How to use Hoare Logic to verify program

correctness

Huajun Lu

Nanjing University
231220006@smail.nju.edu.cn

Dec 23, 2023



Contents

Introduction
m Why we need Hoare Logic?
m What is Hoare Logic?

Axioms and Rules
m Hoare triple
m The Assignment Axiom
m The Sequencing Rule
m The Conditional Rule
m The Iteration Rule

A Complete Example
Conclusion
Reference



Introduction

Introduction
m Why we need Hoare Logic?
m What is Hoare Logic?



Why we need Hoare Logic?




Why we need Hoare Logic?

m We often fail to write programs that meet our
expectations, so when a programmer is programming, it is
important to verify that the code is correct.



Why we need Hoare Logic?

m We often fail to write programs that meet our
expectations, so when a programmer is programming, it is
important to verify that the code is correct.

m Thus it is desirable to use a valid logic to verify the
program correctness.



What is Hoare Logic?




What is Hoare Logic?

m Hoare Logic can establish a transformation

between code and logic formulas thus ensuring that
our programs are validated.



What is Hoare Logic?

m Hoare Logic can establish a transformation
between code and logic formulas thus ensuring that
our programs are validated.

m All the consequences of excuting programs can be found

out "by means of purely deductive reasoning”[1] with
Hoare Logic.



What is Hoare Logic?

m Hoare Logic can establish a transformation
between code and logic formulas thus ensuring that
our programs are validated.

m All the consequences of excuting programs can be found
out "by means of purely deductive reasoning”[1] with
Hoare Logic.

m And Hoare Logic consists of basic axioms and rules of
inference, which will be elucidated next.



Axioms and Rules

Axioms and Rules
m Hoare triple
m The Assignment Axiom
m The Sequencing Rule
m The Conditional Rule
m The Iteration Rule



Hoare triple



Hoare triple

{P}C{Q}



Hoare triple

{P}C{Q}

Definition

[P: Pre—condition]—>

C: Command(Code)

H[Q: Post—condition}




Hoare triple

{P}C{Q}

Definition

[P: Pre—condition]—>

C: Command(Code)

H[Q: Post—condition}

m The meaning of the triple is that, assuming C'is executable
and executed in a state satisfying P, when C'is executed,
the state will satisfy Q.



Example

{P}C{Q}

For example:



Example

{P}C{Q}

For example:
{z=y}lz=a{y= 2z} : true



Example

{P}C{Q}

For example:
{z=y}lz=a{y= 2z} : true
{r=1,y=1}y=0{z =y} : false



The Assignment Axiom




The Assignment Axiom

F{QIE/V]}V:= E{Q}



The Assignment Axiom

F{QIE/V]}V:= E{Q}

m Assignment is the most characteristic and basic feature of a
program.



The Assignment Axiom

F{QIE/V]}V:= E{Q}

m Assignment is the most characteristic and basic feature of a
program.

m  is the notation means that the proposition can be
syntactically derived.



The Assignment Axiom

F{QIE/V]}V:= E{Q}

m Assignment is the most characteristic and basic feature of a
program.

m  is the notation means that the proposition can be
syntactically derived.

E = means assignment.



The Assignment Axiom

F{QIE/V]}V:= E{Q}

m Assignment is the most characteristic and basic feature of a
program.

F is the notation means that the proposition can be
syntactically derived.

E = means assignment.

m Here Vis a variable identifier, F is an identified expression,
() is any statement.



The Assignment Axiom

F{QIE/V]}V:= E{Q}

m Assignment is the most characteristic and basic feature of a
program.

F is the notation means that the proposition can be
syntactically derived.

E = means assignment.

m Here Vis a variable identifier, F is an identified expression,
() is any statement.

Q[E/ V] means the result of replacing all occurrences of V
in @ by FE.



Example

F{QIE/V} V= E{Q}



F{QIE/V} V= E{Q}

1 X:=Y+1




Example

F{QIE/V} V= E{Q}

Code

1 X:=Y+1

And the code above is equal to the triple below:
F{Y+1=V}X=Y+4+1{X=V}



The Sequencing Rule



The Sequencing Rule

Definition
H{PtC{ Q) F {Q}G{ R}
= {P}C; C2{R}




The Sequencing Rule

Definition
H{PtC{ Q) F {Q}G{ R}
= {P}C1; C2{R}

m The rule permits the deduction of new theoroms from one
proved theorem or axiom to new theorems.



The Sequencing Rule

Definition

F{PYC{Q} F {Q}C{ R}
= {P}Ch; Cof R}

m The rule permits the deduction of new theoroms from one
proved theorem or axiom to new theorems.

P
m Here — means that, if the correctness of P; is ensured, Ps
2
can be proved correct.



The Sequencing Rule

Definition

F{PCi{ @), F {Q} iR}
= {P}Ch; Cof R}

m The rule permits the deduction of new theoroms from one
proved theorem or axiom to new theorems.

P
m Here — means that, if the correctness of P; is ensured, Ps
2
can be proved correct.

m After the execution of C; and (b, state P can produce @,
and then @), as the mid-condition, can produce R
sequentially.



Example

Definition

H{P}Ci{Q},F {Q}Co{R}
= {P}Cl; CQ{R}




Definition

H{P}Ci{Q},F {Q}Co{R}
= {P}Cl; CQ{R}




Example

Definition

H{P}Ci{Q},F {Q}Co{R}
= {P}Cl; CQ{R}

And the expected result Y = X can be verified sequentially with
the triple below:
F{X=X}R=X{R=X},H{R=X}Y=R{Y=X}
F{X=X}R=X;Y=R{Y=X}




The Conditional Rule



The Conditional Rule

Definition
H{PA SO {Q}F {PA-STO{Q}
F{P}IF S THEN C, ELSE C{Q}




The Conditional Rule

Definition
H{PA SO {Q}F {PA-STO{Q}
F{P}IF S THEN C, ELSE C{Q}

m As programmers, we often write IF-ELSE code.



The Conditional Rule

Definition
H{PA SO {Q}F {PA-STO{Q}
F{P}IF S THEN C, ELSE C{Q}

m As programmers, we often write IF-ELSE code.

m Here A means "and”, V means ”or”, = means not.



The Conditional Rule

Definition
H{PA SO {Q}F {PA-STO{Q}
F{P}IF S THEN C, ELSE C{Q}

m As programmers, we often write IF-ELSE code.
m Here A means "and”, V means ”or”, = means not.

m In initial state P is true, and if S is true then execute Cy, if
S is false then executed Cs. After execution, @) is true.



Example

Definition

F{PASIC{@Q}F{PA-SIG{Q}
- {PYIF S THEN C; ELSE Co{Q}




Example

Definition

F{PASIC{@Q}F{PA-SIG{Q}
- {PYIF S THEN C; ELSE Co{Q}

IF X <
Z
ELSE
Z :

Y THEN
X

=W N =
T

Y



Example

Definition

F{PASIC{@Q}F{PA-SIG{Q}
- {PYIF S THEN C; ELSE Co{Q}

1 IF X <= Y THEN
2 Z :=X

3 ELSE

4 Z :=Y

The code above is to assign the greater value of X and Y to Z.
And we can formalize the code and verify the correctness as the

proposition below:
F{X<Y}Z:=X{Z=min{ X, Y}},F {-(X < V)}Z:= Y{Z=min{X, Y}}

- {True}IF X< Y THEN Z:= X ELSE Z := Y{Z = min{X, Y}}



The Iteration Rule



The Iteration Rule

Definition

F{PA S}C{P}
- {PYWHILE S DO C{P A S}




The Iteration Rule

Definition
F{PA S}C{P}
F{P}WHILE S DO C{P A —-S}

m We often write all kinds of loop code, and now I am going
to introduce the Iteration Rule.



The Iteration Rule

Definition
F{PA S}C{P}
F{P}WHILE S DO C{P A —-S}

m We often write all kinds of loop code, and now I am going
to introduce the Iteration Rule.

m P is the invariant of the whole While-Command and is
always true while this part of code is being excuted.



The Iteration Rule

Definition
F{PA S}C{P}
F{P}WHILE S DO C{P A —-S}

m We often write all kinds of loop code, and now I am going
to introduce the Iteration Rule.

m P is the invariant of the whole While-Command and is
always true while this part of code is being excuted.

m S is the condition to check whether the loop should be
terminated or continue.



Example

Definition
F{PA S}C{P}
F{P}WHILE S DO C{P A —-S}




Example

Definition

F{PA S}C{P}
- {PYWHILE S DO C{P A S}

2 WHILE X <= 7 DO
3 X:=X+3



Example

Definition

F{PA S}C{P}
- {PYWHILE S DO C{P A S}

Code
1 X :=1
2 WHILE X <= 7 DO
3 X :=X+3

m X = 1(mod 3) is an appropriate invariant.

F{X=1(mod 3)AX<10AX<T}X:=X+3{X=1(mod 3)AX<10}
F{X=1(mod 3)AX<10} WHILE X<7 DO X:=X+3{X=1(mod 3)AX<10AX>T}




Example

Definition

F{PA S}C{P}
- {PYWHILE S DO C{P A S}

Code
1 X :=1
2 WHILE X <= 7 DO
3 X :=X+3

m X = 1(mod 3) is an appropriate invariant.

F{X=1(mod 3)AX<10AX<T}X:=X+3{X=1(mod 3)AX<10}
F{X=1(mod 3)AX<10} WHILE X<7 DO X:=X+3{X=1(mod 3)AX<10AX>T}

m Obviously X = 1(mod 3) A X <10A X > 7 is equal to
X =10.




A Complete Example

A Complete Example






Code

1 X :=A

2 Y :=B

3 RES := 0

4 [Assertion: {True}Ci{I}]

5 WHILE NOT (X = Y) DO [L:(~(X=1Y))]
6 IF X > Y THEN

7 X:=X-1

8 ELSE

9 Y:=Y-1

10 [Assertion: {I}Co{I'}]

11 RES := RES + 1

12 [Assertion: {I'}Cs{I}]

13 [Assertion: {IAS}WHILE S DO C{IA-S}]



Code

1 X :=A

2 Y :=B

3 RES := 0

4 [Assertion: {True}Ci{I}]

5 WHILE NOT (X = Y) DO [L:(~(X=1Y))]
6 IF X > Y THEN

7 X:=X-1

8 ELSE

9 Y:=Y-1

10 [Assertion: {I}Co{I'}]

11 RES := RES + 1

12 [Assertion: {I'}Cs{I}]

13 [Assertion: {IAS}WHILE S DO C{IA-S}]

Our target is to prove that
{True} C{RES = |A — B|}



Initialization




Initialization

=0
[Assertion: {True}Ci{I}]

=W N =
=]
<]
[¢2]



Initialization

X := A
Y :=B
RES := 0

[Assertion: {True}Ci{I}]

=W N =

Line 2 ,Line 3 and Line 4 are three assignments. And now

proposition 1, namely P, is true.
P: X=ANY=BARES=0



Invariant




Invariant

=<
1]
N w =

RES := 0
[Assertion: {True}Ci{I}]

I



Invariant

X :

Y :
RES := 0
[Assertion: {True}Ci{I}]

A
B

I

P: X=ANY=BARES=0
We need to find a proper invariant.



Invariant

A
B

X
Y

RES := 0
[Assertion: {True}Ci{I}]

I

P:X=ANY=BARES=0
We need to find a proper invariant.
X=ANY=BARES=0= RES+|X—-Y|=|A- B
I: RES+ |X — Y] =|A — BJ| (invariant)



Invariant

A
B

X
Y

RES := 0
[Assertion: {True}Ci{I}]

I

P:X=ANY=BARES=0
We need to find a proper invariant.
X=ANY=BARES=0= RES+|X—-Y|=|A- B
I: RES+ |X — Y] =|A — BJ| (invariant)

m [ is closely related to the final target.



Invariant

X :
Y :
RES := 0

[Assertion: {True}Ci{I}]

A
B

I

P:X=ANY=BARES=0
We need to find a proper invariant.
X=ANY=BARES=0= RES+|X—-Y|=|A- B
I: RES+ |X — Y] =|A — BJ| (invariant)

m [ is closely related to the final target.

m [ reveals useful properties of RES.



Invariant

X :
Y :
RES := 0

[Assertion: {True}Ci{I}]

A
B

I

P:X=ANY=BARES=0
We need to find a proper invariant.
X=ANY=BARES=0= RES+|X—-Y|=|A- B
I: RES+ |X — Y] =|A — BJ| (invariant)

m [ is closely related to the final target.
m [ reveals useful properties of RES.

However, the invariant remains to be checked during the loop.






Loop

[Assertion: {I}Co{I'}]
RES := RES + 1
[Assertion: {I'}Cs{I}]

1 WHILE NOT (X =Y) DO [L:(~(X=Y))]
2 IF X > Y THEN

3 X :=X-1

4 ELSE

5 Y=Y -1

6

7

8



Loop

[Assertion: {I}Co{I'}]
RES := RES + 1
[Assertion: {I'}Cs{I}]

1 WHILE NOT (X =Y) DO [L:(~(X=1Y))]
2 IF X > Y THEN

3 X :=X-1

4 ELSE

5 Y=Y -1

6

7

8

Start from the loop condition L.
L:X#£Y



Loop

[Assertion: {I}Co{I'}]
RES := RES + 1
[Assertion: {I'}Cs{I}]

1 WHILE NOT (X =Y) DO [L:(~(X=1Y))]
2 IF X > Y THEN

3 X :=X-1

4 ELSE

5 Y=Y -1

6

7

8

Start from the loop condition L.

L:X#Y
Next is a conditional statement with the condition S and an
assignment.



IF-ELSE



IF-ELSE

1 IF X > Y THEN
2 X:=X-1
3 ELSE

4 Y:=Y-1
5

[Assertion: {I}Co{I’}]



IF-ELSE

1 IF X > Y THEN
2 X:=X-1
3 ELSE

4 Y:=Y-1
5

[Assertion: {I}Co{I’}]

The property of I will be temporarily changed after the
conditional statement.



IF-ELSE

1 IF X > Y THEN
2 X:=X-1
3 ELSE

4 Y:=Y-1
5

[Assertion: {I}Co{I’}]

The property of I will be temporarily changed after the
conditional statement. We name the post-condition I’.
S:x>vy
I'=RES+|X— Y| =|A—- B| — 1 (Temporary Change)



IF-ELSE

1 IF X > Y THEN
2 X:=X-1
3 ELSE

4 Y:=Y-1
5

[Assertion: {I}Co{I’}]

The property of I will be temporarily changed after the
conditional statement. We name the post-condition I’.
S:x>vy
I'=RES+|X— Y| =|A—- B| — 1 (Temporary Change)
And the IF-ELSE code can be then transformed into the
proposition below.
F{INS}X =X —W{I'},{IN-S}Y:=Y—-1{I'}
H{I}IF S THEN X:= X—1ELSE Y:=Y—-1{I'}




Assignment of RES



Assignment of RES

Code

1 RES := RES + 1
2 [Assertion: {I'}Cs{I}]



Assignment of RES

1 RES := RES + 1
2 [Assertion: {I'}Cs{I}]

Next is the assignment of RES, which changes I’ back into I.
F{I'}RES := RES+ 1{I} (Line 9)



Assignment of RES

1 RES := RES + 1
2 [Assertion: {I'}Cs{I}]

Next is the assignment of RES, which changes I’ back into I.
+{I'}RES := RES+ 1{I} (Line 9)

And now, we can say that [ is indeed a invariant that

never changes after each loop.






Final Step

RES := RES + 1
[Assertion: {IAS}WHILE S DO C{IA —S}]

1 X :=A, Y :=B, RES :=0

2 [Assertion: {True}Ci{I}]

3 WHILE NOT (X = Y) DO [L:(~(X=1Y))]
4 IF X > Y THEN

5 X:=X-1

6 ELSE

7 Y:=Y -1

8

9



Final Step

RES := RES + 1
[Assertion: {IAS}WHILE S DO C{IA —S}]

1 X :=A, Y :=B, RES :=0

2 [Assertion: {True}Ci{I}]

3 WHILE NOT (X = Y) DO [L:(~(X=1Y))]
4 IF X > Y THEN

5 X:=X-1

6 ELSE

7 Y:=Y -1

8

9

- {IA LYOLT}
- {IyWHILE L DO C{IA L}
F{RES+|X— Y| =|A— B|AX= Y}Empty{RES = |A — B|}




Conclusion

Conclusion



Conclusion




Conclusion

m This article discusses the core concepts of Hoare Logic, and
give a complete example of code verification with Hoare
Logic.



Conclusion

m This article discusses the core concepts of Hoare Logic, and
give a complete example of code verification with Hoare
Logic.

m However, the formal material presented only represents a
small proportion of Hoare Logic.



Conclusion

m This article discusses the core concepts of Hoare Logic, and
give a complete example of code verification with Hoare
Logic.

m However, the formal material presented only represents a
small proportion of Hoare Logic.

m If you are interested in Hoare Logic, consider going deeper
into the relevant papers.



Reference

Reference



Reference

[1]C. A. R. Hoare 1983. An Axiomatic Basic for Computer
Programming. Commun. ACM 26, 1 (1983), 53-56.



	Outline
	Introduction
	Why we need Hoare Logic?
	What is Hoare Logic?

	Axioms and Rules
	Hoare triple
	The Assignment Axiom
	The Sequencing Rule
	The Conditional Rule
	The Iteration Rule

	A Complete Example
	Conclusion
	Reference

