The Automatic Generation of Loop Invariants using
SMT Solvers

Haoran Ni
Nanjing University
Nanjing, Jiangsu province, China

Abstract

Loop invariant is a key and fundamental concept in the field
of programming languages and formal verification. While
the majority of programmers are not familiar with it. In this
survey, we will introduce the concept of loop invariant and
how to generate loop invariants automatically using SMT
solvers.

ACM Reference Format:
Haoran Ni. 2023. The Automatic Generation of Loop Invariants us-
ing SMT Solvers. In Proceedings of ACM Conference (Conference’17).

ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/nnnnnnn.

nnnnnnn

1 Introduction

A loop invariant is a condition or property that holds true
before and after each iteration of a loop.

Loop invariants are of fundamental importance to the field
of programming languages. They are used in the design of
programming languages, compilers, and static analysis tools.
They are also used in the verification of programs, which is
a major area of research in programming languages.

Understanding loop invariants is also beneficial to pro-
grammers. Just as Dijkstra had suggested (he called it "con-
structive approach”, see [1]), it helps them write correct pro-
grams and reason about the behavior of their code.

However, the concept and idea of loop invariants are not
widespread beyond the field of programming languages and
formal verification. This survey aims to give a brief intro-
duction to loop invariants and generate loop invariants au-
tomatically using SMT solvers.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for compo-
nents of this work owned by others than ACM must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA

© 2023 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-X/YY/MM...$15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Prerequisites and Motivation
2.1 Loop Invariant

Formal definition of loop invariant is as follows:

{C AT} body {I}
{I} while (C) body {—C A I}

It is presented in Hoare Logic, and its meaning is that if the
condition C and the invariant I hold before the loop, and
if the body of the loop preserves the invariant, then the in-
variant will hold after the loop. The invariant I is called a
loop invariant if it holds before and after each iteration of
the loop.

Loop invariant is a major tool to reason about and for-
malize the behaviour of loops. Just as in semi-automatic pro-
gram verification tools such as Dafny [4], only by annotat-
ing the loop invariant can Dafny prove the correctness of
the program.

2.2 SMT Solver

SMT solvers are widely used in the field of programming
languages and formal verification. They are used to solve
the satisfiability of logical formulas.

We can regard SMT solvers as declarative programming
languages. We can write logical formulas in SMT solvers,
and then the SMT solvers will tell us whether the logical for-
mulas are satisfiable or not. We just need to focus on what
we want to do, and we don’t need to care about how to solve
the logical formulas.

2.3 Motivation of Automatic Generation of Loop
Invariants

When we debug a program, we tend to take a big-to-small
approach, i.e., we generally consider whether some large
part of this program is working as expected. However, we
find that many times the problem arises in the handling of a
very small detail. As a result, it is also of great significance
to garantee the correctness of some basic properties of a pro-
gram (for example, an array index is always in the range of
the array). They are simple, but they exist in almost every
part of the program. It is definitely a waste of time to ver-
ify them manually(that is, manually type in the pre-/post-
condition and the loop invariant for every loop) because of
the simplicity and the large quantity.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA

So, it naturally comes to our mind that it would be nice if
we can use machines to automatically generate those loop
invariants.

3 Automatic Generation of Loop
Invariants using SMT Solvers
3.1 Introduction

Based on SAT solver, SMT solver expand the ability of SAT
solver to handle first-order logic. SMT solver can handle the
satisfiability of logical formulas with quantifiers, which is
beyond the ability of SAT solver. It can also handle the satis-
fiability of logical formulas with some specific theories, such
as the theory of linear integer arithmetic, the theory of real
arithmetic, the theory of arrays, etc.

3.2 An Example
Let’s consider the following program:
int i = 0;
while(i < 10) {
i=1i+1;
3

assert(i == 10);

An obvious loop invariant is 0 < i < 10.

We want to automatically generate the loop invariant, so
now we denote it as Inv(i). then we can get the following
logical formula:

{Inv(i) Ni <10} i=i+1{Inv(i)}

{Inv(i)} while (i < 10) i=i+1 {=(i < 10) A Inov(i)}

This cannot be understanded by SMT solvers, because it
contains the while loop, which is not a boolean expression.

We need to encode the while loop into boolean expres-
sions:

Vi.i =0 => Ino(i)

Vi.lno(i) Ai <10 => Inv(i+1)
Vi.Inv(i) A not(i < 10) =>i=10

Then we type in these formula to z3, a famous SMT solver,
then get the following result:

sat
(model
(define-fun Inv ((x!0 Int)) Bool
(or (not (<=1 x!0))
(and (<=1 x!0)
(<= 2 x!0)
(<= 10 x10)
(not (<= 11 x!0)))
)

The simplified result is x < 10. Acually we can find that
it is a weaker version of the loop invariant we have found.

Haoran Ni

3.3 'The solving strategy of SMT solver

Although we can just regard SMT solver as a black box, it
is still necessary to know some basic knowledge about how
SMT solver works.

So far, most SMT solvers are using lazy approaches. We
can regard them as the integration of SAT solvers and one
or more theory solvers. They will first use SAT solvers to
check the satisfiability of the logical formulas without con-
sidering the theory. If the logical formulas are satisfiable,
then they will use the theory solvers to check whether the
logical formulas are satisfiable.

Although SAT problems are NP-complete, the SAT solvers
are pretty efficient. SAT solvers are using some heuristic
methods to accelerate the process, such as the conflict-driven
clause learning (CDCL) algorithm.

In the above example, the key uninterpreted function Inov
is solved by the uninterpreted function theory solver. The
essence of the solution method is to construct a series of
equivalence classes by means of a concurrent lookup set al-
gorithm, and from these equivalence classes the enumerated
form of the function is constructed.

For this example, the uninterpreted function Inv(x) is con-
structed as two enumerated equivalence classes, [—co, 10]
and [11, +oo].

3.4 Drawback and Improvement

It is often difficult for the SMT solver to tackle uninterpreted
functions.

Luckily, there are several ways to accelerate the process.
Affine inequality (a template of loop invariant with undeter-
mined coefficients), Guess and Check (heuristically guess-
ing loop invariants and check them), Farkas’ Lemma (elimi-
nate the universal quantifier), etc.

Typically, Guess and check is a simple but pretty effective
method.

For example, in the previous example, we can find some
special value 0, 1, 10and special relation i = 0,i < 10,i = 0.
Then we can generate some loop invariant candidates ac-
cording to some variation or combination of the special thing
above, and check them using SMT solvers.

Moreover, we can use some heuristic methods, such as
the one proposed by Gulwani et al. [3] or Carlo A. Furia and
Bertrand Meyer [2]. Most of their ideas are straightforward,
and we are able to get those ideas naturally as we practice
the invariant construction ourselves

4 Conclusion

In this survey, we have explaind basic information about
loop invariant, SMT solver. We have also introduced how
to use SMT solver to automatically generate loop invariants.
After that some methods are mentioned to accelerate the
process.

The Automatic Generation of Loop Invariants using SMT Solvers

References

[1] Edsger Wybe Dijkstra. 1976. A discipline of programming. Prentice-
Hall.

[2] Carlo A Furia and Bertrand Meyer. 2009. Loop invariants: analysis, clas-
sification and examples. In Proceedings of the 2009 ACM symposium on

Applied Computing. ACM, 1731-1738. https://doi.org/10.1145/1529282.
1529747

Conference’17, July 2017, Washington, DC, USA

[3] Sumit Gulwani, Ashish Tiwari, Ramarathnam Venkatesan, and Sri-

(4]

ram K Rajamani. 2008. Synthesis of loop-free programs. In Proceedings
of the 35th annual ACM SIGPLAN-SIGACT symposium on Principles of
programming languages. ACM, 62-73. https://doi.org/10.1145/1328438.
1328446

K Rustan M Leino. 2010. Dafny: An automatic program verifier
for functional correctness. In International Conference on Logic for
Programming Artificial Intelligence and Reasoning. Springer, 348-370.
https://doi.org/10.1007/978-3-642-17511-4_24

https://doi.org/10.1145/1529282.1529747
https://doi.org/10.1145/1529282.1529747
https://doi.org/10.1145/1328438.1328446
https://doi.org/10.1145/1328438.1328446
https://doi.org/10.1007/978-3-642-17511-4_24

	Abstract
	1 Introduction
	2 Prerequisites and Motivation
	2.1 Loop Invariant
	2.2 SMT Solver
	2.3 Motivation of Automatic Generation of Loop Invariants

	3 Automatic Generation of Loop Invariants using SMT Solvers
	3.1 Introduction
	3.2 An Example
	3.3 The solving strategy of SMT solver
	3.4 Drawback and Improvement

	4 Conclusion
	References

