
How to use Hoare Logic to verify program
correctness

Huajun Lu

Nanjing University
231220006@smail.nju.edu.cn

Dec 23, 2023

Contents

1 Introduction
Why we need Hoare Logic?
What is Hoare Logic?

2 Axioms and Rules
Hoare triple
The Assignment Axiom
The Sequencing Rule
The Conditional Rule
The Iteration Rule

3 A Complete Example

4 Conclusion

5 Reference

Introduction

1 Introduction
Why we need Hoare Logic?
What is Hoare Logic?

2 Axioms and Rules
Hoare triple
The Assignment Axiom
The Sequencing Rule
The Conditional Rule
The Iteration Rule

3 A Complete Example

4 Conclusion

5 Reference

Why we need Hoare Logic?

We often fail to write programs that meet our
expectations, so when a programmer is programming, it is
important to verify that the code is correct.
Thus it is desirable to use a valid logic to verify the
program correctness.

Why we need Hoare Logic?

We often fail to write programs that meet our
expectations, so when a programmer is programming, it is
important to verify that the code is correct.

Thus it is desirable to use a valid logic to verify the
program correctness.

Why we need Hoare Logic?

We often fail to write programs that meet our
expectations, so when a programmer is programming, it is
important to verify that the code is correct.
Thus it is desirable to use a valid logic to verify the
program correctness.

What is Hoare Logic?

Hoare Logic can establish a transformation
between code and logic formulas thus ensuring that
our programs are validated.
All the consequences of excuting programs can be found
out ”by means of purely deductive reasoning”[1] with
Hoare Logic.
And Hoare Logic consists of basic axioms and rules of
inference, which will be elucidated next.

What is Hoare Logic?

Hoare Logic can establish a transformation
between code and logic formulas thus ensuring that
our programs are validated.

All the consequences of excuting programs can be found
out ”by means of purely deductive reasoning”[1] with
Hoare Logic.
And Hoare Logic consists of basic axioms and rules of
inference, which will be elucidated next.

What is Hoare Logic?

Hoare Logic can establish a transformation
between code and logic formulas thus ensuring that
our programs are validated.
All the consequences of excuting programs can be found
out ”by means of purely deductive reasoning”[1] with
Hoare Logic.

And Hoare Logic consists of basic axioms and rules of
inference, which will be elucidated next.

What is Hoare Logic?

Hoare Logic can establish a transformation
between code and logic formulas thus ensuring that
our programs are validated.
All the consequences of excuting programs can be found
out ”by means of purely deductive reasoning”[1] with
Hoare Logic.
And Hoare Logic consists of basic axioms and rules of
inference, which will be elucidated next.

Axioms and Rules

1 Introduction
Why we need Hoare Logic?
What is Hoare Logic?

2 Axioms and Rules
Hoare triple
The Assignment Axiom
The Sequencing Rule
The Conditional Rule
The Iteration Rule

3 A Complete Example

4 Conclusion

5 Reference

Hoare triple

Definition
{P}C{Q}

P: Pre-condition C: Command(Code) Q: Post-condition

The meaning of the triple is that, assuming C is executable
and executed in a state satisfying P, when C is executed,
the state will satisfy Q.

Hoare triple

Definition
{P}C{Q}

P: Pre-condition C: Command(Code) Q: Post-condition

The meaning of the triple is that, assuming C is executable
and executed in a state satisfying P, when C is executed,
the state will satisfy Q.

Hoare triple

Definition
{P}C{Q}

P: Pre-condition C: Command(Code) Q: Post-condition

The meaning of the triple is that, assuming C is executable
and executed in a state satisfying P, when C is executed,
the state will satisfy Q.

Hoare triple

Definition
{P}C{Q}

P: Pre-condition C: Command(Code) Q: Post-condition

The meaning of the triple is that, assuming C is executable
and executed in a state satisfying P, when C is executed,
the state will satisfy Q.

Example

Definition
{P}C{Q}

For example:

{x = y}z = x{y = z} : true
{x = 1, y = 1}y = 0{x = y} : false

Example

Definition
{P}C{Q}

For example:
{x = y}z = x{y = z} : true

{x = 1, y = 1}y = 0{x = y} : false

Example

Definition
{P}C{Q}

For example:
{x = y}z = x{y = z} : true

{x = 1, y = 1}y = 0{x = y} : false

The Assignment Axiom

Definition
⊢ {Q[E/V]}V := E{Q}

Assignment is the most characteristic and basic feature of a
program.

⊢ is the notation means that the proposition can be
syntactically derived.
:= means assignment.
Here V is a variable identifier, E is an identified expression,
Q is any statement.
Q[E/V] means the result of replacing all occurrences of V
in Q by E.

The Assignment Axiom

Definition
⊢ {Q[E/V]}V := E{Q}

Assignment is the most characteristic and basic feature of a
program.

⊢ is the notation means that the proposition can be
syntactically derived.
:= means assignment.
Here V is a variable identifier, E is an identified expression,
Q is any statement.
Q[E/V] means the result of replacing all occurrences of V
in Q by E.

The Assignment Axiom

Definition
⊢ {Q[E/V]}V := E{Q}

Assignment is the most characteristic and basic feature of a
program.

⊢ is the notation means that the proposition can be
syntactically derived.
:= means assignment.
Here V is a variable identifier, E is an identified expression,
Q is any statement.
Q[E/V] means the result of replacing all occurrences of V
in Q by E.

The Assignment Axiom

Definition
⊢ {Q[E/V]}V := E{Q}

Assignment is the most characteristic and basic feature of a
program.

⊢ is the notation means that the proposition can be
syntactically derived.

:= means assignment.
Here V is a variable identifier, E is an identified expression,
Q is any statement.
Q[E/V] means the result of replacing all occurrences of V
in Q by E.

The Assignment Axiom

Definition
⊢ {Q[E/V]}V := E{Q}

Assignment is the most characteristic and basic feature of a
program.

⊢ is the notation means that the proposition can be
syntactically derived.
:= means assignment.

Here V is a variable identifier, E is an identified expression,
Q is any statement.
Q[E/V] means the result of replacing all occurrences of V
in Q by E.

The Assignment Axiom

Definition
⊢ {Q[E/V]}V := E{Q}

Assignment is the most characteristic and basic feature of a
program.

⊢ is the notation means that the proposition can be
syntactically derived.
:= means assignment.
Here V is a variable identifier, E is an identified expression,
Q is any statement.

Q[E/V] means the result of replacing all occurrences of V
in Q by E.

The Assignment Axiom

Definition
⊢ {Q[E/V]}V := E{Q}

Assignment is the most characteristic and basic feature of a
program.

⊢ is the notation means that the proposition can be
syntactically derived.
:= means assignment.
Here V is a variable identifier, E is an identified expression,
Q is any statement.
Q[E/V] means the result of replacing all occurrences of V
in Q by E.

Example

Definition
⊢ {Q[E/V]}V := E{Q}

Code

1 X:=Y+1

And the code above is equal to the triple below:
⊢ {Y + 1 = V}X = Y + 1{X = V}

Example

Definition
⊢ {Q[E/V]}V := E{Q}

Code

1 X:=Y+1

And the code above is equal to the triple below:
⊢ {Y + 1 = V}X = Y + 1{X = V}

Example

Definition
⊢ {Q[E/V]}V := E{Q}

Code

1 X:=Y+1

And the code above is equal to the triple below:
⊢ {Y + 1 = V}X = Y + 1{X = V}

The Sequencing Rule

Definition
⊢ {P}C1{Q},⊢ {Q}C2{R}

⊢ {P}C1;C2{R}

The rule permits the deduction of new theoroms from one
proved theorem or axiom to new theorems.

Here P1
P2

means that, if the correctness of P1 is ensured, P2

can be proved correct.
After the execution of C1 and C2, state P can produce Q,
and then Q, as the mid-condition, can produce R
sequentially.

The Sequencing Rule

Definition
⊢ {P}C1{Q},⊢ {Q}C2{R}

⊢ {P}C1;C2{R}

The rule permits the deduction of new theoroms from one
proved theorem or axiom to new theorems.

Here P1
P2

means that, if the correctness of P1 is ensured, P2

can be proved correct.
After the execution of C1 and C2, state P can produce Q,
and then Q, as the mid-condition, can produce R
sequentially.

The Sequencing Rule

Definition
⊢ {P}C1{Q},⊢ {Q}C2{R}

⊢ {P}C1;C2{R}

The rule permits the deduction of new theoroms from one
proved theorem or axiom to new theorems.

Here P1
P2

means that, if the correctness of P1 is ensured, P2

can be proved correct.
After the execution of C1 and C2, state P can produce Q,
and then Q, as the mid-condition, can produce R
sequentially.

The Sequencing Rule

Definition
⊢ {P}C1{Q},⊢ {Q}C2{R}

⊢ {P}C1;C2{R}

The rule permits the deduction of new theoroms from one
proved theorem or axiom to new theorems.

Here P1
P2

means that, if the correctness of P1 is ensured, P2

can be proved correct.

After the execution of C1 and C2, state P can produce Q,
and then Q, as the mid-condition, can produce R
sequentially.

The Sequencing Rule

Definition
⊢ {P}C1{Q},⊢ {Q}C2{R}

⊢ {P}C1;C2{R}

The rule permits the deduction of new theoroms from one
proved theorem or axiom to new theorems.

Here P1
P2

means that, if the correctness of P1 is ensured, P2

can be proved correct.
After the execution of C1 and C2, state P can produce Q,
and then Q, as the mid-condition, can produce R
sequentially.

Example

Definition
⊢ {P}C1{Q},⊢ {Q}C2{R}

⊢ {P}C1;C2{R}

Code

1 R:=X
2 Y:=R

And the expected result Y = X can be verified sequentially with
the triple below:

⊢ {X = X}R = X{R = X},⊢ {R = X}Y = R{Y = X}
⊢ {X = X}R = X;Y = R{Y = X}

Example

Definition
⊢ {P}C1{Q},⊢ {Q}C2{R}

⊢ {P}C1;C2{R}

Code

1 R:=X
2 Y:=R

And the expected result Y = X can be verified sequentially with
the triple below:

⊢ {X = X}R = X{R = X},⊢ {R = X}Y = R{Y = X}
⊢ {X = X}R = X;Y = R{Y = X}

Example

Definition
⊢ {P}C1{Q},⊢ {Q}C2{R}

⊢ {P}C1;C2{R}

Code

1 R:=X
2 Y:=R

And the expected result Y = X can be verified sequentially with
the triple below:

⊢ {X = X}R = X{R = X},⊢ {R = X}Y = R{Y = X}
⊢ {X = X}R = X;Y = R{Y = X}

The Conditional Rule

Definition
⊢ {P ∧ S}C1{Q},⊢ {P ∧ ¬S}C2{Q}
⊢ {P}IF S THEN C1 ELSE C2{Q}

As programmers, we often write IF-ELSE code.
Here ∧ means ”and”, ∨ means ”or”, ¬ means not.
In initial state P is true, and if S is true then execute C1, if
S is false then executed C2. After execution, Q is true.

The Conditional Rule

Definition
⊢ {P ∧ S}C1{Q},⊢ {P ∧ ¬S}C2{Q}
⊢ {P}IF S THEN C1 ELSE C2{Q}

As programmers, we often write IF-ELSE code.
Here ∧ means ”and”, ∨ means ”or”, ¬ means not.
In initial state P is true, and if S is true then execute C1, if
S is false then executed C2. After execution, Q is true.

The Conditional Rule

Definition
⊢ {P ∧ S}C1{Q},⊢ {P ∧ ¬S}C2{Q}
⊢ {P}IF S THEN C1 ELSE C2{Q}

As programmers, we often write IF-ELSE code.

Here ∧ means ”and”, ∨ means ”or”, ¬ means not.
In initial state P is true, and if S is true then execute C1, if
S is false then executed C2. After execution, Q is true.

The Conditional Rule

Definition
⊢ {P ∧ S}C1{Q},⊢ {P ∧ ¬S}C2{Q}
⊢ {P}IF S THEN C1 ELSE C2{Q}

As programmers, we often write IF-ELSE code.
Here ∧ means ”and”, ∨ means ”or”, ¬ means not.

In initial state P is true, and if S is true then execute C1, if
S is false then executed C2. After execution, Q is true.

The Conditional Rule

Definition
⊢ {P ∧ S}C1{Q},⊢ {P ∧ ¬S}C2{Q}
⊢ {P}IF S THEN C1 ELSE C2{Q}

As programmers, we often write IF-ELSE code.
Here ∧ means ”and”, ∨ means ”or”, ¬ means not.
In initial state P is true, and if S is true then execute C1, if
S is false then executed C2. After execution, Q is true.

Example

Definition
⊢ {P ∧ S}C1{Q},⊢ {P ∧ ¬S}C2{Q}
⊢ {P}IF S THEN C1 ELSE C2{Q}

Code

1 IF X <= Y THEN
2 Z := X
3 ELSE
4 Z := Y

The code above is to assign the greater value of X and Y to Z.
And we can formalize the code and verify the correctness as the
proposition below:

⊢ {X ≤ Y}Z := X{Z = min{X,Y}},⊢ {¬(X ≤ Y)}Z := Y{Z = min{X,Y}}
⊢ {True}IF X ≤ Y THEN Z := X ELSE Z := Y{Z = min{X,Y}}

Example

Definition
⊢ {P ∧ S}C1{Q},⊢ {P ∧ ¬S}C2{Q}
⊢ {P}IF S THEN C1 ELSE C2{Q}

Code

1 IF X <= Y THEN
2 Z := X
3 ELSE
4 Z := Y

The code above is to assign the greater value of X and Y to Z.
And we can formalize the code and verify the correctness as the
proposition below:

⊢ {X ≤ Y}Z := X{Z = min{X,Y}},⊢ {¬(X ≤ Y)}Z := Y{Z = min{X,Y}}
⊢ {True}IF X ≤ Y THEN Z := X ELSE Z := Y{Z = min{X,Y}}

Example

Definition
⊢ {P ∧ S}C1{Q},⊢ {P ∧ ¬S}C2{Q}
⊢ {P}IF S THEN C1 ELSE C2{Q}

Code

1 IF X <= Y THEN
2 Z := X
3 ELSE
4 Z := Y

The code above is to assign the greater value of X and Y to Z.
And we can formalize the code and verify the correctness as the
proposition below:

⊢ {X ≤ Y}Z := X{Z = min{X,Y}},⊢ {¬(X ≤ Y)}Z := Y{Z = min{X,Y}}
⊢ {True}IF X ≤ Y THEN Z := X ELSE Z := Y{Z = min{X,Y}}

The Iteration Rule

Definition
⊢ {P ∧ S}C{P}

⊢ {P}WHILE S DO C{P ∧ ¬S}

We often write all kinds of loop code, and now I am going
to introduce the Iteration Rule.
P is the invariant of the whole While-Command and is
always true while this part of code is being excuted.
S is the condition to check whether the loop should be
terminated or continue.

The Iteration Rule

Definition
⊢ {P ∧ S}C{P}

⊢ {P}WHILE S DO C{P ∧ ¬S}

We often write all kinds of loop code, and now I am going
to introduce the Iteration Rule.
P is the invariant of the whole While-Command and is
always true while this part of code is being excuted.
S is the condition to check whether the loop should be
terminated or continue.

The Iteration Rule

Definition
⊢ {P ∧ S}C{P}

⊢ {P}WHILE S DO C{P ∧ ¬S}

We often write all kinds of loop code, and now I am going
to introduce the Iteration Rule.

P is the invariant of the whole While-Command and is
always true while this part of code is being excuted.
S is the condition to check whether the loop should be
terminated or continue.

The Iteration Rule

Definition
⊢ {P ∧ S}C{P}

⊢ {P}WHILE S DO C{P ∧ ¬S}

We often write all kinds of loop code, and now I am going
to introduce the Iteration Rule.
P is the invariant of the whole While-Command and is
always true while this part of code is being excuted.

S is the condition to check whether the loop should be
terminated or continue.

The Iteration Rule

Definition
⊢ {P ∧ S}C{P}

⊢ {P}WHILE S DO C{P ∧ ¬S}

We often write all kinds of loop code, and now I am going
to introduce the Iteration Rule.
P is the invariant of the whole While-Command and is
always true while this part of code is being excuted.
S is the condition to check whether the loop should be
terminated or continue.

Example

Definition
⊢ {P ∧ S}C{P}

⊢ {P}WHILE S DO C{P ∧ ¬S}

Code

1 X := 1
2 WHILE X <= 7 DO
3 X := X + 3

X ≡ 1(mod 3) is an appropriate invariant.
⊢{X≡1(mod 3)∧X≤10∧X≤7}X:=X+3{X≡1(mod 3)∧X≤10}

⊢{X≡1(mod 3)∧X≤10}WHILE X≤7 DO X:=X+3{X≡1(mod 3)∧X≤10∧X>7}

Obviously X ≡ 1(mod 3) ∧ X ≤ 10 ∧ X > 7 is equal to
X = 10.

Example

Definition
⊢ {P ∧ S}C{P}

⊢ {P}WHILE S DO C{P ∧ ¬S}

Code

1 X := 1
2 WHILE X <= 7 DO
3 X := X + 3

X ≡ 1(mod 3) is an appropriate invariant.
⊢{X≡1(mod 3)∧X≤10∧X≤7}X:=X+3{X≡1(mod 3)∧X≤10}

⊢{X≡1(mod 3)∧X≤10}WHILE X≤7 DO X:=X+3{X≡1(mod 3)∧X≤10∧X>7}

Obviously X ≡ 1(mod 3) ∧ X ≤ 10 ∧ X > 7 is equal to
X = 10.

Example

Definition
⊢ {P ∧ S}C{P}

⊢ {P}WHILE S DO C{P ∧ ¬S}

Code

1 X := 1
2 WHILE X <= 7 DO
3 X := X + 3

X ≡ 1(mod 3) is an appropriate invariant.
⊢{X≡1(mod 3)∧X≤10∧X≤7}X:=X+3{X≡1(mod 3)∧X≤10}

⊢{X≡1(mod 3)∧X≤10}WHILE X≤7 DO X:=X+3{X≡1(mod 3)∧X≤10∧X>7}

Obviously X ≡ 1(mod 3) ∧ X ≤ 10 ∧ X > 7 is equal to
X = 10.

Example

Definition
⊢ {P ∧ S}C{P}

⊢ {P}WHILE S DO C{P ∧ ¬S}

Code

1 X := 1
2 WHILE X <= 7 DO
3 X := X + 3

X ≡ 1(mod 3) is an appropriate invariant.
⊢{X≡1(mod 3)∧X≤10∧X≤7}X:=X+3{X≡1(mod 3)∧X≤10}

⊢{X≡1(mod 3)∧X≤10}WHILE X≤7 DO X:=X+3{X≡1(mod 3)∧X≤10∧X>7}

Obviously X ≡ 1(mod 3) ∧ X ≤ 10 ∧ X > 7 is equal to
X = 10.

A Complete Example

1 Introduction
Why we need Hoare Logic?
What is Hoare Logic?

2 Axioms and Rules
Hoare triple
The Assignment Axiom
The Sequencing Rule
The Conditional Rule
The Iteration Rule

3 A Complete Example

4 Conclusion

5 Reference

Code

Code

1 X := A
2 Y := B
3 RES := 0
4 [Assertion: {True}C1{I}]
5 WHILE NOT (X = Y) DO [L : (¬(X = Y))]
6 IF X > Y THEN
7 X := X - 1
8 ELSE
9 Y := Y - 1

10 [Assertion: {I}C2{I ′}]
11 RES := RES + 1
12 [Assertion: {I ′}C3{I}]
13 [Assertion: {I ∧ S}WHILE S DO C{I ∧ ¬S}]

Our target is to prove that
{True}C{RES = |A − B|} .

Code

Code

1 X := A
2 Y := B
3 RES := 0
4 [Assertion: {True}C1{I}]
5 WHILE NOT (X = Y) DO [L : (¬(X = Y))]
6 IF X > Y THEN
7 X := X - 1
8 ELSE
9 Y := Y - 1

10 [Assertion: {I}C2{I ′}]
11 RES := RES + 1
12 [Assertion: {I ′}C3{I}]
13 [Assertion: {I ∧ S}WHILE S DO C{I ∧ ¬S}]

Our target is to prove that
{True}C{RES = |A − B|} .

Code

Code

1 X := A
2 Y := B
3 RES := 0
4 [Assertion: {True}C1{I}]
5 WHILE NOT (X = Y) DO [L : (¬(X = Y))]
6 IF X > Y THEN
7 X := X - 1
8 ELSE
9 Y := Y - 1

10 [Assertion: {I}C2{I ′}]
11 RES := RES + 1
12 [Assertion: {I ′}C3{I}]
13 [Assertion: {I ∧ S}WHILE S DO C{I ∧ ¬S}]

Our target is to prove that
{True}C{RES = |A − B|} .

Initialization

Code

1 X := A
2 Y := B
3 RES := 0
4 [Assertion: {True}C1{I}]

Line 2 ,Line 3 and Line 4 are three assignments. And now
proposition 1, namely P, is true.

P : X = A ∧ Y = B ∧ RES = 0

Initialization

Code

1 X := A
2 Y := B
3 RES := 0
4 [Assertion: {True}C1{I}]

Line 2 ,Line 3 and Line 4 are three assignments. And now
proposition 1, namely P, is true.

P : X = A ∧ Y = B ∧ RES = 0

Initialization

Code

1 X := A
2 Y := B
3 RES := 0
4 [Assertion: {True}C1{I}]

Line 2 ,Line 3 and Line 4 are three assignments. And now
proposition 1, namely P, is true.

P : X = A ∧ Y = B ∧ RES = 0

Invariant

Code

1 X := A
2 Y := B
3 RES := 0
4 [Assertion: {True}C1{I}]

P : X = A ∧ Y = B ∧ RES = 0
We need to find a proper invariant.

X = A ∧ Y = B ∧ RES = 0 ⇒ RES + |X − Y| = |A − B|
I : RES + |X − Y| = |A − B| (invariant)

I is closely related to the final target.
I reveals useful properties of RES.

However, the invariant remains to be checked during the loop.

Invariant

Code

1 X := A
2 Y := B
3 RES := 0
4 [Assertion: {True}C1{I}]

P : X = A ∧ Y = B ∧ RES = 0
We need to find a proper invariant.

X = A ∧ Y = B ∧ RES = 0 ⇒ RES + |X − Y| = |A − B|
I : RES + |X − Y| = |A − B| (invariant)

I is closely related to the final target.
I reveals useful properties of RES.

However, the invariant remains to be checked during the loop.

Invariant

Code

1 X := A
2 Y := B
3 RES := 0
4 [Assertion: {True}C1{I}]

P : X = A ∧ Y = B ∧ RES = 0
We need to find a proper invariant.

X = A ∧ Y = B ∧ RES = 0 ⇒ RES + |X − Y| = |A − B|
I : RES + |X − Y| = |A − B| (invariant)

I is closely related to the final target.
I reveals useful properties of RES.

However, the invariant remains to be checked during the loop.

Invariant

Code

1 X := A
2 Y := B
3 RES := 0
4 [Assertion: {True}C1{I}]

P : X = A ∧ Y = B ∧ RES = 0
We need to find a proper invariant.

X = A ∧ Y = B ∧ RES = 0 ⇒ RES + |X − Y| = |A − B|
I : RES + |X − Y| = |A − B| (invariant)

I is closely related to the final target.
I reveals useful properties of RES.

However, the invariant remains to be checked during the loop.

Invariant

Code

1 X := A
2 Y := B
3 RES := 0
4 [Assertion: {True}C1{I}]

P : X = A ∧ Y = B ∧ RES = 0
We need to find a proper invariant.

X = A ∧ Y = B ∧ RES = 0 ⇒ RES + |X − Y| = |A − B|
I : RES + |X − Y| = |A − B| (invariant)

I is closely related to the final target.

I reveals useful properties of RES.
However, the invariant remains to be checked during the loop.

Invariant

Code

1 X := A
2 Y := B
3 RES := 0
4 [Assertion: {True}C1{I}]

P : X = A ∧ Y = B ∧ RES = 0
We need to find a proper invariant.

X = A ∧ Y = B ∧ RES = 0 ⇒ RES + |X − Y| = |A − B|
I : RES + |X − Y| = |A − B| (invariant)

I is closely related to the final target.
I reveals useful properties of RES.

However, the invariant remains to be checked during the loop.

Invariant

Code

1 X := A
2 Y := B
3 RES := 0
4 [Assertion: {True}C1{I}]

P : X = A ∧ Y = B ∧ RES = 0
We need to find a proper invariant.

X = A ∧ Y = B ∧ RES = 0 ⇒ RES + |X − Y| = |A − B|
I : RES + |X − Y| = |A − B| (invariant)

I is closely related to the final target.
I reveals useful properties of RES.

However, the invariant remains to be checked during the loop.

Loop

Code

1 WHILE NOT (X = Y) DO [L : (¬(X = Y))]
2 IF X > Y THEN
3 X := X - 1
4 ELSE
5 Y := Y - 1
6 [Assertion: {I}C2{I ′}]
7 RES := RES + 1
8 [Assertion: {I ′}C3{I}]

Start from the loop condition L.
L : X ̸= Y

Next is a conditional statement with the condition S and an
assignment.

Loop

Code

1 WHILE NOT (X = Y) DO [L : (¬(X = Y))]
2 IF X > Y THEN
3 X := X - 1
4 ELSE
5 Y := Y - 1
6 [Assertion: {I}C2{I ′}]
7 RES := RES + 1
8 [Assertion: {I ′}C3{I}]

Start from the loop condition L.
L : X ̸= Y

Next is a conditional statement with the condition S and an
assignment.

Loop

Code

1 WHILE NOT (X = Y) DO [L : (¬(X = Y))]
2 IF X > Y THEN
3 X := X - 1
4 ELSE
5 Y := Y - 1
6 [Assertion: {I}C2{I ′}]
7 RES := RES + 1
8 [Assertion: {I ′}C3{I}]

Start from the loop condition L.
L : X ̸= Y

Next is a conditional statement with the condition S and an
assignment.

Loop

Code

1 WHILE NOT (X = Y) DO [L : (¬(X = Y))]
2 IF X > Y THEN
3 X := X - 1
4 ELSE
5 Y := Y - 1
6 [Assertion: {I}C2{I ′}]
7 RES := RES + 1
8 [Assertion: {I ′}C3{I}]

Start from the loop condition L.
L : X ̸= Y

Next is a conditional statement with the condition S and an
assignment.

IF-ELSE

Code

1 IF X > Y THEN
2 X := X - 1
3 ELSE
4 Y := Y - 1
5 [Assertion: {I}C2{I ′}]

The property of I will be temporarily changed after the
conditional statement. We name the post-condition I ′.

S : x > y
I ′ = RES + |X − Y| = |A − B| − 1 (Temporary Change)

And the IF-ELSE code can be then transformed into the
proposition below.

⊢ {I ∧ S}X := X − 1{I ′}, {I ∧ ¬S}Y := Y − 1{I ′}
⊢ {I}IF S THEN X := X − 1 ELSE Y := Y − 1{I ′}

IF-ELSE

Code

1 IF X > Y THEN
2 X := X - 1
3 ELSE
4 Y := Y - 1
5 [Assertion: {I}C2{I ′}]

The property of I will be temporarily changed after the
conditional statement. We name the post-condition I ′.

S : x > y
I ′ = RES + |X − Y| = |A − B| − 1 (Temporary Change)

And the IF-ELSE code can be then transformed into the
proposition below.

⊢ {I ∧ S}X := X − 1{I ′}, {I ∧ ¬S}Y := Y − 1{I ′}
⊢ {I}IF S THEN X := X − 1 ELSE Y := Y − 1{I ′}

IF-ELSE

Code

1 IF X > Y THEN
2 X := X - 1
3 ELSE
4 Y := Y - 1
5 [Assertion: {I}C2{I ′}]

The property of I will be temporarily changed after the
conditional statement.

We name the post-condition I ′.
S : x > y

I ′ = RES + |X − Y| = |A − B| − 1 (Temporary Change)
And the IF-ELSE code can be then transformed into the
proposition below.

⊢ {I ∧ S}X := X − 1{I ′}, {I ∧ ¬S}Y := Y − 1{I ′}
⊢ {I}IF S THEN X := X − 1 ELSE Y := Y − 1{I ′}

IF-ELSE

Code

1 IF X > Y THEN
2 X := X - 1
3 ELSE
4 Y := Y - 1
5 [Assertion: {I}C2{I ′}]

The property of I will be temporarily changed after the
conditional statement. We name the post-condition I ′.

S : x > y
I ′ = RES + |X − Y| = |A − B| − 1 (Temporary Change)

And the IF-ELSE code can be then transformed into the
proposition below.

⊢ {I ∧ S}X := X − 1{I ′}, {I ∧ ¬S}Y := Y − 1{I ′}
⊢ {I}IF S THEN X := X − 1 ELSE Y := Y − 1{I ′}

IF-ELSE

Code

1 IF X > Y THEN
2 X := X - 1
3 ELSE
4 Y := Y - 1
5 [Assertion: {I}C2{I ′}]

The property of I will be temporarily changed after the
conditional statement. We name the post-condition I ′.

S : x > y
I ′ = RES + |X − Y| = |A − B| − 1 (Temporary Change)

And the IF-ELSE code can be then transformed into the
proposition below.

⊢ {I ∧ S}X := X − 1{I ′}, {I ∧ ¬S}Y := Y − 1{I ′}
⊢ {I}IF S THEN X := X − 1 ELSE Y := Y − 1{I ′}

Assignment of RES

Code

1 RES := RES + 1
2 [Assertion: {I ′}C3{I}]

Next is the assignment of RES, which changes I ′ back into I.
⊢ {I ′}RES := RES + 1{I} (Line 9)

And now, we can say that I is indeed a invariant that
never changes after each loop.

Assignment of RES

Code

1 RES := RES + 1
2 [Assertion: {I ′}C3{I}]

Next is the assignment of RES, which changes I ′ back into I.
⊢ {I ′}RES := RES + 1{I} (Line 9)

And now, we can say that I is indeed a invariant that
never changes after each loop.

Assignment of RES

Code

1 RES := RES + 1
2 [Assertion: {I ′}C3{I}]

Next is the assignment of RES, which changes I ′ back into I.
⊢ {I ′}RES := RES + 1{I} (Line 9)

And now, we can say that I is indeed a invariant that
never changes after each loop.

Assignment of RES

Code

1 RES := RES + 1
2 [Assertion: {I ′}C3{I}]

Next is the assignment of RES, which changes I ′ back into I.
⊢ {I ′}RES := RES + 1{I} (Line 9)

And now, we can say that I is indeed a invariant that
never changes after each loop.

Final Step

Code

1 X := A, Y := B, RES := 0
2 [Assertion: {True}C1{I}]
3 WHILE NOT (X = Y) DO [L : (¬(X = Y))]
4 IF X > Y THEN
5 X := X - 1
6 ELSE
7 Y := Y - 1
8 RES := RES + 1
9 [Assertion: {I ∧ S}WHILE S DO C{I ∧ ¬S}]

⊢ {I ∧ L}C{I}
⊢ {I}WHILE L DO C{I ∧ ¬L}

⊢ {RES + |X − Y| = |A − B| ∧ X = Y}Empty{RES = |A − B|}

Final Step

Code

1 X := A, Y := B, RES := 0
2 [Assertion: {True}C1{I}]
3 WHILE NOT (X = Y) DO [L : (¬(X = Y))]
4 IF X > Y THEN
5 X := X - 1
6 ELSE
7 Y := Y - 1
8 RES := RES + 1
9 [Assertion: {I ∧ S}WHILE S DO C{I ∧ ¬S}]

⊢ {I ∧ L}C{I}
⊢ {I}WHILE L DO C{I ∧ ¬L}

⊢ {RES + |X − Y| = |A − B| ∧ X = Y}Empty{RES = |A − B|}

Final Step

Code

1 X := A, Y := B, RES := 0
2 [Assertion: {True}C1{I}]
3 WHILE NOT (X = Y) DO [L : (¬(X = Y))]
4 IF X > Y THEN
5 X := X - 1
6 ELSE
7 Y := Y - 1
8 RES := RES + 1
9 [Assertion: {I ∧ S}WHILE S DO C{I ∧ ¬S}]

⊢ {I ∧ L}C{I}
⊢ {I}WHILE L DO C{I ∧ ¬L}

⊢ {RES + |X − Y| = |A − B| ∧ X = Y}Empty{RES = |A − B|}

Conclusion

1 Introduction
Why we need Hoare Logic?
What is Hoare Logic?

2 Axioms and Rules
Hoare triple
The Assignment Axiom
The Sequencing Rule
The Conditional Rule
The Iteration Rule

3 A Complete Example

4 Conclusion

5 Reference

Conclusion

This article discusses the core concepts of Hoare Logic, and
give a complete example of code verification with Hoare
Logic.
However, the formal material presented only represents a
small proportion of Hoare Logic.
If you are interested in Hoare Logic, consider going deeper
into the relevant papers.

Conclusion

This article discusses the core concepts of Hoare Logic, and
give a complete example of code verification with Hoare
Logic.

However, the formal material presented only represents a
small proportion of Hoare Logic.
If you are interested in Hoare Logic, consider going deeper
into the relevant papers.

Conclusion

This article discusses the core concepts of Hoare Logic, and
give a complete example of code verification with Hoare
Logic.
However, the formal material presented only represents a
small proportion of Hoare Logic.

If you are interested in Hoare Logic, consider going deeper
into the relevant papers.

Conclusion

This article discusses the core concepts of Hoare Logic, and
give a complete example of code verification with Hoare
Logic.
However, the formal material presented only represents a
small proportion of Hoare Logic.
If you are interested in Hoare Logic, consider going deeper
into the relevant papers.

Reference

1 Introduction
Why we need Hoare Logic?
What is Hoare Logic?

2 Axioms and Rules
Hoare triple
The Assignment Axiom
The Sequencing Rule
The Conditional Rule
The Iteration Rule

3 A Complete Example

4 Conclusion

5 Reference

Reference

[1]C. A. R. Hoare 1983. An Axiomatic Basic for Computer
Programming. Commun. ACM 26, 1 (1983), 53-56.

	Outline
	Introduction
	Why we need Hoare Logic?
	What is Hoare Logic?

	Axioms and Rules
	Hoare triple
	The Assignment Axiom
	The Sequencing Rule
	The Conditional Rule
	The Iteration Rule

	A Complete Example
	Conclusion
	Reference

