How to use Hoare Logic to verify program correctness

Huajun Lu

Nanjing University 231220006@smail.nju.edu.cn

Dec 23, 2023

<ロ> (四) (四) (四) (四) (四) (四) (四)

Contents

1 Introduction

- Why we need Hoare Logic?
- What is Hoare Logic?

2 Axioms and Rules

- Hoare triple
- The Assignment Axiom
- The Sequencing Rule
- The Conditional Rule

A D F A 目 F A E F A E F A Q Q

- The Iteration Rule
- 3 A Complete Example

4 Conclusion

5 Reference

Introduction

1 Introduction

- Why we need Hoare Logic?
- What is Hoare Logic?

2 Axioms and Rules

- Hoare triple
- The Assignment Axiom
- The Sequencing Rule
- The Conditional Rule

うして ふゆ く は く は く む く し く

- The Iteration Rule
- 3 A Complete Example
- 4 Conclusion

5 Reference

Why we need Hoare Logic?

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃ ∽のへで

• We often fail to write programs that meet our expectations, so when a programmer is programming, it is important to verify that the code is correct.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ りへぐ

• We often fail to write programs that meet our expectations, so when a programmer is programming, it is important to verify that the code is correct.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Thus it is desirable to use a valid logic to verify the program correctness.

What is Hoare Logic?

・ロト・(部ト・モト・モト・モー・ジュマ)

 Hoare Logic can establish a transformation between code and logic formulas thus ensuring that our programs are validated.

- Hoare Logic can establish a transformation between code and logic formulas thus ensuring that our programs are validated.
- All the consequences of excuting programs can be found out "by means of purely deductive reasoning"[1] with Hoare Logic.

A D F A 目 F A E F A E F A Q Q

- Hoare Logic can establish a transformation between code and logic formulas thus ensuring that our programs are validated.
- All the consequences of excuting programs can be found out "by means of purely deductive reasoning"[1] with Hoare Logic.
- And Hoare Logic consists of basic axioms and rules of inference, which will be elucidated next.

うして ふゆ く は く は く む く し く

Axioms and Rules

Introduction

- Why we need Hoare Logic?
- What is Hoare Logic?

2 Axioms and Rules

- Hoare triple
- The Assignment Axiom
- The Sequencing Rule
- The Conditional Rule

うして ふゆ く は く は く む く し く

- The Iteration Rule
- 3 A Complete Example

4 Conclusion

5 Reference

Hoare triple

・ロト ・日・ ・ヨ・ ・ヨ・ うへぐ

Hoare triple

Definition

 $\{P\}C\{Q\}$

Hoare triple

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

Definition

$$\{P\}C\{Q\}$$
 $P:$ Pre-condition
 $C:$ Command(Code)
 $Q:$ Post-condition

• The meaning of the triple is that, assuming C is executable and executed in a state satisfying P, when C is executed, the state will satisfy Q.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ りへぐ

$\{P\}C\!\{Q\}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

For example:

 $\{P\}C\!\{Q\}$

For example:

$${x = y}z = x{y = z}: true$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Example

Definition

 $\{P\}C\!\{Q\}$

For example:

$$\{x = y\}z = x\{y = z\}: true \\ \{x = 1, y = 1\}y = 0\{x = y\}: false$$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃ ∽のへで

Definition

 $\vdash \{ \operatorname{Q}[E/V] \} V := E\{ Q \}$

Definition

 $\vdash \{Q[E/V]\}V := E\{Q\}$

• Assignment is the most characteristic and basic feature of a program.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

Definition

 $\vdash \{Q[E/V]\}V := E\{Q\}$

• Assignment is the most characteristic and basic feature of a program.

A D F A 目 F A E F A E F A Q Q

■ ⊢ is the notation means that the proposition can be syntactically derived.

Definition

 $\vdash \{Q[E/V]\}V := E\{Q\}$

• Assignment is the most characteristic and basic feature of a program.

A D F A 目 F A E F A E F A Q Q

- ⊢ is the notation means that the proposition can be syntactically derived.
- \bullet := means assignment.

Definition

 $\vdash \{Q[E/V]\}V := E\{Q\}$

- Assignment is the most characteristic and basic feature of a program.
- ⊢ is the notation means that the proposition can be syntactically derived.
- \bullet := means assignment.
- Here V is a variable identifier, E is an identified expression, Q is any statement.

うして ふゆ く 山 マ ふ し マ う く し マ

Definition

 $\vdash \{Q[E/V]\}V := E\{Q\}$

- Assignment is the most characteristic and basic feature of a program.
- ⊢ is the notation means that the proposition can be syntactically derived.
- \blacksquare := means assignment.
- Here V is a variable identifier, E is an identified expression, Q is any statement.
- Q[E/V] means the result of replacing all occurrences of V in Q by E.

 $\vdash \{Q[E/V]\}V := E\{Q\}$

$$\vdash \{Q[E/V]\}V := E\{Q\}$$

Code

1

X:=Y+1

$$\vdash \{Q[E/V]\}V := E\{Q\}$$

Code

1

X:=Y+1

And the code above is equal to the triple below: $\vdash \{Y+1 = V\}X = Y+1\{X = V\}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃ ∽のへで

Definition

$\frac{\vdash \{P\}C_1\{Q\}, \vdash \{Q\}C_2\{R\}}{\vdash \{P\}C_1; C_2\{R\}}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Definition $\frac{\vdash \{P\}C_1\{Q\}, \vdash \{Q\}C_2\{R\}}{\vdash \{P\}C_1; C_2\{R\}}$

• The rule permits the deduction of new theorems from one proved theorem or axiom to new theorems.

A D F A 目 F A E F A E F A Q Q

Definition

$\frac{\vdash \{P\}C_1\{Q\}, \vdash \{Q\}C_2\{R\}}{\vdash \{P\}C_1; C_2\{R\}}$

- The rule permits the deduction of new theorems from one proved theorem or axiom to new theorems.
- Here $\frac{P_1}{P_2}$ means that, if the correctness of P_1 is ensured, P_2 can be proved correct.

うして ふゆ く 山 マ ふ し マ う く し マ

Definition

$\frac{\vdash \{P\}C_1\{Q\}, \vdash \{Q\}C_2\{R\}}{\vdash \{P\}C_1; C_2\{R\}}$

- The rule permits the deduction of new theorems from one proved theorem or axiom to new theorems.
- Here $\frac{P_1}{P_2}$ means that, if the correctness of P_1 is ensured, P_2 can be proved correct.
- After the execution of C_1 and C_2 , state P can produce Q, and then Q, as the **mid-condition**, can produce R sequentially.

$\frac{\vdash \{P\}C_1\{Q\}, \vdash \{Q\}C_2\{R\}}{\vdash \{P\}C_1; C_2\{R\}}$

Definition $\frac{\vdash \{P\}C_1\{Q\}, \vdash \{Q\}C_2\{R\}}{\vdash \{P\}C_1; C_2\{R\}}$

	Code	
1		R : =X
2		Y:=R

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

Definition $\frac{\vdash \{P\}C_1\{Q\}, \vdash \{Q\}C_2\{R\}}{\vdash \{P\}C_1; C_2\{R\}}$

	Code	
1		R:=X V·=B
-		

And the expected result Y = X can be verified sequentially with the triple below:

$$\frac{\vdash \{X = X\}R = X\{R = X\}, \vdash \{R = X\}Y = R\{Y = X\}}{\vdash \{X = X\}R = X; Y = R\{Y = X\}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで
◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃ ∽のへで

Definition

$\vdash \{P \land S\} C_1\{Q\}, \vdash \{P \land \neg S\} C_2\{Q\} \\ \vdash \{P\} IF \ S \ THEN \ C_1 \ ELSE \ C_2\{Q\}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Definition

$\vdash \{P \land S\} C_1\{Q\}, \vdash \{P \land \neg S\} C_2\{Q\} \\ \vdash \{P\} IF \ S \ THEN \ C_1 \ ELSE \ C_2\{Q\}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• As programmers, we often write IF-ELSE code.

Definition

$\frac{\vdash \{P \land S\}C_1\{Q\}, \vdash \{P \land \neg S\}C_2\{Q\}}{\vdash \{P\}IF \ S \ THEN \ C_1 \ ELSE \ C_2\{Q\}}$

うして ふゆ く 山 マ ふ し マ う く し マ

- As programmers, we often write IF-ELSE code.
- Here \land means "and", \lor means "or", \neg means not.

Definition

$\vdash \{P \land S\} C_1\{Q\}, \vdash \{P \land \neg S\} C_2\{Q\} \\ \vdash \{P\} IF \ S \ THEN \ C_1 \ ELSE \ C_2\{Q\}$

- As programmers, we often write IF-ELSE code.
- Here \land means "and", \lor means "or", \neg means not.
- In initial state P is true, and if S is true then execute C_1 , if S is false then executed C_2 . After execution, Q is true.

うして ふゆ く 山 マ ふ し マ う く し マ

Definition

$\vdash \{P \land S\} C_1\{Q\}, \vdash \{P \land \neg S\} C_2\{Q\} \\ \vdash \{P\} IF \ S \ THEN \ C_1 \ ELSE \ C_2\{Q\}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Definition

$$\vdash \{P \land S\} C_1\{Q\}, \vdash \{P \land \neg S\} C_2\{Q\} \\ \vdash \{P\} IF \ S \ THEN \ C_1 \ ELSE \ C_2\{Q\}$$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃ ∽のへで

Code

IF	Х	<=	Y	THEN
	Ζ	:=	X	
ELS	SΕ			
	Ζ	:=	Y	

Definition

$$\vdash \{P \land S\} C_1\{Q\}, \vdash \{P \land \neg S\} C_2\{Q\} \\ \vdash \{P\} IF \ S \ THEN \ C_1 \ ELSE \ C_2\{Q\}$$

Code

1	IF X <= Y THEN
2	Z := X
3	ELSE
4	Z := Y

The code above is to assign the greater value of X and Y to Z. And we can formalize the code and verify the correctness as the proposition below: $\vdash \{X \leq Y\}Z := X\{Z = min\{X, Y\}\}, \vdash \{\neg(X \leq Y)\}Z := Y\{Z = min\{X, Y\}\}\}$ $\vdash \{True\}IF X \leq Y THEN Z := X ELSE Z := Y\{Z = min\{X, Y\}\}$

The Iteration Rule

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃ ∽のへで

The Iteration Rule

Definition

$\frac{\vdash \{P \land S\}C\{P\}}{\vdash \{P\}WHILE \ S \ DO \ C\{P \land \neg S\}}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Definition

$\frac{\vdash \{P \land S\} C\{P\}}{\vdash \{P\} WHILE \ S \ DO \ C\{P \land \neg S\}}$

• We often write all kinds of loop code, and now I am going to introduce the Iteration Rule.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Definition

$\frac{\vdash \{P \land S\} C\{P\}}{\vdash \{P\} WHILE \ S \ DO \ C\{P \land \neg S\}}$

- We often write all kinds of loop code, and now I am going to introduce the Iteration Rule.
- *P* is the **invariant** of the whole While-Command and is always true while this part of code is being excuted.

うして ふゆ く 山 マ ふ し マ う く し マ

Definition

$\frac{\vdash \{P \land S\} C\{P\}}{\vdash \{P\} WHILE \ S \ DO \ C\{P \land \neg S\}}$

- We often write all kinds of loop code, and now I am going to introduce the Iteration Rule.
- *P* is the **invariant** of the whole While-Command and is always true while this part of code is being excuted.
- S is the condition to check whether the loop should be terminated or continue.

うして ふゆ く 山 マ ふ し マ う く し マ

Definition

$\frac{\vdash \{P \land S\}C\{P\}}{\vdash \{P\}WHILE \ S \ DO \ C\{P \land \neg S\}}$

Definition

$$\frac{\vdash \{P \land S\} C\{P\}}{\vdash \{P\} WHILE \ S \ DO \ C\{P \land \neg S\}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Code

Х	:=	1			
W	HILE	Х	<=	7	DO
	Х	:=	X	+	3

Definition

$$\frac{\vdash \{P \land S\} C\{P\}}{\vdash \{P\} WHILE \ S \ DO \ C\{P \land \neg S\}}$$

Code

Х	:=	1			
WH	IILE	Х	<=	7	Ι
	Х	:=	Х	+	3

DO

• $X \equiv 1 \pmod{3}$ is an **appropriate** invariant. $\vdash \{X \equiv 1 \pmod{3} \land X \leq 10 \land X \leq 7\} X := X + 3\{X \equiv 1 \pmod{3} \land X \leq 10\}$ $\vdash \{X \equiv 1 \pmod{3} \land X \leq 10\} WHILE X \leq 7 DO X := X + 3\{X \equiv 1 \pmod{3} \land X \leq 10 \land X > 7\}$

Definition

$$\frac{\vdash \{P \land S\} C\{P\}}{\vdash \{P\} WHILE \ S \ DO \ C\{P \land \neg S\}}$$

Code

Х	:=	1			
WH	ILE	Х	<=	7	DO
	X	:=	х	+	3

 X ≡ 1(mod 3) is an appropriate invariant. ⊢{X≡1(mod 3)∧X≤10∧X≤7}X:=X+3{X≡1(mod 3)∧X≤10} ⊢{X≡1(mod 3)∧X≤10}WHILE X≤7 DO X:=X+3{X≡1(mod 3)∧X≤10∧X>7}
 Obviously X ≡ 1(mod 3) ∧ X ≤ 10 ∧ X > 7 is equal to X = 10.

A Complete Example

I Introduction

- Why we need Hoare Logic?
- What is Hoare Logic?

2 Axioms and Rules

- Hoare triple
- The Assignment Axiom
- The Sequencing Rule
- The Conditional Rule

うして ふゆ く 山 マ ふ し マ う く し マ

- The Iteration Rule
- 3 A Complete Example

4 Conclusion

5 Reference

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Code

Code 1 X := A $\mathbf{2}$ Y := B 3 RES := 04 [Assertion: $\{True\}C_1\{I\}$] 5WHILE NOT (X = Y) DO $[L: (\neg(X = Y))]$ $\mathbf{6}$ IF X > Y THEN 7 X := X - 18 ELSE 9 Y := Y - 110[Assertion: $\{I\}C_2\{I'\}$] 11 RES := RES + 1 12[Assertion: $\{I'\}C_3\{I\}$] 13[Assertion: $\{I \land S\}$ WHILE S DO $C\{I \land \neg S\}$]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Code

1 1 1

	Code
1	X := A
2	Y := B
3	RES := 0
4	[Assertion: $\{True\}C_1\{I\}$]
5	WHILE NOT (X = Y) DO $[L:(\neg(X = Y))]$
6	IF $X > Y$ THEN
7	X := X - 1
8	ELSE
9	Y := Y - 1
0	[Assertion: $\{I\}C_2\{I'\}$]
1	RES := RES + 1
2	[Assertion: $\{I'\}C_3\{I\}$]
3	[Assertion: ${I \land S}$ WHILE S DO $C{I \land \neg S}$]

Our target is to prove that

 $\{True\}C\{RES = |A - B|\}$

Initialization

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ - 圖 - 釣�?

Initialization

Code

X := A Y := B	
RES := 0 [Assertion:	$\{True\}C_1\{I\}$]

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Initialization

Code

 $1 \\
 2 \\
 3 \\
 4$

X := A	
Y := B	
RES := 0	
[Assertion:	$\{True\}C_1\{I\}$]

Line 2 ,Line 3 and Line 4 are three assignments. And now proposition 1, namely P, is true.

 $P: X = A \land Y = B \land RES = 0$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃ ∽ ⊙ < ⊙

	Code	
$ 1 \\ 2 \\ 3 \\ 4 $	X Y R	$:= A$ $:= B$ ES := 0 Assertion: { $True$ } C_1 { I }]
		(· · · ·) · · · () ·

◆□▶ ◆□▶ ◆ E ▶ ◆ E ● のへで

	Code	
1		X := A
2		Y := B
3		RES := 0
4		[Assertion: $\{True\}C_1\{I\}$]

◆□▶ ◆□▶ ◆ E ▶ ◆ E ● のへで

$$P: X = A \land Y = B \land RES = 0$$

We need to find a proper invariant.

	Code	
1	X := .	A
2	Y := 1	В
3	RES :	= 0
4	[Asse:	$\texttt{rtion: } \{ True \} C_1 \{ I \}]$

$$P: X = A \land Y = B \land RES = 0$$

We need to find a proper invariant.

 $X = A \land Y = B \land RES = 0 \Rightarrow RES + |X - Y| = |A - B|$ I: RES + |X - Y| = |A - B| (invariant)

Code	
1 X := A	
2 Y := B	
3 RES := 0	
4 [Assertion	: $\{True\}C_1\{I\}$]

$$P: X = A \land Y = B \land RES = 0$$

We need to find a proper invariant.

 $X = A \land Y = B \land RES = 0 \Rightarrow RES + |X - Y| = |A - B|$ I: RES + |X - Y| = |A - B| (invariant)

うしゃ ふゆ きょう きょう うくの

• *I* is closely related to the final target.

	Code	
1	X := .	A
2	Y := 1	В
3	RES :	= 0
4	[Asse:	ertion: $\{True\}C_1\{I\}$]

$$P: X = A \land Y = B \land RES = 0$$

We need to find a proper invariant.

 $X = A \land Y = B \land RES = 0 \Rightarrow RES + |X - Y| = |A - B|$ I: RES + |X - Y| = |A - B| (invariant)

- *I* is closely related to the final target.
- *I* reveals useful properties of *RES*.

	Code	
L		X := A
2		Y := B
3		RES := 0
1		[Assertion: $\{True\}C_1\{I\}$]

$$P: X = A \land Y = B \land RES = 0$$

We need to find a proper invariant.

 $X = A \land Y = B \land RES = 0 \Rightarrow RES + |X - Y| = |A - B|$ I: RES + |X - Y| = |A - B| (invariant)

■ *I* is closely related to the final target.

■ *I* reveals useful properties of *RES*.

However, the invariant remains to be checked during the loop.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ うらぐ

・ロト ・母 ト ・ヨ ・ ・ ヨ ・ うへの

Code

```
WHILE NOT (X = Y) DO [L : (\neg (X = Y))]

IF X > Y THEN

X := X - 1

ELSE

Y := Y - 1

[Assertion: \{I\}C_2\{I'\}]

RES := RES + 1

[Assertion: \{I'\}C_3\{I\}]
```

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

1

 $\mathbf{2}$

3

4

5

6

7

8

Code

```
WHILE NOT (X = Y) DO [L : (\neg (X = Y))]

IF X > Y THEN

X := X - 1

ELSE

Y := Y - 1

[Assertion: \{I\}C_2\{I'\}]

RES := RES + 1

[Assertion: \{I'\}C_3\{I\}]
```

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Start from the loop condition L. $L: X \neq Y$

Code

```
WHILE NOT (X = Y) DO [L : (\neg (X = Y))]

IF X > Y THEN

X := X - 1

ELSE

Y := Y - 1

[Assertion: \{I\}C_2\{I'\}]

RES := RES + 1

[Assertion: \{I'\}C_3\{I\}]
```

Start from the loop condition L.

$$L: X \neq Y$$

うしゃ ふゆ きょう きょう うくの

Next is a conditional statement with the condition S and an assignment.

(ロ)、(型)、(E)、(E)、 E) のQで

4

C	Code
	IF $X > Y$ THEN
2	X := X - 1
3	ELSE
Ł	Y := Y - 1
5	[Assertion: $\{I\}C_2\{I'\}$]

(ロ)、(型)、(E)、(E)、 E) のQ(()

IF-ELSE

	, ,	
1	IF $X > Y$ THEN	
2	X := X - 1	
3	ELSE	
4	Y := Y - 1	
5	[Assertion: $\{I\}C_2\{I'\}$]	

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

The property of I will be temporarily changed after the conditional statement.

IF-ELSE

	Code
1	TE Y N V TUEN
2	$X \rightarrow X - 1$
3	ELSE
4	Y := Y - 1
5	[Assertion: $\{I\}C_2\{I'\}$]

The property of I will be temporarily changed after the conditional statement. We name the post-condition I'.

$$S: x > y$$

$$I' = RES + |X - Y| = |A - B| - 1$$
(Temporary Change)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

IF-ELSE

	Code
1	IF X > Y THEN
2	X := X - 1
3	ELSE
4	Y := Y - 1
5	[Assertion: $\{I\}C_2\{I'\}$]

The property of I will be temporarily changed after the conditional statement. We name the post-condition I'.

S: x > y

I' = RES + |X - Y| = |A - B| - 1 (Temporary Change) And the IF-ELSE code can be then transformed into the

proposition below.

$$\begin{array}{c} \vdash \{I \land S\}X := X - 1\{I'\}, \{I \land \neg S\}Y := Y - 1\{I'\} \\ \vdash \{I\}IF \ S \ THEN \ X := X - 1 \ ELSE \ Y := Y - 1\{I'\} \\ \hline \end{array}$$

・ロト ・四 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

Code

RES := RES + 1 [Assertion: $\{I'\}C_3\{I\}$]

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Code

 $\frac{1}{2}$

RES := RES + 1
[Assertion: $\{I'\}C_3\{I\}$]

Next is the assignment of *RES*, which changes I' back into I. $\vdash \{I'\}RES := RES + 1\{I\}$ (Line 9)

ション ふゆ さい シャリン しょうくしゃ

Code

 $\frac{1}{2}$

RES	:= RES	+ 1	
[Ass	sertion:	$\{I'\}C_3$	{ <i>I</i> }]

Next is the assignment of *RES*, which changes I' back into I. $\vdash \{I'\}RES := RES + 1\{I\}$ (Line 9)

And now, we can say that I is indeed a invariant that never changes after each loop.

Final Step

・ロト ・日・ ・ヨ・ ・ヨ・ うへぐ

Final Step

Code

```
  \begin{array}{c}
    1 \\
    2 \\
    3 \\
    4 \\
    5 \\
    6 \\
    7 \\
    8 \\
    9
  \end{array}
```

```
X := A, Y := B, RES := 0

[Assertion: {True}C_1{I}]

WHILE NOT (X = Y) DO [L: (\neg(X = Y))]

IF X > Y THEN

X := X - 1

ELSE

Y := Y - 1

RES := RES + 1

[Assertion: {I \land S} WHILE S DO C{I \land \neg S}]
```

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Final Step

Code

 X := A, Y := B, RES := 0 [Assertion: {True} $C_1{I}$] WHILE NOT (X = Y) DO [L: (\neg (X = Y))] IF X > Y THEN X := X - 1 ELSE Y := Y - 1 RES := RES + 1 [Assertion: { $I \land S$ } WHILE S DO C{ $I \land \neg S$ }]

$$\begin{array}{c} \vdash \{I \land L\} C\{I\} \\ \hline \vdash \{I\} WHILE \ L \ DO \ C\{I \land \neg L\} \\ \hline \vdash \{RES + |X - Y| = |A - B| \land X = Y\} Empty\{RES = |A - B|\} \end{array}$$

I Introduction

- Why we need Hoare Logic?
- What is Hoare Logic?

2 Axioms and Rules

- Hoare triple
- The Assignment Axiom
- The Sequencing Rule
- The Conditional Rule

うして ふゆ く は く は く む く し く

- The Iteration Rule
- 3 A Complete Example

4 Conclusion

5 Reference

<□ > < @ > < E > < E > E のQ @

• This article discusses the core concepts of Hoare Logic, and give a complete example of code verification with Hoare Logic.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- This article discusses the core concepts of Hoare Logic, and give a complete example of code verification with Hoare Logic.
- However, the formal material presented only represents a small proportion of Hoare Logic.

- This article discusses the core concepts of Hoare Logic, and give a complete example of code verification with Hoare Logic.
- However, the formal material presented only represents a small proportion of Hoare Logic.
- If you are interested in Hoare Logic, consider going deeper into the relevant papers.

うして ふゆ く は く は く む く し く

Reference

1 Introduction

- Why we need Hoare Logic?
- What is Hoare Logic?

2 Axioms and Rules

- Hoare triple
- The Assignment Axiom
- The Sequencing Rule
- The Conditional Rule

うして ふゆ く は く は く む く し く

- The Iteration Rule
- 3 A Complete Example

4 Conclusion

5 Reference

[1]C. A. R. Hoare 1983. An Axiomatic Basic for Computer Programming. Commun. ACM 26, 1 (1983), 53-56.

