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Why we need Hoare Logic?

We often fail to write programs that meet our
expectations, so when a programmer is programming, it is
important to verify that the code is correct.
Thus it is desirable to use a valid logic to verify the
program correctness.
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Hoare Logic can establish a transformation
between code and logic formulas thus ensuring that
our programs are validated.
All the consequences of excuting programs can be found
out ”by means of purely deductive reasoning”[1] with
Hoare Logic.
And Hoare Logic consists of basic axioms and rules of
inference, which will be elucidated next.
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Hoare triple

Definition
{P}C{Q}

P: Pre-condition C: Command(Code) Q: Post-condition

The meaning of the triple is that, assuming C is executable
and executed in a state satisfying P, when C is executed,
the state will satisfy Q.
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For example:

{x = y}z = x{y = z} : true
{x = 1, y = 1}y = 0{x = y} : false
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The Assignment Axiom

Definition
⊢ {Q[E/V]}V := E{Q}

Assignment is the most characteristic and basic feature of a
program.

⊢ is the notation means that the proposition can be
syntactically derived.
:= means assignment.
Here V is a variable identifier, E is an identified expression,
Q is any statement.
Q[E/V] means the result of replacing all occurrences of V
in Q by E.
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Example

Definition
⊢ {Q[E/V]}V := E{Q}

Code

1 X:=Y+1

And the code above is equal to the triple below:
⊢ {Y + 1 = V}X = Y + 1{X = V}
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The Sequencing Rule

Definition
⊢ {P}C1{Q},⊢ {Q}C2{R}

⊢ {P}C1;C2{R}

The rule permits the deduction of new theoroms from one
proved theorem or axiom to new theorems.

Here P1
P2

means that, if the correctness of P1 is ensured, P2

can be proved correct.
After the execution of C1 and C2, state P can produce Q,
and then Q, as the mid-condition, can produce R
sequentially.
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⊢ {P ∧ S}C1{Q},⊢ {P ∧ ¬S}C2{Q}
⊢ {P}IF S THEN C1 ELSE C2{Q}

As programmers, we often write IF-ELSE code.
Here ∧ means ”and”, ∨ means ”or”, ¬ means not.
In initial state P is true, and if S is true then execute C1, if
S is false then executed C2. After execution, Q is true.
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We often write all kinds of loop code, and now I am going
to introduce the Iteration Rule.
P is the invariant of the whole While-Command and is
always true while this part of code is being excuted.
S is the condition to check whether the loop should be
terminated or continue.
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Obviously X ≡ 1(mod 3) ∧ X ≤ 10 ∧ X > 7 is equal to
X = 10.
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Code

Code

1 X := A
2 Y := B
3 RES := 0
4 [Assertion: {True}C1{I}]
5 WHILE NOT (X = Y) DO [L : (¬(X = Y))]
6 IF X > Y THEN
7 X := X - 1
8 ELSE
9 Y := Y - 1

10 [Assertion: {I}C2{I ′}]
11 RES := RES + 1
12 [Assertion: {I ′}C3{I}]
13 [Assertion: {I ∧ S}WHILE S DO C{I ∧ ¬S}]

Our target is to prove that
{True}C{RES = |A − B|} .
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Initialization

Code

1 X := A
2 Y := B
3 RES := 0
4 [Assertion: {True}C1{I}]

Line 2 ,Line 3 and Line 4 are three assignments. And now
proposition 1, namely P, is true.

P : X = A ∧ Y = B ∧ RES = 0
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Code

1 X := A
2 Y := B
3 RES := 0
4 [Assertion: {True}C1{I}]

P : X = A ∧ Y = B ∧ RES = 0
We need to find a proper invariant.

X = A ∧ Y = B ∧ RES = 0 ⇒ RES + |X − Y| = |A − B|
I : RES + |X − Y| = |A − B| (invariant)

I is closely related to the final target.
I reveals useful properties of RES.

However, the invariant remains to be checked during the loop.
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Loop

Code

1 WHILE NOT (X = Y) DO [L : (¬(X = Y))]
2 IF X > Y THEN
3 X := X - 1
4 ELSE
5 Y := Y - 1
6 [Assertion: {I}C2{I ′}]
7 RES := RES + 1
8 [Assertion: {I ′}C3{I}]

Start from the loop condition L.
L : X ̸= Y

Next is a conditional statement with the condition S and an
assignment.
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IF-ELSE

Code

1 IF X > Y THEN
2 X := X - 1
3 ELSE
4 Y := Y - 1
5 [Assertion: {I}C2{I ′}]

The property of I will be temporarily changed after the
conditional statement. We name the post-condition I ′.

S : x > y
I ′ = RES + |X − Y| = |A − B| − 1 (Temporary Change)

And the IF-ELSE code can be then transformed into the
proposition below.

⊢ {I ∧ S}X := X − 1{I ′}, {I ∧ ¬S}Y := Y − 1{I ′}
⊢ {I}IF S THEN X := X − 1 ELSE Y := Y − 1{I ′}
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Assignment of RES

Code

1 RES := RES + 1
2 [Assertion: {I ′}C3{I}]

Next is the assignment of RES, which changes I ′ back into I.
⊢ {I ′}RES := RES + 1{I} (Line 9)

And now, we can say that I is indeed a invariant that
never changes after each loop.
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Final Step

Code

1 X := A, Y := B, RES := 0
2 [Assertion: {True}C1{I}]
3 WHILE NOT (X = Y) DO [L : (¬(X = Y))]
4 IF X > Y THEN
5 X := X - 1
6 ELSE
7 Y := Y - 1
8 RES := RES + 1
9 [Assertion: {I ∧ S}WHILE S DO C{I ∧ ¬S}]

⊢ {I ∧ L}C{I}
⊢ {I}WHILE L DO C{I ∧ ¬L}

⊢ {RES + |X − Y| = |A − B| ∧ X = Y}Empty{RES = |A − B|}
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