrete and the abstract levels (here the abstract variables take the subscript

a to differ from the concrete ones). It requires flag at the two levels to be the

same, and a to be the same when it is a normal value at the concrete side (see

the predicate aVal). When the concrete a contains thread t’s descriptor d (see the

predicate aDesc), the abstract CCAS operation of t is also shared, which either has

not been done (notDone) or is speculatively finished with different results (trySucc,

tryFail and tryBoth). We use the predicate garb to remember the garbage thread

descriptors and abstract operations, which have been done but are still shared

between threads. The detailed definition of garb is omitted here, which is similar

to the one in the previous example and can be found in the technical report [43].

The rely R and the guarantee G include the action over the shared states

at each line. For instance, the action at the successful cas1 of lines 4 and 7 in

Figure 5.19 is defined as PlaceD.

PlaceD t

def
= ∃v, d, o, n. ((a = v) ∧ ¬IsDesc(v))

⋉ ((a = d) ∗ d 7→ (t, o, n) ∗ t ֌ (CCAS, o, n))

It transfers both the descriptor d and the corresponding abstract operation of the

current thread t from the thread local memory to the shared memory. This puts

the abstract operation in the pending thread pool and enables other threads to

help execute it.
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The action at line 14 (after instrumentation) guarantees TrylinSucc∨TrylinFail ,

which demonstrates the use of our logic for both helping and speculation.

TrylinSucc
def
= flag ∗ (∃t, o, n. notDone(t, o, n) ∝ endSucc(t, o, n))

TrylinFail
def
= (¬flag) ∗ (∃t, o, n. notDone(t, o, n) ∝ endFail(t, o))

Here we use p ∝ q (defined in Figure 5.8) to describe the action of trylin. Before

the action of TrylinSucc, we must have notDone as one of the speculations. The

action adds a new speculation endSucc and also keeps all the original speculations.

Note that TrylinSucc and TrylinFail allow the current thread to help execute the

abstract operation of some other thread t.

The actions RmvDSucc and RmvDFail describe the successful cas1 at lines 16

and 18 respectively. They restore a to values (i.e., remove the descriptor from a)

and commit to correct speculations. We define RmvDSucc for the action at line 16

below, and RmvDFail is defined similarly.

RmvDSucc
def
=

∃d, t, o, n. ((a = d) ∗ d 7→ (t, o, n) ∗ (endSucc(t, o, n)⊕ true) ∗ garb)
⋉ ((a = n) ∗ d 7→ (t, o, n) ∗ endSucc(t, o, n) ∗ garb’)

Here garb’ informally means, the thread t’s descriptor d and the result t ֌ (end, o)

after executing its abstract operation have been collected by garb.

The detailed proofs are in the technical report [43]. The subtle part in the

proof is to ensure that, no thread could cheat by imagining another thread’s help.

In any program point of CCAS, the environment may have done trylin and helped

the operation. But whether the environment has helped it or not, the commit

at line 16 or 18 cannot fail. This means, we should not confuse the two kinds

of nondeterminism caused by speculation and by environment interference. The

former allows us to discard wrong guesses, while for the latter, we should consider

all possible environments (including none).

5.6 Summary and Related Work

In this chapter, we propose a new program logic to verify linearizability of algo-

rithms with non-fixed LPs. The logic extends LRG [20] with new rules for the

auxiliary commands introduced specifically for linearizability proofs. We also give

a relational interpretation of asssertions and rely/guarantee conditions to relate

concrete implementations with the corresponding abstract operations. Underlying

the logic is a new thread-local simulation, which gives us contextual refinement.

Linearizability is derived based on its equivalence to refinement. Both the logic

107



and the simulation support reasoning about the helping mechanism and future-

dependent LPs. As shown in Table 5.1, we have applied the logic to verify various

classic algorithms.

There is a large body of work on linearizability verification. However, most

existing work supports only simple objects with static LPs in the implementation

code (e.g., [3, 14, 64]). Below we mainly discuss the closely related work that can

handle non-fixed LPs.

Our logic is similar to Vafeiadis’ extension of RGSep to prove linearizabil-

ity [66]. He also uses abstract objects and abstract atomic operations as auxiliary

variables and code. There are two key differences between the logics. First he

uses prophecy variables to handle future-dependent LPs, but there has been no

satisfactory semantics given for prophecy variables so far. We use the simple try-

commit mechanism, whose semantics is straightforward. Second the soundness of

his logic with respect to linearizability is not specified and proved. We address this

problem by defining a new thread-local simulation as the meta-theory of our logic.

As we explained in Section 5.1, defining such a simulation to support non-fixed

LPs is one of the most challenging issues we have to solve. Although recently

Vafeiadis develops an automatic verification tool [67] with formal soundness for

linearizability, his new work can handle non-fixed LPs for read-only methods only,

and cannot verify algorithms like HSY stack, CCAS and RDCSS in our work.

Recently, Turon et al. [65] propose logical relations to verify fine-grained con-

currency, which establish contextual refinement between the library and the speci-

fication. Underlying the model a similar simulation is defined. Our pending thread

pool is proposed concurrently with their “spec thread pool”, while the specula-

tion idea in our simulation is borrowed from their work, which traces back to

forward-backward simulation [48]. What is new here is a new program logic and

the way we instrument code to do relational reasoning. The set of syntactic rules,

including the try-commit mechanism to handle uncertainty, is much easier to use

than the semantic logical relations to construct proofs. On the other hand, they

support higher-order features, recursive types and polymorphism, while we focus

on concurrency reasoning and use only a simple first-order language.

O’Hearn et al. [53] prove linearizability of an optimistic variant of the lazy set

algorithm by identifying the “Hindsight” property of the algorithm. Their Hind-

sight Lemma provides a non-constructive evidence for linearizability. Although

Hindsight can capture the insights of the set algorithm, it remains an open prob-

lem whether the Hindsight-like lemmas exist for other concurrent algorithms.

Colvin et al. [12] formally verify the lazy set algorithm using a combination
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of forward and backward simulations between automata. Their simulations are

not thread-local, where they need to know the program counters of all threads.

Besides, their simulations are specifically constructed for the lazy set only, while

ours is more general in that it can be satisfied by various algorithms.

The simulations defined by Derrick et al. [15] are thread-local and general,

but they require the operations with non-fixed LPs to be read-only, thus cannot

handle the CCAS example. They also propose a backward simulation to verify

linearizability [60]. Although the method is proved to be complete, it does not

support thread-local verification and there is no program logic given.

Elmas et al. [19] prove linearizability by incrementally rewriting the fine-

grained code to the atomic operation. They do not need to locate LPs. Their

rules are based on left/right movers and program refinements, but not for Hoare-

style reasoning as in our work.

There are also lots of model-checking based tools (e.g., [46, 70]) for checking

linearizability. For example, Vechev et al. [70] check linearizability with user-

specified non-fixed LPs. Their method is not thread modular. To handle non-

fixed LPs, they need users to instrument the code with enough information about

the actions of other threads, which usually demands a priori knowledge about

the number of threads running in parallel, as shown in their example. Besides,

although their checker can detect un-linearizable code, it will not terminate for

linearizable methods in general.
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Chapter 6

Observing Progress

Chapter 5 discussed linearizability of concurrent objects. We proved that lin-

earizability is equivalent to a contextual refinement between the concrete object

implementations and the abstract operations (Theorem 5.6). This chapter re-

lates progress properties of concurrent objects to contextual refinements. We

study the five most common progress properties: wait-freedom, lock-freedom and

obstruction-freedom for non-blocking implementations, and starvation-freedom

and deadlock-freedom for lock-based implementations. We propose a unified

framework in which each progress property together with linearizability is equiv-

alent to a certain type of termination-sensitive contextual refinement.

Below we first give an overview of the background and explain our new equiva-

lence results informally in Section 6.1. The five progress properties are formalized

in Section 6.2 and the formal framework is presented in Section 6.3.

6.1 Background and Our Results

6.1.1 Contextual Refinement for Linearizability Fails to

Preserve Progress

Informally, the object implementation Π is a contextual refinement of abstract

operations ΠA, written as Π ⊑ ΠA, if substituting Π for ΠA in any context (i.e.,

in a client program) does not add observable behaviors. Then external observers

cannot tell that ΠA has been replaced by Π from monitoring the behaviors of a

client program.

To obtain equivalence to linearizability, we define the observable behaviors

in Π ⊑ ΠA as a prefixed-closed set of finite I/O event traces at both concrete

and abstract sides (see Definition 5.5). This basic contextual refinement can be
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used to distinguish linearizable objects from non-linearizable ones, but it cannot

characterize progress properties of objects. For the following example, Π ⊑ ΠA

holds although no concrete method call of f could finish (we assume this object

contains a method f only).

Π(f) : while(true) skip; ΠA(f) : skip;

C : print(1); f(); print(1);

For instance, if the above client C uses the object Π, the set of its observable

behaviors is {ǫ, (out, 1) :: ǫ}. When C uses ΠA instead, the observable behavior

set becomes {ǫ, (out, 1) :: ǫ, (out, 1) :: (out, 1) :: ǫ}, which indeed contains all the

finite event traces at the concrete side. The key reason is that Π ⊑ ΠA considers

a prefix-closed set of event traces at the abstract side.

6.1.2 Overview of Progress Properties

Figure 6.1 shows several implementations of a counter with different progress guar-

antees that we study in this paper. A counter object provides the two methods

inc and dec for incrementing and decrementing a shared variable x. The imple-

mentations given here are not intended to be practical but merely to demonstrate

the meanings of the progress properties.

Informally, an object implementation is wait-free, if it guarantees that every

thread can complete any started operation of the data structure in a finite number

of steps [31]. Figure 6.1(a) shows an ideal wait-free implementation in which

the increment and the decrement are done atomically. This implementation is

obviously wait-free since it guarantees termination of every method call regardless

of interference from other threads. Note that realistic implementations of wait-free

counters are more complex and involve arrays and atomic snapshots [4].

Lock-freedom is similar to wait-freedom but only guarantees that some thread

will complete an operation in a finite number of steps [31]. Typical lock-free im-

plementations (such as Treiber stack [62], HSY elimination-backoff stack [30] and

MS lock-free queue [51]) use the cas instruction in a loop to repeatedly attempt

an update until it succeeds. Figure 6.1(b) shows such an implementation of the

counter object. It is lock-free, because whenever inc and dec operations are ex-

ecuted concurrently, there always exists some successful update. Note that this

object is not wait-free. For the following program,

inc(); ‖ while(true) inc(); (6.1)
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1 inc() { x := x + 1; }

2 dec() { x := x - 1; }

(a) wait-free (ideal) impl.

1 inc() {

2 local t, b;

3 do {

4 t := x;

5 b := cas(&x,t,t+1);

6 } while(!b);

7 }

(b) lock-free impl.

1 inc() {

2 TestAndSet_lock();

3 x := x + 1;

4 TestAndSet_unlock();

5 }

(d) deadlock-free impl.

1 inc() {

2 while (i < 10) {

3 i := i + 1;

4 }

5 x := x + 1;

6 }

7 dec() {

8 while (i > 0) {

9 i := i - 1;

10 }

11 x := x - 1;

12 }

(c) obstruction-free impl.

1 inc() {

2 Bakery_lock();

3 x := x + 1;

4 Bakery_unlock();

5 }

(e) starvation-free impl.

Figure 6.1 Counter objects with methods inc and dec.

the cas instruction in the method called by the left thread may continuously fail

due to the continuous updates of x made by the right thread.

Herlihy et al. [32] propose obstruction-freedom which “guarantees progress

for any thread that eventually executes in isolation” (i.e., without other active

threads in the system). They present two double-ended queues as examples. In

Figure 6.1(c) we show an obstruction-free counter that may look contrived but

nevertheless illustrates the idea of the progress property.

The implementation introduces a shared-variable variable i, and lets inc per-

form the atomic increment after increasing i to 10 and dec do the atomic decre-

ment after decreasing i to 0. Whenever a method is executed in isolation (i.e.,

without interference from other threads), it will complete. Thus the object is

obstruction-free. It is not lock-free, because for the client

inc(); ‖ dec(); (6.2)

which executes an increment and a decrement concurrently, it is possible that

neither of the method calls returns. For instance, under a specific schedule, every

increment over i made by the left thread is immediately followed by a decrement

from the right thread.
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Wait-freedom, lock-freedom, and obstruction-freedom are progress properties

for non-blocking implementations, where a delay of a thread cannot prevent other

threads from making progress. In contrast, deadlock-freedom and starvation-

freedom are progress properties for lock-based implementations. A delay of a

thread holding a lock will block other threads which request the lock.

Deadlock-freedom and starvation-freedom are often defined in terms of locks

and critical sections. Deadlock-freedom guarantees that some thread will succeed

in acquiring the lock, and starvation-freedom states that every thread attempting

to acquire the lock will eventually succeed [33]. For example, a test-and-set spin

lock [33] is deadlock-free but not starvation-free. In a concurrent access, some

thread will successfully set the bit and get the lock, but there might be a thread

that is continuously failing to get the lock. Lamport’s bakery lock [41] is starvation-

free. It ensures that threads can acquire locks in the order of their requests.

However, as noted by Herlihy and Shavit [34], the above definitions based on

locks are unsatisfactory, because it is often difficult to identify a particular field

in the object as a lock. Instead, they suggest defining them in terms of method

calls. They also notice that the above definitions implicitly assume that every

thread acquiring the lock will eventually release it. This assumption requires fair

scheduling, i.e., every thread gets eventually executed.

Following Herlihy and Shavit [34], we say an object is deadlock-free, if in each

fair execution there always exists some method call that can finish. As an example

in Figure 6.1(d), we use a test-and-set lock to synchronize the increments of the

counter. Since some thread is guaranteed to acquire the test-and-set lock, the

method call of that thread is guaranteed to finish. Thus the object is deadlock-free.

Similarly, a starvation-free object guarantees that every method call can finish in

fair executions. Figure 6.1(e) shows a counter implemented with Lamport’s bakery

lock. It is starvation-free because the bakery lock ensures that every thread can

acquire the lock and hence every method call can eventually complete.

6.1.3 Our Results

None of the above definitions of the five progress properties describes their guar-

antees regarding the behaviors of client code. In this chapter, we define several

contextual refinements to characterize the effects over client behaviors when the

client uses objects with some progress properties. We show that linearizability

together with a progress property is equivalent to a certain termination-sensitive

contextual refinement. Table 6.1 summarizes our results.

For each progress property, the new contextual refinement Π ⊑ ΠA is defined
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Wait-free Lock-free Obstruction-free Deadlock-free Starvation-free

ΠA (t, Div.) Div. Div. Div. (t, Div.)

Π (t, Div.) Div. Div. if isolating Div. if fair (t, Div.) if fair

Table 6.1 Characterizing progress properties via contextual refinements Π ⊑ ΠA.

with respect to a divergence behavior and/or a specific scheduling at the imple-

mentation level (the third row in Table 6.1) and at the abstract side (the second

row), in addition to the I/O events in the basic contextual refinement for lineariz-

ability. Here “divergence” can be roughly viewed as non-termination, which will

be explained in detail in Section 6.3.

• For wait-freedom, we need to observe the divergence of each individual thread

t, represented by “(t, Div.)” in Table 6.1, at both the concrete and the

abstract levels. We show that, if the thread t of a client program diverges

when the client uses a linearizable and wait-free object Π, then thread t must

also diverge when using ΠA instead.

• The case for lock-freedom is similar, except that we now consider the diver-

gence behaviors of the whole client program rather than individual threads

(denoted by “Div.” in Table 6.1). If a client diverges when using a lineariz-

able and lock-free object Π, it must also diverge when it uses ΠA instead.

• For obstruction-freedom, we consider the behaviors of isolating executions

at the concrete side (denoted by “Div. if isolating” in Table 6.1). In those

executions, eventually only one thread is running. We show that, if a client

diverges in an isolating execution when it uses a linearizable and obstruction-

free object Π, it must also diverge in some abstract execution.

• For deadlock-freedom, we only care about fair executions at the concrete

level (denoted by “Div. if fair” in Table 6.1).

• For starvation-freedom, we observe the divergence of each individual thread

at both levels and restrict our considerations to fair executions for the con-

crete side (“(t, Div.) if fair” in Table 6.1). Any thread using Π can diverge

in a fair execution, only if it also diverges in some abstract execution.

We will formalize the results and give examples in Section 6.3. These new contex-

tual refinements form a unified framework that characterizes progress properties

as well as linearizability. The framework can serve as a new alternative definition

for the full correctness properties of concurrent objects. The contextual refine-

ment implied by linearizability and a progress guarantee precisely characterizes
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the properties at the abstract level that are preserved by the object implemen-

tation. When proving these properties of a client of the object, we can soundly

replace the concrete method implementations by its abstract operations. On the

other hand, since the contextual refinement also implies linearizability and the

progress property, we can potentially borrow ideas from existing proof methods

for contextual refinements (e.g., RGSim) to verify linearizability and the progress

guarantee together.

6.2 Formalizing Progress Properties

As shown in Figure 6.2, we define progress properties over event traces T as well

as over object implementations Π. Different from the finite event traces defined

in Figure 5.4, an event trace T in this chapter could be an infinite sequence of

events. It is co-inductively defined below. To discuss the progress properties, we

also extend the definition of events e in Figure 5.4 with two new events. First,

we introduce an auxiliary command end which can generate a termination event

(t, term). The new command end is a special marker that will be added at the end

of a thread, but is not supposed to be used directly by programmers. The second

newly introduced event is (spawn, n), saying that n threads are spawned. Both of

the two new events are unobservable. Other technical settings are almost the same

as those in Section 5.2, including the program semantics and the linearizability

definition.

(Stmt) C ::= . . . | end

(Evt) e ::= . . . | (t, term) | (spawn, n)

(ETrace) T ::= ǫ | e ::T (co-inductive)

We follow the notations used in Chapter 5. For instance, tid(e) is still for the

thread ID in the event e. Predicates is inv(e), is ret(e) and is abt(e) still say that

e is a method invocation, a return and a fault, respectively. match(e1, e2) still

requires that the invocation e1 and the response e2 (i.e., a return or an object

fault) have the same thread ID. We still use T (i) for the i-th event of T . Besides,

we write last(T ) for the last event when T is finite. The trace T (1..i) is the sub-

trace T (1), . . . , T (i) of T , and |T | still represents the length of T (|T | = ω if T is

infinite). The trace T |t is still for the sub-trace of T consisting of all events whose

thread ID is t.

We say an object implementation Π has a progress property P iff all its event

traces have the property (Definition 6.1). Here we use Tω to generate the complete
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Definition 6.1. An object Π satisfies a progress property P under a refinement mapping
ϕ, written as Pϕ(Π), iff

∀n,C1, . . . , Cn, σc, σo, T. T ∈ TωJ(let Π in C1‖ . . .‖Cn), (σc, σo)K ∧ (σo ∈ dom(ϕ))
=⇒ P (T ) .

TωJW, (σc, σo)K def
=

{(spawn, |W |) ::T | (⌊W ⌋, (σc, σo,⊚))
T7−→ω ·

∨ (⌊W ⌋, (σc, σo,⊚))
T7−→∗ (skip, ) ∨ (⌊W ⌋, (σc, σo,⊚))

T7−→∗ abort}
⌊let Π in C1‖ . . .‖Cn⌋ def

= let Π in (C1; end)‖ . . .‖(Cn; end)

|let Π in C1 ‖ . . . ‖ Cn| def
= n tnum((spawn, n) ::T )

def
= n

pend inv(T )
def
= {e | ∃i. e = T (i) ∧ is inv(e) ∧ ¬∃j. (j > i ∧match(e, T (j)))}

prog-t(T ) iff ∀i, e. e ∈ pend inv(T (1..i)) =⇒ ∃j. j > i ∧match(e, T (j))

prog-s(T ) iff ∀i, e. e ∈ pend inv(T (1..i)) =⇒ ∃j. j > i ∧ is ret(T (j))

abt(T ) iff ∃i. is abt(T (i))
sched(T ) iff

|T | = ω ∧ pend inv(T ) 6= ∅ =⇒ ∃e. e ∈ pend inv(T ) ∧ |(T |tid(e))| = ω

fair(T ) iff |T | = ω =⇒ ∀t ∈ [1..tnum(T )]. |(T |t)| = ω ∨ last(T |t) = (t, term)

iso(T ) iff |T | = ω =⇒ ∃t, i. (∀j. j ≥ i =⇒ tid(T (j)) = t)

wait-free iff sched =⇒ prog-t ∨ abt starvation-free iff fair =⇒ prog-t ∨ abt

lock-free iff sched =⇒ prog-s ∨ abt deadlock-free iff fair =⇒ prog-s ∨ abt

obstruction-free iff sched ∧ iso =⇒ prog-t ∨ abt

Figure 6.2 Formalizing progress properties.

event traces of an object. Its definition in Figure 6.2 is similar to T JW, (σc, σo)K
of Figure 5.6, but TωJW, (σc, σo)K is for the set of finite or infinite event traces

produced by complete executions. We use (W,S) T7−→ ω · to denote the existence

of a T -labelled infinite execution. By using ⌊W ⌋, we append end at the end

of each thread to explicitly mark the termination of the thread. We also insert

the spawning event (spawn, n) at the beginning of T , where n is the number of

threads in W . We assume the threads take continuous positive numbers as IDs,

thus n should also be the greatest thread ID in W . Later we can use tnum(T ) to

get this number n, which is needed to define fairness, as shown below.

Before formulating each progress property over event traces, we first define

some auxiliary properties in Figure 6.2. We use pend inv(T ) to get the set of
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lock-free ⇐⇒ wait-free ∨ prog-s starvation-free ⇐⇒ wait-free ∨ ¬fair
obstruction-free ⇐⇒ lock-free ∨ ¬iso deadlock-free ⇐⇒ lock-free ∨ ¬fair

Figure 6.3 Relationships between progress properties.

pending invocations in T . Recall that an invocation is pending if no matching

return follows it. The predicate prog-t(T ) guarantees that every method call in

T eventually finishes. It says, even if the invocation e is pending in the sub-

trace T (1..i), we must be able to find a matching response T (j) later. prog-s(T )

guarantees that some pending method call finishes. Different from prog-t, the

return event T (j) in prog-s does not have to be a matching return of the pending

invocation e. As an example, in the following infinite event trace T1,

T1 : (t1, f, 1) :: (t1, obj) :: (t2, f, 2) :: (t2, ret, 2) :: (t1, obj) :: (t2, f, 2) :: (t2, ret, 2) :: . . .

the thread t2 keeps producing invocations and returns while the method call from

thread t1 never finishes. Thus it satisfies prog-s but not prog-t. Besides, abt(T )

says that T ends with a fault event.

There are three useful conditions on scheduling. The basic requirement for a

good schedule is sched. If T is infinite and there exist pending calls, then at least

one pending thread should be scheduled infinitely often. In fact, there are two

possible reasons causing a method call of thread t to pend. Either t is no longer

scheduled, or it is always scheduled but the method call never finishes. sched

rules out the bad schedule where no thread with an invoked method is active. For

instance, the following infinite trace T2 does not satisfy sched, while T3 and the

above T1 satisfies it.

T2 : (t1, f1, n1) :: (t2, f2, n2) :: (t1, obj) :: (t3, clt) :: (t3, clt) :: (t3, clt) :: . . .

T3 : (t1, f1, n1) :: (t2, f2, n2) :: (t1, obj) :: (t2, obj) :: (t2, obj) :: (t2, obj) :: . . .

Besides, if T is infinite, fair(T ) requires every non-terminating thread be scheduled

infinitely often. Note here we use tnum(T ) to get the total number of threads of

the client, which may not equal the number of threads mentioned in T . Then

the definition of fair can rule out the case where some thread is never scheduled.

We can see that a fair schedule is a good schedule satisfying sched. The isolating

schedule iso(T ) requires eventually only one thread be scheduled. For instance,

the above traces T2 and T3 both satisfy iso.

At the bottom of Figure 6.2 we define the progress properties over event traces

formally. We omit the parameter T in the formulas to simplify the presentation.
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Sequential termination

Obstruction-freedom Deadlock-freedom

Lock-freedom Starvation-freedom

Wait-freedom

Figure 6.4 Relationship lattice of progress properties.

An event trace T is wait-free (i.e., wait-free(T ) holds) if under the good schedule

sched, it guarantees prog-t unless it ends with a fault. lock-free(T ) is similar except

that it guarantees prog-s. Starvation-freedom and deadlock-freedom guarantee

prog-t and prog-s under fair scheduling. Obstruction-freedom guarantees prog-t if

some pending thread is always scheduled (sched) and runs in isolation (iso). For

the above examples, the event trace T1 satisfies lock-free but not wait-free. T2

satisfies all the five progress properties since it does not satisfy sched. Though T3

satisfies both sched and iso, it does not ensure obstruction-free since prog-t is not

guaranteed.

Figure 6.3 contains lemmas that relate progress properties. For instance, an

event trace is starvation-free, iff it is wait-free or not fair. These lemmas give

us the relationship lattice in Figure 6.4, where the arrows represent implications.

For example, wait-freedom implies lock-freedom and starvation-freedom implies

deadlock-freedom. To close the lattice, we also define a progress property in the

sequential setting, which we call sequential termination.

Definition 6.2 (Sequential Termination). seq-termϕ(Π) iff

∀C1, σc, σo, T. T ∈ TωJ(let Π in C1), (σc, σo)K ∧ (σo ∈ dom(ϕ)) =⇒ starvation-free(T ) .

It guarantees that every method call must finish in a trace produced by a

sequential client. It is implied by each of the five progress properties for concurrent

objects.

6.3 Equivalence to Contextual Refinements

We extend the basic contextual refinement in Definition 5.5 to observe progress

as well as linearizability. For each progress property, we carefully choose the
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div tids(T )
def
= {t | ( |(T |t)| = ω ) }

OωJW, (σc, σo)K def
= {get obsv(T ) | T ∈ TωJW, (σc, σo)K }

OiωJW, (σc, σo)K def
= {get obsv(T ) | T ∈ TωJW, (σc, σo)K ∧ iso(T )}

OfωJW, (σc, σo)K def
= {get obsv(T ) | T ∈ TωJW, (σc, σo)K ∧ fair(T )}

OtωJW, (σc, σo)K def
= {(get obsv(T ), div tids(T )) | T ∈ TωJW, (σc, σo)K }

OftωJW, (σc, σo)K def
= {(get obsv(T ), div tids(T )) | T ∈ TωJW, (σc, σo)K ∧ fair(T )}

Figure 6.5 Generation of complete event traces.

observable behaviors at the concrete and the abstract levels.

6.3.1 Observable Behaviors

In Figure 6.5, we define various observable behaviors for the termination-sensitive

contextual refinements.

We use OωJW, (σc, σo)K to represent the set of observable event traces produced
by complete executions. Recall that get obsv(T ) gets the sub-trace of T consisting

of all the observable events (i.e., outputs, client faults and object faults) only.

Unlike the prefix-closed set OJW, (σc, σo)K (defined in Figure 5.6), this definition

utilizes TωJW, (σc, σo)K (see Figure 6.2) whose event traces are all complete and

could be infinite. Thus it allows us to observe divergence of the whole program.

Oiω and Ofω take the complete observable traces of isolating and fair executions

respectively. Here iso(T ) and fair(T ) have been defined in Figure 6.2.

We could also observe divergence of individual threads. We define div tids(T )

to collect the set of threads that diverge in the trace T . Then we write OtωJW,σK
to get both the observable behaviors and the diverging threads in the complete

executions. OftωJW,σK is defined similarly but considers fair executions only.

More on divergence. In general, divergence means non-termination. For ex-

ample, we could say that the following two-threaded program (6.3) must diverge

since it never terminates.

x := x + 1; ‖ while(true) skip; (6.3)

But for individual threads, divergence is not equivalent to non-termination. A

non-terminating thread may either have an infinite execution or simply be not

scheduled from some point due to unfair scheduling. We view only the former
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P wait-free lock-free obstruction-free deadlock-free starvation-free

Π ⊑P
ϕ ΠA Otω ⊆ Otω Oω ⊆ Oω Oiω ⊆ Oω Ofω ⊆ Oω Oftω ⊆ Otω

Table 6.2 Contextual refinements Π ⊑P
ϕ ΠA for progress properties P .

case as divergence. For instance, in an unfair execution, the left thread of (6.3)

may never be scheduled and hence it has no chance to terminate. It does not

diverge. Similarly, for the following program (6.4),

while(true) skip; ‖ while(true) skip; (6.4)

the whole program must diverge, but it is possible that a single thread does not

diverge in an execution.

6.3.2 New Contextual Refinements and Equivalence Re-

sults

In Table 6.2, we summarize the definitions of the termination-sensitive contextual

refinements. Each new contextual refinement follows the basic one in Definition 5.5

but takes different observable behaviors as specified in Table 6.2. For example,

the contextual refinement for wait-freedom is formally defined as follows.

Π ⊑wait-free
ϕ ΠA iff

∀n,C1, . . . , Cn, σc, σo, σa. (ϕ(σo) = σa) =⇒
OtωJ(let Π in C1‖ . . .‖Cn), (σc, σo))K ⊆ OtωJ(let ΠA in C1‖ . . .‖Cn), (σc, σa)K .

Theorem 6.3 says that linearizability with a progress property P together is

equivalent to the corresponding contextual refinement ⊑P
ϕ .

Theorem 6.3 (Equivalence). Π �ϕ ΠA ∧ Pϕ(Π) ⇐⇒ Π ⊑P
ϕ ΠA, where P is

wait-free, lock-free, obstruction-free, deadlock-free or starvation-free.

Here we assume the object specification ΠA is total, i.e., the abstract operations

never block. We sketch the proofs of Theorem 6.3 in Appendix B.

The contextual refinement for wait-freedom takes Otω at both the concrete and

the abstract levels. The divergence of individual threads as well as I/O events are

treated as observable behaviors. The intuition of the equivalence is as follows.

Since a wait-free object Π guarantees that every method call finishes, we have to

blame the client code itself for the divergence of a thread using Π. That is, even

if the thread uses the abstract object ΠA, it must still diverge.

As an example, consider the client program (6.1). Intuitively, for any execution

in which the client uses the abstract operations, only the right thread t2 diverges.
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Thus Otω of the abstract program is a singleton set {(ǫ, {t2})}. When the client

uses the wait-free object in Figure 6.1(a), its Otω set is still {(ǫ, {t2})}. It does

not produce more observable behaviors. But if it uses a non-wait-free object (such

as the one in Figure 6.1(b)), the left thread t1 does not necessarily finish. The

Otω set becomes {(ǫ, {t2}), (ǫ, {t1, t2})}. It produces more observable behaviors

than the abstract client, breaking the contextual refinement. Thanks to observing

div tids that collects the diverging threads, we can rule out non-wait-free objects

which may cause more threads to diverge.

Π ⊑lock-free

ϕ ΠA takes coarser observable behaviors. We observe the divergence

of the whole client program by using Oω at both the concrete and the abstract

levels. Intuitively, a lock-free object Π ensures that some method call will finish,

thus the client using Π diverges only if there are an infinite number of method

calls. Then it must also diverge when using the abstract object ΠA.

For example, consider the client (6.1). The whole client program diverges in

every execution both when it uses the lock-free object in Figure 6.1(b) and when

it uses the abstract one. The Oω set of observable behaviors is {ǫ} at both levels.

On the other hand, the following client (6.5) must terminate and print out both

1 and 2 in every execution. The Oω set is {1::2 ::ǫ, 2::1 ::ǫ} at both levels.

inc(); print(1); ‖ dec(); print(2); (6.5)

Instead, if the client (6.5) uses the non-lock-free object in Figure 6.1(c), it may

diverge and nothing is printed out. The Oω set becomes {ǫ, 1 :: 2 :: ǫ, 2 :: 1 :: ǫ},
which contains more behaviors than the abstract side. Thus Π ⊑lock-free

ϕ ΠA fails.

Obstruction-freedom ensures progress for isolating executions in which even-

tually only one thread is running. Correspondingly, Π ⊑obstruction-free

ϕ ΠA restricts

our considerations to isolating executions. It takes Oiω at the concrete level and

Oω at the abstract level.

To understand the equivalence, consider the client (6.5) again. For isolating

executions with the obstruction-free object in Figure 6.1(c), it must terminate and

print out both 1 and 2. The Oiω set at the concrete level is {1::2 ::ǫ, 2::1 ::ǫ}, the
same as the set Oω of the abstract side. Non-obstruction-free objects in general

do not guarantee progress for some isolating executions. If the client uses the

object in Figure 6.1(d) or (e), the Oiω set is {ǫ, 1 :: 2 :: ǫ, 2 :: 1 :: ǫ}, not a subset of

the abstract Oω set. The undesired empty observable trace is produced by unfair

executions, where a thread acquires the lock and gets suspended and then the

other thread would keep requesting the lock forever (it is executed in isolation).
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Π ⊑deadlock-free

ϕ ΠA uses Ofω at the concrete side, ruling out undesired divergence

caused by unfair scheduling. For the client (6.5) with the object in Figure 6.1(d)

or (e), its Ofω set is same as the set Oω at the abstract level.

For Π ⊑starvation-free

ϕ ΠA, we still consider only fair executions at the con-

crete level (similar to deadlock-freedom), but observe the divergence of individual

threads rather than the whole program (similar to wait-freedom). It uses Oftω

at the concrete side and Otω at the abstract level. For the client (6.5) with the

starvation-free object in Figure 6.1(e), no thread diverges in any fair execution.

Then the set Oftω of concrete observable behaviors is {(1 :: 2 :: ǫ, ∅), (2 :: 1 :: ǫ, ∅)},
which is same as the set Otω at the abstract level.

Observing threaded divergence is the key to distinguishing starvation-free ob-

jects from deadlock-free objects. Consider the client (6.1). Under fair scheduling,

we know only the right thread t2 would diverge when using the starvation-free

object in Figure 6.1(e). The set Oftω is {(ǫ, {t2})}. It coincides with the abstract

behaviors Otω. But when using the deadlock-free object of Figure 6.1(d), the Oftω

set becomes {(ǫ, {t2}), (ǫ, {t1, t2})}, breaking the contextual refinement.

6.4 Summary and Related Work

This chapter introduced a contextual refinement framework to unify various progress

properties. For linearizable objects, each progress property is equivalent to a spe-

cific termination-sensitive contextual refinement, as summarized in Table 6.1. The

framework allows us to verify safety and liveness properties of client programs at

a high abstraction level by replacing concrete method implementations with ab-

stract operations. It also makes it possible to borrow ideas from existing proof

methods for contextual refinements to verify linearizability and a progress property

together, which we leave as future work.

There is a large body of work discussing the five progress properties and the

contextual refinements individually. Our work in contrast studies their relation-

ships, which have not been considered much before.

Gotsman and Yang [24] propose a new linearizability definition that preserves

lock-freedom, and suggest a connection between lock-freedom and a termination-

sensitive contextual refinement. We do not redefine linearizability here. Instead,

we propose a unified framework to systematically relate all the five progress prop-

erties plus linearizability to various contextual refinements.

Herlihy and Shavit [34] informally discuss all the five progress properties. Our

definitions in Section 6.2 mostly follow their explanations, but they are more
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formal and close the gap between program semantics and their history-based in-

terpretations. We also notice that their obstruction-freedom is inappropriate for

some examples (see Appendix A), and propose a different definition that is closer

to the common intuition [33]. In addition, we relate the progress properties to

contextual refinements, which consider the extensional effects on client behaviors.

Fossati et al. [22] propose a uniform approach in the π-calculus to formulate

both the standard progress properties and their observational approximations.

Their technical setting is completely different from ours. Also, their observational

approximations for lock-freedom and wait-freedom are strictly weaker than the

standard notions. Their deadlock-freedom and starvation-freedom are not formu-

lated, and there is no observational approximation given for obstruction-freedom.

In comparison, our framework relates each of the five progress properties (plus

linearizablity) to an equivalent contextual refinement.

There are also formulations of progress properties based on temporal logics.

For example, Petrank et al. [57] formalize the three non-blocking properties and

Dongol [18] formalize all the five progress properties, using linear temporal logics.

Those formulations make it easier to do model checking (e.g., Petrank et al. [57]

also build a tool to model check a variant of lock-freedom), while our contextual

refinement framework is potentially helpful for modular Hoare-style verification.
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Chapter 7

Conclusions and Future Work

Many verification problems can be reduced to verifying refinement. This disser-

tation studies proof techniques for refinement and its applications in a concurrent

setting. It has covered four main topics.

• A novel simulation, RGSim, as a general, application-independent and com-

positional proof method for concurrent program refinement.

• A verification framework, based on RGSim, for proving the correctness of

concurrent garbage collectors.

• A program logic, for verifying linearizability of concurrent objects with non-

fixed linearization points.

• A unified framework, that characterizes progress properties of concurrent

objects via contextual refinements.

RGSim parameterizes the simulation between concurrent programs with the

interference from their parallel environments. It is compositional with respect

to parallel compositions, allowing us to decompose refinement proofs for multi-

threaded programs into proofs for individual threads.

RGSim can incorporate the assumptions about environments made by specific

refinement applications, so it is flexible and practical. It makes relational reason-

ing about optimizations possible in parallel contexts. We present a set of relational

reasoning rules to characterize and justify common optimizations in a concurrent

setting, including hoisting loop invariants, strength reduction and induction vari-

able elimination, dead code elimination, redundancy introduction.

We also reduce the problem of verifying concurrent garbage collectors to ver-

ifying transformations, and present a general GC verification framework based
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on RGSim. We have verified the Boehm et al. concurrent garbage collection

algorithm [9] using our framework.

Besides, RGSim gives us a refinement-based proof method to verify fine-grained

implementations of abstract algorithms and concurrent objects. It can ensure a

contextual refinement that is equivalent to linearizability of concurrent objects.

However, RGSim does not support objects with non-fixed LPs.

We propose the first program logic that has a formal soundness proof for lin-

earizability with non-fixed LPs. Our logic is built upon the unary program logic

LRG [20], but we give a relational interpretation of assertions and rely/guarantee

conditions. We also introduce new logic rules for auxiliary commands used specif-

ically for linearizability proofs. We introduce the pending thread pool to support

the helping mechanism, and the try-commit clauses for future-dependent LPs.

We successfully apply our logic to verify 12 well-known algorithms (see Table 5.1).

Some of them are used in the java.util.concurrent package, such as MS non-

blocking queue [51] and Harris-Michael lock-free list [26, 50].

We also design a new simulation as the meta-theory for our logic. It generalizes

RGSim with the support for non-fixed LPs. It is still compositional and ensures a

contextual refinement, which is equivalent to linearizability. A program logic for

contextual refinement is interesting in its own right, since contextual refinement

is also a widely accepted (and probably more natural) correctness criterion for

library code.

Finally, we relate progress properties of concurrent objects to contextual re-

finements. We formalize the definitions of the five most common progress prop-

erties: wait-freedom, lock-freedom, obstruction-freedom, starvation-freedom, and

deadlock-freedom. Their relationships form a lattice shown in Figure 6.4. We

develop a unified framework to characterize progress properties via contextual re-

finements. With linearizability, each progress property is proved equivalent to a

contextual refinement which takes into account divergence of programs.

Our contextual refinement framework can serve as a new alternative definition

for the full correctness properties of a concurrent object. It enables us to modularly

verify a client of the object by replacing the concrete method implementations

with the abstract operations. Also, it becomes possible to extend existing proof

methods for contextual refinements (such as RGSim) to verify linearizability and

the progress guarantee together.

Future work.

• Verifying termination-preserving refinement. Most existing proof techniques
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for concurrent program refinement (including ours) do not reason about

the preservation of termination, allowing a diverging program to trivially

refine any programs. We would like to design a new simulation and a new

Hoare-style program logic, both of which support compositional verification

of termination-preserving refinement of concurrent programs.

• A verification framework for linearizability and progress properties. The con-

textual refinement framework in this dissertation enables us to use each

termination-sensitive contextual refinement to verify linearizability and the

corresponding progress property together. This dissertation also presents a

program logic for a termination insensitive contextual refinement that en-

sures linearizability alone. Can we extend the logic to verify each termination-

sensitive contextual refinement? Furthermore, can we have a unified pro-

gram logic (perhaps with a few parameters and plug-in rules) that supports

all those contextual refinements?

• More applications. We would like to verify implementations of software

transactional memory, operating system kernels, practical compilers for con-

current programs and other real-world refinement applications.

• Tool support. We would like to develop specialized tools that take two pro-

grams as the input and prove the refinement between them automatically or

semi-automatically. We also hope to mechanize the logic for linearizability

in Coq and then build tools to automate the verification process.
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Appendix A

Comparisons with Herlihy and

Shavit’s Obstruction-Freedom

Herlihy and Shavit [34] define obstruction-freedom using the notion of uniformly

isolating executions. A trace is uniformly isolating, if “for every k > 0, any thread

that takes an infinite number of steps has an interval where it takes at least k

concrete contiguous steps” [34]. Then, their obstruction-free object guarantees

wait-freedom for every uniformly isolating execution. They also propose a new

progress property, clash-freedom, which guarantees lock-freedom for uniformly-

isolating executions.

Below we give an example showing that their definition is inconsistent with the

common intuition of obstruction-freedom. The object implementation uses three

shared variables: x, a and b. It provides two methods f and g.

f() {

while (a <= x <= b) {

x++;

a--;

}

}

g() {

while (a <= x <= b) {

x--;

b++;

}

}

We can see that, if f() or g() is eventually executed in isolation (i.e., we sus-

pend all but one threads), it must returns. Thus intuitively this object should be

obstruction-free. It also satisfies our formulation in Figure 6.2.

However, we could construct an execution which is uniformly isolating but

is not lock-free or wait-free. Consider the client program f() ‖ g(). It has an

execution shown in Figure A.1. Starting from x = 0, a = −1 and b = 1, we

alternatively let each thread execute more and more iterations. Then for any k,

we could always find an interval of k iterations for each thread in this execution.
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time

b = 1

x = 0

a = −1

b = 1

x = 1

a = −2

b = 2

x = 0

a = −2

b = 2

x = 2

a = −4

b = 4

x = 0

a = −4

t1

t2

x++; a--;

x--; b++;

x++;a--; x++;a--;

x--;b++; x--;b++;
. . .

Figure A.1 Example execution.

Thus the execution is uniformly isolating. But neither method call finishes. This

execution is not lock-free nor wait-free. Thus the object does not satisfy Herlihy

and Shavit’s obstruction-freedom or clash-freedom definitions.
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Appendix B

Proofs of Equivalence Results

In this appendix, we sketch the proofs for the equivalence results between lineariz-

ablity, progress properties and contextual refinements, including Theorem 5.6 (the

basic equivalence for linearizability) and Theorem 6.3 (our new equivalence results

for various progress properties). More detailed proofs can be found in our technical

report [45].

Below we use T JW,SK for the prefix-closed set of finite event traces generated

by W with the initial state S. It generalizes the definition of T JW, (σc, σo)K (in

Figure 5.6) to allow nonempty call stacks in the initial state. We also use HJW,SK
and OJW,SK for the sets of histories and finite observable event traces respectively.

Similar notations are used for the sets of complete traces as well.

B.1 Most General Client

The key in our proofs is the use of the Most General Client (MGC). Informally,

an MGC is a special client which itself can produce all the possible behaviors pro-

duced by any clients. We can define the MGC versions of linearizability, progress

properties, and observable refinements, and prove their relationships to the orig-

inal definitions, which universally quantify over arbitrary client programs. Then

we reduce the problems of proving the equivalence between original definitions to

proving some relationships between the MGC versions. Since an MGC is a specific

client, the latter task is usually much simpler.

In fact, we define three MGCs, which produce different “general” behav-

iors. We assume dom(Π) = {f1, . . . , fm}, and introduce two instructions to get

a random (nondeterministic) value. x := rand(m) assigns x a random integer

i ∈ [1..m], and x := rand() computes an arbitrarily large random integer. Then,

for any n, we define MGCn as follows.
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MGTt

def
= while (true){

xt := rand(); yt := rand(m);

zt := fyt(xt);

}
MGCn

def
=

f
t∈[1..n]MGTt

Here xt, yt and zt are all local variables for thread t. Each thread in MGCn keeps

calling a random method with a random argument. We also define MGCpn, which

print out the arguments and return values for method calls.

MGTpt
def
= while (true){

xt := rand(); yt := rand(m); print(yt, xt);

zt := fyt(xt); print(zt);

}
MGCpn

def
=

f
t∈[1..n]MGTpt

The third MGC MGCp1n always print out 1 when a method call is finished. It is

useful to observe the progress of objects.

MGTp1t
def
= while (true){

xt := rand(); yt := rand(m);

zt := fyt(xt); print(1);

}
MGCp1n

def
=

f
t∈[1..n]MGTp1t

The client memory for the above MGCs should contain the local variables for

each thread.

σMGC

def
= {xt ❀ , yt ❀ , zt ❀ | 1 ≤ t ≤ n}

B.2 Theorem 5.6 (Basic Equivalence)

We first define the MGC versions of “linearizability” and “refinement”.

Definition B.1. Π �MGC

ϕ ΠA iff

∀n, σMGC, σo, σa, T. T ∈ HJ(let Π in MGCn), (σMGC, σo,⊚)K ∧ (ϕ(σo) = σa)

=⇒ ∃Tc, T
′. Tc ∈ completions(T ) ∧ ΠA ⊲n (σMGC, σa, T

′) ∧ Tc �lin T
′

where

ΠA ⊲n (σMGC, σa, T )
def
= T ∈ HJ(let ΠA in MGCn), (σMGC, σa,⊚)K ∧ seq(T ) .

Definition B.2. Π jϕΠA iff
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∀n, σMGC, σo, σa. (ϕ(σo) = σa)

=⇒ HJ(let Π in MGCn), (σMGC, σo,⊚)K ⊆ HJ(let ΠA in MGCn), (σMGC, σa,⊚)K .

To prove Theorem 5.6, we prove the following lemmas.

Lemma B.3. Π �ϕ ΠA ⇐⇒ Π �MGC

ϕ ΠA .

Lemma B.4. Π ⊑ϕ ΠA ⇐⇒ Π jϕΠA .

Lemma B.5. Π jϕΠA ⇐⇒ Π �MGC

ϕ ΠA .

Proof of Lemma B.3. We can see Π �MGC

ϕ ΠA is simply defined by fixing

the arbitrarily quantified client programs in Π �ϕ ΠA (Definition 5.4) as MGCn.

Intuitively, the key to prove this lemma is to show that any history generated

by an arbitrary client program can also be generated by MGC, as shown in the

following lemma.

Lemma B.6 (MGC is the Most General). For any n, C1, . . . , Cn, σc, σMGC and

σo, HJ(let Π in C1‖ . . .‖Cn), (σc, σo,⊚)K ⊆ HJ(let Π in MGCn), (σMGC, σo,⊚)K.

Proof. We construct a simulation -MGC between the client program and the MGC.

We need the simulation relation to satisfy the following (B.1).

For any W1, S1, W2, S2 and e1, if (W1,S1) -MGC (W2,S2), then

(1) if (W1,S1)
e17−→ abort and is obj abt(e1), then

there exists T2 such that (W2,S2)
T27−→ ∗ abort and

e1 = get hist(T2);

(2) if (W1,S1)
e17−→ (W ′

1,S ′
1), then

there exist T2, W
′
2 and S ′

2 such that (W2,S2)
T27−→∗ (W ′

2,S ′
2),

get hist(e1) = get hist(T2) and (W ′
1,S ′

1) -MGC (W ′
2,S ′

2).

(B.1)

The simulation relation is constructed as follows. For each client thread t, if

the left side is in some normal client code, it corresponds to MGTt at the right

side; otherwise, if the left side is inside a method call, its code is the same as the

right side. Informally, the following hold for each thread t.

(1) Each normal client step of the left corresponds to zero step of MGTt.

(2) Each method invocation corresponds to the steps executing MGTt to the

same method body, with the same argument.
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(3) Each step inside the method body at the left corresponds to the same step

at the right.

(4) Each return step at the left corresponds to the same return step (plus a few

client steps) executing the right side code to MGTt.

Then with (B.1), we can prove the following by induction over the number of

steps generating the event trace of HJW1,S1K.

If (W1,S1) -MGC (W2,S2), then HJW1,S1K ⊆ HJW2,S2K.

Also we have

(let Π in C1‖ . . .‖Cn, (σc, σo,⊚)) -MGC (let Π in MGCn, (σMGC, σo,⊚)) ,

thus we are done.

Then Lemma B.3 is immediate by unfolding the definitions of Π �MGC

ϕ ΠA and

Π �ϕ ΠA, and applying Lemma B.6.

Proof of Lemma B.4.

1. Π ⊑ϕ ΠA =⇒ Π jϕΠA :

To prove this direction, we show that any history generated by MGCn is

“equivalent” to an observable trace generated by MGCpn, i.e., the following

lemma holds.

Lemma B.7. For any n, σo and σMGC, both the following holds.

(a) For any T1, if T1 ∈ HJ(let Π in MGCn), (σMGC, σo,⊚)K, then
there exists T2 such that T2 ∈ OJ(let Π in MGCpn), (σMGC, σo,⊚)K and

T1 ≈ T2.

(b) For any T2, if T2 ∈ OJ(let Π in MGCpn), (σMGC, σa,⊚)K, then
there exists T1 such that T1 ∈ HJ(let Π in MGCn), (σMGC, σa,⊚)K and

T1 ≈ T2.

Here T1 ≈ T2 is inductively defined as follows.

ǫ ≈ ǫ

e1 ≈ e2 T1 ≈ T2

e1 ::T1 ≈ e2 ::T2

(t, fi, n) ≈ (t,out, (i, n)) (t, ret, n) ≈ (t,out, n)

(t,obj,abort) ≈ (t,obj,abort)
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Proof. By constructing simulations between MGCn and MGCpn.

2. Π jϕΠA =⇒ Π ⊑ϕ ΠA :

Proof. For any n, C1, . . . , Cn, σc, σMGC and σo, by Lemma B.6, we know

HJ(let Π in C1‖ . . .‖Cn), (σc, σo,⊚)K
⊆ HJ(let Π in MGCn), (σMGC, σo,⊚)K .

Since Π jϕΠA, we know for any σa such that σa = ϕ(σo), we have

HJ(let Π in MGCn), (σMGC, σo,⊚)K
⊆ HJ(let ΠA in MGCn), (σMGC, σa,⊚)K .

Thus, for any T such that

T ∈ T J(let Π in C1‖ . . .‖Cn), (σc, σo,⊚)K ,

there exists TMGC such that get hist(T ) = get hist(TMGC) and

TMGC ∈ T J(let ΠA in MGCn), (σMGC, σa,⊚)K .

Intuitively, we can then replace the object events in T with those in TMGC

and keep other events (and the order between them) unchanged. Thus the

resulting trace T ′ satisfies get obsv(T ′) = get obsv(T ). We prove T ′ can be

produced by the corresponding abstract client program, that is

T ′ ∈ T J(let ΠA in C1‖ . . .‖Cn), (σc, σa,⊚)K .

Then we are done.

Alternatively, we can actually construct a “simulation” relation - between

the three programs: the concrete client program, the abstract MGC and the

corresponding abstract client program, and prove it satisfies the following

(B.2).

For any W1, S1, W2, S2, W3, S3 and e1,

if (W1,S1) - (W2,S2;W3,S3), then

(1) if (W1,S1)
e17−→ abort, then there exists T3 such that

(W3,S3)
T37−→ ∗ abort and e1 = get obsv(T3);

(2) if (W1,S1)
e17−→ (W ′

1,S ′
1) and is clt(e1), then

there exist W ′
3 and S ′

3 such that (W3,S3)
e17−→ (W ′

3,S ′
3) and

(W ′
1,S ′

1) - (W2,S2;W
′
3,S ′

3).
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(3) if (W1,S1)
e17−→ (W ′

1,S ′
1) and is obj(e1), then

there exist T2, W
′
2, S ′

2, T3, W
′
3 and S ′

3 such that

(W2,S2)
T27−→ ∗ (W ′

2,S ′
2), (W3,S3)

T37−→ ∗ (W ′
3,S ′

3),

get hist(e1) = get hist(T2), get obj(T2) = T3 and

(W ′
1,S ′

1) - (W ′
2,S ′

2;W
′
3,S ′

3).

(B.2)

That is, the executions of the abstract program W3 follow the concrete pro-

gram W1 for client steps and the abstract MGC W2 for object steps. Here

we use get obj(T ) to get the sub-trace of T consisting of object events only.

We can prove the following from (B.2).

If (W1,S1) - (W2,S2;W3,S3), then OJW1,S1K ⊆ OJW3,S3K.

Initially,

(let Π in C1‖ . . .‖Cn, (σc, σo,⊚))

- (let ΠA in MGCn, (σMGC, σa,⊚); let ΠA in C1‖ . . .‖Cn, (σc, σa,⊚))

holds, and we are done.

Proof of Lemma B.5.

1. Π jϕΠA =⇒ Π �MGC

ϕ ΠA :

The premise Π jϕ ΠA tells us that every history generated by using the

concrete object Π can also be generated with the abstract object ΠA. Thus,

to prove the concrete object Π is linearizable, we only need to show the

abstract object ΠA (whose methods are atomic) is linearizable with respect

to itself.

Lemma B.8 (ΠA is Linearizable). For any n, σMGC, σa and T ,

if T ∈ HJ(let ΠA in MGCn), (σMGC, σa,⊚)K, then
there exist Tc and T ′ such that Tc ∈ completions(T ), Tc �lin T ′, seq(T ′) and

T ′ ∈ HJ(let ΠA in MGCn), (σMGC, σa,⊚)K.

Proof. From the execution that generates T , we construct another execution

as follows. We postpone every invocation step and advance the latter return

step to the single step of the atomic method body in between. We prove the

resulting execution generates a history T ′ satisfying all the requirements.
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2. Π �MGC

ϕ ΠA =⇒ Π jϕΠA :

The key is to prove that every linearizable history can be generated by the

MGC with the abstract object ΠA.

Lemma B.9 (Rearrangement). For any n, σMGC, σa, T and T ′,

if T �lin T
′, seq(T ′) and T ′ ∈ HJ(let ΠA in MGCn), (σMGC, σa,⊚)K, then

T ∈ HJ(let ΠA in MGCn), (σMGC, σa,⊚)K.

Proof. We construct the execution generating T , where the order to execute

the atomic method body for concurrent method calls simply follow the order

of the pairs of invocation and subsequent return events in T ′. The detailed

proof is by induction over the length of T .

B.3 Theorem 6.3 (New Equivalence Results)

Below we sketch the proofs for the case of lock-freedom. By Theorem 5.6, the goal

is reduced to proving

Π ⊑ϕ ΠA ∧ lock-freeϕ(Π) ⇐⇒ Π ⊑lock-free

ϕ ΠA .

We first define the MGC version of “lock-freedom”.

Definition B.10. lock-freeMGC

ϕ (Π), iff

∀n, σMGC, σo, T. T ∈ TωJ(let Π in MGCn), (σMGC, σo,⊚)K ∧ (σo ∈ dom(ϕ))

=⇒ (∃i. is obj abt(T (i))) ∨ (∀i. ∃j. j ≥ i ∧ is ret(T (j)))

We prove the following lemmas.

Lemma B.11. lock-freeϕ(Π) ⇐⇒ lock-freeMGC

ϕ (Π) .

Proof. Similar to the proof of Lemma B.3. We relate every complete event trace

generated by an arbitrary client program to an event trace of MGCn.

Lemma B.12. Π ⊑lock-free

ϕ ΠA =⇒ Π ⊑ϕ ΠA .

Proof. Immediate from the definitions.

Lemma B.13. Π ⊑lock-free

ϕ ΠA =⇒ lock-freeMGC

ϕ (Π) .

Proof. We utilize the most general client MGTp1n. We prove:
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(1) For any n, σMGC, σa and T , if T ∈ OωJ(let ΠA in MGCp1n), (σMGC, σa,⊚)K,
then T must be an infinite trace of ( , out, 1). As a consequence, from

Π ⊑lock-free

ϕ ΠA, we know if T ′ ∈ OωJ(let Π in MGCp1n), (σMGC, σo,⊚)K, then
T ′ is also an infinite trace of ( , out, 1).

(2) For any n, σMGC, σo and T , if T ∈ TωJ(let Π in MGCn), (σMGC, σo,⊚)K, then
there exists T ′ ∈ TωJ(let Π in MGCp1n), (σMGC, σo,⊚)K such that

(a) T ′\( , out, 1) = T . That is, we can get T by removing all the output

events in T ′.

(b) ∀i, t. T ′(i) = (t, ret, ) ⇔ T ′(i+1) = (t, out, 1) . That is, every output

immediately follows a return event.

From (1), we know get obsv(T ′) is an infinite trace of ( , out, 1). Thus T ′

contains an infinite number of return events, and so does T .

By Definition B.10, we are done.

Lemma B.14. Π ⊑ϕ ΠA ∧ lock-freeϕ(Π) =⇒ Π ⊑lock-free

ϕ ΠA .

Proof. The key is to show the following (B.3).

For any n, C1, . . . , Cn, σc, σo and σa such that ϕ(σo) = σa,

if (⌊let Π in C1‖ . . .‖Cn⌋, (σc, σo,⊚))
T7−→ω ·, then

there exists Ta such that (⌊let ΠA in C1‖ . . .‖Cn⌋, (σc, σa,⊚))
Ta7−→ω ·

and get obsv(T ) = get obsv(Ta).

(B.3)

Its proof is similar to the proof of Π jϕ ΠA =⇒ Π ⊑ϕ ΠA. We can replace

the object events in the concrete infinite trace T with those generated by MGC

using ΠA. The resulting trace Ta satisfies get obsv(Ta) = get obsv(T ). From

lock-freeϕ(Π), we can show Ta must be infinite too.

The proofs for the cases of other progress properties are similar and omitted

here. Detailed proofs can be found in our technical report [45].
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