How to use Hoare Logic to verify program correctness

Huajun Lu

Nanjing University
231220006@smail.nju.edu.cn

Dec 23, 2023

Contents

1 Introduction
■ Why we need Hoare Logic?
■ What is Hoare Logic?
2 Axioms and Rules

- Hoare triple
- The Assignment Axiom
- The Sequencing Rule

■ The Conditional Rule

- The Iteration Rule

3 A Complete Example
4 Conclusion
5 Reference

Introduction

1 Introduction
■ Why we need Hoare Logic?
■ What is Hoare Logic?
2 Axioms and Rules

- Hoare triple
- The Assignment Axiom
- The Sequencing Rule
- The Conditional Rule
- The Iteration Rule

3 A Complete Example
4 Conclusion
O Reference

Why we need Hoare Logic？

Why we need Hoare Logic?

- We often fail to write programs that meet our expectations, so when a programmer is programming, it is important to verify that the code is correct.

Why we need Hoare Logic?

- We often fail to write programs that meet our expectations, so when a programmer is programming, it is important to verify that the code is correct.
■ Thus it is desirable to use a valid logic to verify the program correctness.

What is Hoare Logic?

What is Hoare Logic?

- Hoare Logic can establish a transformation between code and logic formulas thus ensuring that our programs are validated.

What is Hoare Logic?

- Hoare Logic can establish a transformation between code and logic formulas thus ensuring that our programs are validated.
- All the consequences of excuting programs can be found out "by means of purely deductive reasoning"[1] with Hoare Logic.

What is Hoare Logic?

- Hoare Logic can establish a transformation between code and logic formulas thus ensuring that our programs are validated.
- All the consequences of excuting programs can be found out "by means of purely deductive reasoning" [1] with Hoare Logic.
- And Hoare Logic consists of basic axioms and rules of inference, which will be elucidated next.

Axioms and Rules

1 Introduction
■ Why we need Hoare Logic?

- What is Hoare Logic?

2 Axioms and Rules

- Hoare triple
- The Assignment Axiom
- The Sequencing Rule
- The Conditional Rule
- The Iteration Rule

3 A Complete Example
4 Conclusion
O Reference

Hoare triple

Hoare triple

Definition

$\{P\} C\{Q\}$

Hoare triple

Definition

$$
\{P\} C\{Q\}
$$

$P:$ Pre-condition $\rightarrow C:$ Command(Code) $Q:$ Post-condition

Hoare triple

Definition

$$
\{P\} C\{Q\}
$$

\square

- The meaning of the triple is that, assuming C is executable and executed in a state satisfying P, when C is executed, the state will satisfy Q.

Example

Definition

$\{P\} C\{Q\}$
For example:

Example

Definition

$$
\{P\} C\{Q\}
$$

For example:

$$
\{x=y\} z=x\{y=z\}: \text { true }
$$

Example

Definition

$$
\{P\} C\{Q\}
$$

For example:

$$
\begin{gathered}
\{x=y\} z=x\{y=z\}: \text { true } \\
\{x=1, y=1\} y=0\{x=y\}: \text { false }
\end{gathered}
$$

The Assignment Axiom

ムロ〉4司〉

The Assignment Axiom

Definition

$\vdash\{Q[E / V]\} V:=E\{Q\}$

The Assignment Axiom

Definition

$\vdash\{Q[E / V]\} V:=E\{Q\}$

- Assignment is the most characteristic and basic feature of a program.

The Assignment Axiom

Definition

$\vdash\{Q[E / V]\} V:=E\{Q\}$

- Assignment is the most characteristic and basic feature of a program.
- \vdash is the notation means that the proposition can be syntactically derived.

The Assignment Axiom

Definition

$\vdash\{Q[E / V]\} V:=E\{Q\}$

- Assignment is the most characteristic and basic feature of a program.
- \vdash is the notation means that the proposition can be syntactically derived.
■ := means assignment.

The Assignment Axiom

Definition

$\vdash\{Q[E / V]\} V:=E\{Q\}$

- Assignment is the most characteristic and basic feature of a program.
- \vdash is the notation means that the proposition can be syntactically derived.
■ := means assignment.
- Here V is a variable identifier, E is an identified expression, Q is any statement.

The Assignment Axiom

Definition

$\vdash\{Q[E / V]\} V:=E\{Q\}$

- Assignment is the most characteristic and basic feature of a program.
- \vdash is the notation means that the proposition can be syntactically derived.
■ := means assignment.
- Here V is a variable identifier, E is an identified expression, Q is any statement.
- $Q[E / V]$ means the result of replacing all occurrences of V in Q by E.

Example

Definition

$\vdash\{Q[E / V]\} V:=E\{Q\}$

Example

Definition

$\vdash\{Q[E / V]\} V:=E\{Q\}$
Code
1
$\mathrm{X}:=\mathrm{Y}+1$

Example

Definition

$\vdash\{Q[E / V]\} V:=E\{Q\}$
Code
$1 \quad \mathrm{X}:=\mathrm{Y}+1$

And the code above is equal to the triple below:

$$
\vdash\{Y+1=V\} X=Y+1\{X=V\}
$$

The Sequencing Rule

The Sequencing Rule

Definition

$$
\frac{\vdash\{P\} C_{1}\{Q\}, \vdash\{Q\} C_{2}\{R\}}{\vdash\{P\} C_{1} ; C_{2}\{R\}}
$$

The Sequencing Rule

Definition

$$
\frac{\vdash\{P\} C_{1}\{Q\}, \vdash\{Q\} C_{2}\{R\}}{\vdash\{P\} C_{1} ; C_{2}\{R\}}
$$

- The rule permits the deduction of new theoroms from one proved theorem or axiom to new theorems.

The Sequencing Rule

Definition

$$
\frac{\vdash\{P\} C_{1}\{Q\}, \vdash\{Q\} C_{2}\{R\}}{\vdash\{P\} C_{1} ; C_{2}\{R\}}
$$

- The rule permits the deduction of new theoroms from one proved theorem or axiom to new theorems.
- Here $\frac{P_{1}}{P_{2}}$ means that, if the correctness of P_{1} is ensured, P_{2} can be proved correct.

The Sequencing Rule

Definition

$$
\frac{\vdash\{P\} C_{1}\{Q\}, \vdash\{Q\} C_{2}\{R\}}{\vdash\{P\} C_{1} ; C_{2}\{R\}}
$$

- The rule permits the deduction of new theoroms from one proved theorem or axiom to new theorems.
- Here $\frac{P_{1}}{P_{2}}$ means that, if the correctness of P_{1} is ensured, P_{2} can be proved correct.
■ After the execution of C_{1} and C_{2}, state P can produce Q, and then Q, as the mid-condition, can produce R sequentially.

Example

Definition

$$
\frac{\vdash\{P\} C_{1}\{Q\}, \vdash\{Q\} C_{2}\{R\}}{\vdash\{P\} C_{1} ; C_{2}\{R\}}
$$

Example

Definition

$$
\frac{\vdash\{P\} C_{1}\{Q\}, \vdash\{Q\} C_{2}\{R\}}{\vdash\{P\} C_{1} ; C_{2}\{R\}}
$$

Code
1
2

$$
\begin{aligned}
& \mathrm{R}:=\mathrm{X} \\
& \mathrm{Y}:=\mathrm{R}
\end{aligned}
$$

Example

Definition

$$
\frac{\vdash\{P\} C_{1}\{Q\}, \vdash\{Q\} C_{2}\{R\}}{\vdash\{P\} C_{1} ; C_{2}\{R\}}
$$

Code

$$
\begin{aligned}
& \mathrm{R}:=\mathrm{X} \\
& \mathrm{Y}:=\mathrm{R}
\end{aligned}
$$

And the expected result $Y=X$ can be verified sequentially with the triple below:

$$
\frac{\vdash\{X=X\} R=X\{R=X\}, \vdash\{R=X\} Y=R\{Y=X\}}{\vdash\{X=X\} R=X ; Y=R\{Y=X\}}
$$

The Conditional Rule

The Conditional Rule

Definition

$$
\frac{\vdash\{P \wedge S\} C_{1}\{Q\}, \vdash\{P \wedge \neg S\} C_{2}\{Q\}}{\vdash\{P\} I F S \text { THEN } C_{1} E L S E C_{2}\{Q\}}
$$

The Conditional Rule

Definition

$$
\frac{\vdash\{P \wedge S\} C_{1}\{Q\}, \vdash\{P \wedge \neg S\} C_{2}\{Q\}}{\vdash\{P\} I F S \text { THEN } C_{1} E L S E C_{2}\{Q\}}
$$

■ As programmers, we often write IF-ELSE code.

The Conditional Rule

Definition

$$
\frac{\vdash\{P \wedge S\} C_{1}\{Q\}, \vdash\{P \wedge \neg S\} C_{2}\{Q\}}{\vdash\{P\} I F S T H E N C_{1} E L S E C_{2}\{Q\}}
$$

■ As programmers, we often write IF-ELSE code.

- Here \wedge means "and", \vee means "or", \neg means not.

The Conditional Rule

Definition

$$
\frac{\vdash\{P \wedge S\} C_{1}\{Q\}, \vdash\{P \wedge \neg S\} C_{2}\{Q\}}{\vdash\{P\} \operatorname{IF~STHEN~} C_{1} E L S E C_{2}\{Q\}}
$$

■ As programmers, we often write IF-ELSE code.

- Here \wedge means "and", \vee means "or", \neg means not.
- In initial state P is true, and if S is true then execute C_{1}, if S is false then executed C_{2}. After execution, Q is true.

Example

Definition

$$
\frac{\vdash\{P \wedge S\} C_{1}\{Q\}, \vdash\{P \wedge \neg S\} C_{2}\{Q\}}{\vdash\{P\} I F S \text { THEN } C_{1} E L S E C_{2}\{Q\}}
$$

Example

Definition

$$
\frac{\vdash\{P \wedge S\} C_{1}\{Q\}, \vdash\{P \wedge \neg S\} C_{2}\{Q\}}{\vdash\{P\} I F S T H E N C_{1} E L S E C_{2}\{Q\}}
$$

Code

$$
\begin{aligned}
\text { IF } \mathrm{X} & <=\mathrm{Y} \text { THEN } \\
\mathrm{Z} & :=\mathrm{X} \\
\text { ELSE } & \\
\mathrm{Z} & :=\mathrm{Y}
\end{aligned}
$$

Example

Definition

$$
\frac{\vdash\{P \wedge S\} C_{1}\{Q\}, \vdash\{P \wedge \neg S\} C_{2}\{Q\}}{\vdash\{P\} I F S \text { THEN } C_{1} E L S E C_{2}\{Q\}}
$$

Code

1	IF $\mathrm{X}<=\mathrm{Y}$ THEN
2	Z
3	$:=\mathrm{X}$
3	ELSE
4	Z

The code above is to assign the greater value of X and Y to Z. And we can formalize the code and verify the correctness as the proposition below:
$\vdash\{X \leq Y\} Z:=X\{Z=\min \{X, Y\}\}, \vdash\{\neg(X \leq Y)\} Z:=Y\{Z=\min \{X, Y\}\}$
$\vdash\{$ True $\}$ IF $X \leq Y$ THEN $Z:=X$ ELSE $Z:=Y\{Z=\min \{X, Y\}\}$

The Iteration Rule

The Iteration Rule

Definition

$$
\frac{\vdash\{P \wedge S\} C\{P\}}{\vdash\{P\} W H I L E S D O C\{P \wedge \neg S\}}
$$

The Iteration Rule

Definition

$$
\frac{\vdash\{P \wedge S\} C\{P\}}{\vdash\{P\} W H I L E S D O C\{P \wedge \neg S\}}
$$

- We often write all kinds of loop code, and now I am going to introduce the Iteration Rule.

The Iteration Rule

Definition

$$
\frac{\vdash\{P \wedge S\} C\{P\}}{\vdash\{P\} W H I L E S D O C\{P \wedge \neg S\}}
$$

- We often write all kinds of loop code, and now I am going to introduce the Iteration Rule.
- P is the invariant of the whole While-Command and is always true while this part of code is being excuted.

The Iteration Rule

Definition

$$
\frac{\vdash\{P \wedge S\} C\{P\}}{\vdash\{P\} W H I L E S D O C\{P \wedge \neg S\}}
$$

■ We often write all kinds of loop code, and now I am going to introduce the Iteration Rule.

- P is the invariant of the whole While-Command and is always true while this part of code is being excuted.
- S is the condition to check whether the loop should be terminated or continue.

Example

Definition

$$
\vdash\{P \wedge S\} C\{P\}
$$

$\overline{\vdash\{P\} W H I L E ~ S D O C\{P \wedge \neg S\}}$

Example

Definition

$$
\frac{\vdash\{P \wedge S\} C\{P\}}{\vdash\{P\} W H I L E S D O C\{P \wedge \neg S\}}
$$

Code

$$
\begin{aligned}
& \mathrm{X}:=1 \\
& \text { WHILE } \mathrm{X}<=7 \text { DO } \\
& \quad \mathrm{X}:=\mathrm{X}+3
\end{aligned}
$$

Example

Definition

$$
\frac{\vdash\{P \wedge S\} C\{P\}}{\vdash\{P\} W H I L E S D O C\{P \wedge \neg S\}}
$$

Code

$$
\begin{aligned}
& \mathrm{X}:=1 \\
& \text { WHILE } \mathrm{X}<=7 \text { DO } \\
& \quad \mathrm{X}:=\mathrm{X}+3
\end{aligned}
$$

- $X \equiv 1(\bmod 3)$ is an appropriate invariant.

$$
\frac{\vdash\{X \equiv 1(\bmod 3) \wedge X \leq 10 \wedge X \leq 7\} X:=X+3\{X \equiv 1(\bmod 3) \wedge X \leq 10\}}{\vdash\{X \equiv 1(\bmod 3) \wedge X \leq 10\} W H I L E \quad X \leq 7 \text { DO } X:=X+3\{X \equiv 1(\bmod 3) \wedge X \leq 10 \wedge X>7\}}
$$

Example

Definition

$$
\frac{\vdash\{P \wedge S\} C\{P\}}{\vdash\{P\} W H I L E S D O C\{P \wedge \neg S\}}
$$

Code

$$
\begin{aligned}
& \mathrm{X}:=1 \\
& \text { WHILE } \mathrm{X}<=7 \text { DO } \\
& \quad \mathrm{X}:=\mathrm{X}+3
\end{aligned}
$$

- $X \equiv 1(\bmod 3)$ is an appropriate invariant.

$$
\vdash\{X \equiv 1(\bmod 3) \wedge X \leq 10 \wedge X \leq 7\} X:=X+3\{X \equiv 1(\bmod 3) \wedge X \leq 10\}
$$

$$
\digamma\{X \equiv 1(\bmod 3) \wedge X \leq 10\} \text { WHILE } X \leq 7 \text { DO } X:=X+3\{X \equiv 1(\bmod 3) \wedge X \leq 10 \wedge X>7\}
$$

- Obviously $X \equiv 1(\bmod 3) \wedge X \leq 10 \wedge X>7$ is equal to $X=10$.

A Complete Example

1 Introduction
■ Why we need Hoare Logic?

- What is Hoare Logic?

2 Axioms and Rules

- Hoare triple
- The Assignment Axiom
- The Sequencing Rule
- The Conditional Rule
- The Iteration Rule

3 A Complete Example
4 Conclusion
5 Reference

Code
ムロ〉4号

Code

Code

$$
\mathrm{X}:=\mathrm{A}
$$

$$
\mathrm{Y}:=\mathrm{B}
$$

$$
\text { RES }:=0
$$

$$
\text { [Assertion: } \left.\{\text { True }\} C_{1}\{I\}\right]
$$

$$
\text { WHILE NOT }(\mathrm{X}=\mathrm{Y}) \text { DO }[L:(\neg(X=Y))]
$$

IF X > Y THEN

$$
\mathrm{X}:=\mathrm{X}-1
$$

ELSE

$$
\mathrm{Y}:=\mathrm{Y}-1
$$

[Assertion: $\left.\{I\} C_{2}\left\{I^{\prime}\right\}\right]$
RES := RES + 1
[Assertion: $\left.\left\{I^{\prime}\right\} C_{3}\{I\}\right]$
[Assertion: $\{I \wedge S\} W H I L E S D O C\{I \wedge \neg S\}]$

Code

Code

$$
\begin{aligned}
& \mathrm{X}:=\mathrm{A} \\
& \mathrm{Y}:=\mathrm{B} \\
& \text { RES }:=0 \\
& \text { [Assertion: } \left.\{\text { True }\} C_{1}\{I\}\right] \\
& \text { WHILE NOT }(\mathrm{X}=\mathrm{Y}) \text { DO }[L:(\neg(X=Y))] \\
& \text { IF X }>\mathrm{Y} \text { THEN } \\
& \mathrm{X}:=\mathrm{X}-1 \\
& \text { ELSE } \\
& \quad \mathrm{Y}:=\mathrm{Y}-1 \\
& \left.\quad \text { [Assertion: }\{I\} C_{2}\left\{I^{\prime}\right\}\right] \\
& \quad \text { RES := RES }+1 \\
& \left.\quad \text { [Assertion: }\left\{I^{\prime}\right\} C_{3}\{I\}\right] \\
& \text { [Assertion: }\{I \wedge S\} W H I L E S D O \quad C\{I \wedge \neg S\}]
\end{aligned}
$$

Our target is to prove that

$$
\{\operatorname{True}\} C\{R E S=|A-B|\}
$$

Initialization

Initialization

Code

$$
\begin{aligned}
& \mathrm{X}:=\mathrm{A} \\
& \mathrm{Y}:=\mathrm{B} \\
& \mathrm{RES}:=0 \\
& \text { [Assertion: } \left.\{\text { True }\} C_{1}\{I\}\right]
\end{aligned}
$$

Initialization

Code

$$
\begin{aligned}
& \mathrm{X}:=\mathrm{A} \\
& \mathrm{Y}:=\mathrm{B} \\
& \mathrm{RES}:=0 \\
& \text { [Assertion: } \left.\{\text { True }\} C_{1}\{I\}\right]
\end{aligned}
$$

Line 2 ,Line 3 and Line 4 are three assignments. And now proposition 1 , namely P, is true.

$$
P: X=A \wedge Y=B \wedge R E S=0
$$

Invariant

Invariant

Code

1
2
3
4

$$
\begin{aligned}
& \mathrm{X}:=\mathrm{A} \\
& \mathrm{Y}:=\mathrm{B} \\
& \mathrm{RES}:=0 \\
& \text { [Assertion: } \left.\{\text { True }\} C_{1}\{I\}\right]
\end{aligned}
$$

Invariant

Code

$$
\begin{aligned}
& \mathrm{X}:=\mathrm{A} \\
& \mathrm{Y}:=\mathrm{B} \\
& \mathrm{RES}:=0 \\
& \text { [Assertion: } \left.\{\text { True }\} C_{1}\{I\}\right]
\end{aligned}
$$

$$
P: X=A \wedge Y=B \wedge R E S=0
$$

We need to find a proper invariant.

Invariant

Code

$$
\begin{aligned}
& \mathrm{X}:=\mathrm{A} \\
& \mathrm{Y}:=\mathrm{B} \\
& \operatorname{RES}:=0 \\
& \text { [Assertion: } \left.\{\text { True }\} C_{1}\{I\}\right]
\end{aligned}
$$

$$
P: X=A \wedge Y=B \wedge R E S=0
$$

We need to find a proper invariant.

$$
\begin{gathered}
X=A \wedge Y=B \wedge R E S=0 \Rightarrow R E S+|X-Y|=|A-B| \\
I: R E S+|X-Y|=|A-B| \text { (invariant) }
\end{gathered}
$$

Invariant

Code

$$
\begin{aligned}
& \mathrm{X}:=\mathrm{A} \\
& \mathrm{Y}:=\mathrm{B} \\
& \operatorname{RES}:=0 \\
& \text { [Assertion: } \left.\{\text { True }\} C_{1}\{I\}\right]
\end{aligned}
$$

$$
P: X=A \wedge Y=B \wedge R E S=0
$$

We need to find a proper invariant.

$$
\begin{gathered}
X=A \wedge Y=B \wedge R E S=0 \Rightarrow R E S+|X-Y|=|A-B| \\
I: R E S+|X-Y|=|A-B| \text { (invariant) }
\end{gathered}
$$

- I is closely related to the final target.

Invariant

Code

$$
\begin{aligned}
& \mathrm{X}:=\mathrm{A} \\
& \mathrm{Y}:=\mathrm{B} \\
& \operatorname{RES}:=0 \\
& \text { [Assertion: } \left.\{\text { True }\} C_{1}\{I\}\right]
\end{aligned}
$$

$$
P: X=A \wedge Y=B \wedge R E S=0
$$

We need to find a proper invariant.

$$
\begin{gathered}
X=A \wedge Y=B \wedge R E S=0 \Rightarrow R E S+|X-Y|=|A-B| \\
I: R E S+|X-Y|=|A-B| \text { (invariant) }
\end{gathered}
$$

- I is closely related to the final target.
- I reveals useful properties of $R E S$.

Invariant

Code

$$
\begin{aligned}
& \mathrm{X}:=\mathrm{A} \\
& \mathrm{Y}:=\mathrm{B} \\
& \mathrm{RES}:=0 \\
& \text { [Assertion: } \left.\{\text { True }\} C_{1}\{I\}\right]
\end{aligned}
$$

$$
P: X=A \wedge Y=B \wedge R E S=0
$$

We need to find a proper invariant.

$$
\begin{gathered}
X=A \wedge Y=B \wedge R E S=0 \Rightarrow R E S+|X-Y|=|A-B| \\
I: R E S+|X-Y|=|A-B| \text { (invariant) }
\end{gathered}
$$

- I is closely related to the final target.
- I reveals useful properties of $R E S$.

However, the invariant remains to be checked during the loop.

Loop

Loop

Code
WHILE NOT ($\mathrm{X}=\mathrm{Y}$) DO $[L:(\neg(X=Y))]$
IF $X>Y$ THEN

$$
\mathrm{X}:=\mathrm{X}-1
$$

ELSE

$$
\mathrm{Y}:=\mathrm{Y}-1
$$

[Assertion: $\left.\{I\} C_{2}\left\{I^{\prime}\right\}\right]$
RES := RES + 1
[Assertion: $\left.\left\{I^{\prime}\right\} C_{3}\{I\}\right]$

Loop

Code

```
WHILE NOT (X = Y) DO \([L:(\neg(X=Y))]\)
    IF \(X>Y\) THEN
        \(\mathrm{X}:=\mathrm{X}-1\)
    ELSE
        \(\mathrm{Y}:=\mathrm{Y}-1\)
    [Assertion: \(\{I\} C_{2}\left\{I^{\prime}\right\}\) ]
    RES := RES + 1
    [Assertion: \(\left.\left\{I^{\prime}\right\} C_{3}\{I\}\right]\)
```

Start from the loop condition L.

$$
L: X \neq Y
$$

Loop

Code

```
WHILE NOT (X = Y) DO \([L:(\neg(X=Y))]\)
    IF \(\mathrm{X}>\mathrm{Y}\) THEN
        \(\mathrm{X}:=\mathrm{X}-1\)
    ELSE
        Y := Y-1
    [Assertion: \(\left.\{I\} C_{2}\left\{I^{\prime}\right\}\right]\)
    RES := RES + 1
    [Assertion: \(\left.\left\{I^{\prime}\right\} C_{3}\{I\}\right]\)
```

Start from the loop condition L.

$$
L: X \neq Y
$$

Next is a conditional statement with the condition S and an assignment.

IF-ELSE
䶷吕

IF-ELSE

Code

$$
\begin{aligned}
& \text { IF } \mathrm{X}>\mathrm{Y} \text { THEN } \\
& \mathrm{X}:=\mathrm{X}-1 \\
& \text { ELSE } \\
& \mathrm{Y}:=\mathrm{Y}-1 \\
&\text { [Assertion: } \left.\{I\} C_{2}\left\{I^{\prime}\right\}\right]
\end{aligned}
$$

IF-ELSE

Code

```
IF X > Y THEN
    \(\mathrm{X}:=\mathrm{X}-1\)
ELSE
    Y := Y - 1
[Assertion: \(\left.\{I\} C_{2}\left\{I^{\prime}\right\}\right]\)
```

The property of I will be temporarily changed after the conditional statement.

IF-ELSE

Code

```
IF X > Y THEN
    \(\mathrm{X}:=\mathrm{X}-1\)
ELSE
    Y := Y - 1
[Assertion: \(\left.\{I\} C_{2}\left\{I^{\prime}\right\}\right]\)
```

The property of I will be temporarily changed after the conditional statement. We name the post-condition I^{\prime}.

$$
\begin{gathered}
S: x>y \\
I^{\prime}=R E S+|X-Y|=|A-B|-1 \text { (Temporary Change) }
\end{gathered}
$$

IF-ELSE

Code

```
IF X > Y THEN
    \(\mathrm{X}:=\mathrm{X}-1\)
ELSE
    Y := Y - 1
[Assertion: \(\left.\{I\} C_{2}\left\{I^{\prime}\right\}\right]\)
```

The property of I will be temporarily changed after the conditional statement. We name the post-condition I^{\prime}.

$$
S: x>y
$$

$$
I^{\prime}=R E S+|X-Y|=|A-B|-1 \text { (Temporary Change) }
$$

And the IF-ELSE code can be then transformed into the proposition below.

$$
\frac{\vdash\{I \wedge S\} X:=X-1\left\{I^{\prime}\right\},\{I \wedge \neg S\} Y:=Y-1\left\{I^{\prime}\right\}}{\vdash\{I\} I F S \text { THEN } X:=X-1 E L S E Y:=Y-1\left\{I^{\prime}\right\}}
$$

Assignment of RES

Assignment of RES

Code

RES := RES + 1
[Assertion: $\left\{I^{\prime}\right\} C_{3}\{I\}$]

Assignment of RES

Code

```
RES := RES + 1
[Assertion: {I'} C }\mp@subsup{C}{3}{}{I}
```

Next is the assignment of $R E S$, which changes I^{\prime} back into I.

$$
\vdash\left\{I^{\prime}\right\} R E S:=R E S+1\{I\}(\text { Line } 9)
$$

Assignment of RES

Code

```
RES := RES + 1
[Assertion: {I'} C }\mp@subsup{C}{3}{}{I}
```

Next is the assignment of $R E S$, which changes I^{\prime} back into I.

$$
\vdash\left\{I^{\prime}\right\} R E S:=R E S+1\{I\}(\text { Line } 9)
$$

And now, we can say that I is indeed a invariant that never changes after each loop.

Final Step

Final Step

Code

$$
\begin{aligned}
& \mathrm{X}:=\mathrm{A}, \mathrm{Y}:=\mathrm{B}, \mathrm{RES}:=0 \\
& \text { [Assertion: } \left.\{\text { True }\} C_{1}\{I\}\right] \\
& \text { WHILE NOT }(\mathrm{X}=\mathrm{Y}) \mathrm{DO}[L:(\neg(X=Y))] \\
& \text { IF X }>\mathrm{Y} \text { THEN } \\
& \mathrm{X}:=\mathrm{X}-1 \\
& \text { ELSE } \\
& \mathrm{Y}:=\mathrm{Y}-1 \\
& \quad \text { RES }:=\mathrm{RES}+1 \\
& \text { [Assertion: }\{I \wedge S\} \text { WHILE } S \text { DO } C\{I \wedge \neg S\}]
\end{aligned}
$$

Final Step

Code

$$
\mathrm{X}:=\mathrm{A}, \mathrm{Y}:=\mathrm{B}, \mathrm{RES}:=0
$$

[Assertion: $\{$ True $\} C_{1}\{I\}$]
WHILE NOT ($\mathrm{X}=\mathrm{Y}$) DO $[L:(\neg(X=Y))]$
IF $X>Y$ THEN

$$
\mathrm{X}:=\mathrm{X}-1
$$

ELSE

$$
\mathrm{Y}:=\mathrm{Y}-1
$$

$$
\text { RES := RES + } 1
$$

[Assertion: $\{I \wedge S\} W H I L E S D O C\{I \wedge \neg S\}]$

$$
\frac{\vdash\{I \wedge L\} C\{I\}}{\frac{\vdash\{I\} W H I L E L D O C\{I \wedge \neg L\}}{\vdash\{R E S+|X-Y|=|A-B| \wedge X=Y\} E m p t y\{R E S=|A-B|\}}}
$$

Conclusion

1 Introduction
－Why we need Hoare Logic？
－What is Hoare Logic？
2 Axioms and Rules
－Hoare triple
－The Assignment Axiom
－The Sequencing Rule
－The Conditional Rule
－The Iteration Rule
3 A Complete Example
4 Conclusion
5 Reference

Conclusion

Conclusion

- This article discusses the core concepts of Hoare Logic, and give a complete example of code verification with Hoare Logic.

Conclusion

- This article discusses the core concepts of Hoare Logic, and give a complete example of code verification with Hoare Logic.
- However, the formal material presented only represents a small proportion of Hoare Logic.

Conclusion

- This article discusses the core concepts of Hoare Logic, and give a complete example of code verification with Hoare Logic.
- However, the formal material presented only represents a small proportion of Hoare Logic.
■ If you are interested in Hoare Logic, consider going deeper into the relevant papers.

Reference

1 Introduction
■ Why we need Hoare Logic？
－What is Hoare Logic？
2 Axioms and Rules
－Hoare triple
－The Assignment Axiom
－The Sequencing Rule
－The Conditional Rule
－The Iteration Rule
3 A Complete Example
4 Conclusion
5 Reference

Reference

[1]C. A. R. Hoare 1983. An Axiomatic Basic for Computer Programming. Commun. ACM 26, 1 (1983), 53-56.

