
How to use Hoare Logic to verify program correctness
Huajun Lu

Nanjing University
Nanjing, Jiangsu, CHN

Abstract
Program correctness is of great importance when program-
ming. Hoare Logic is a powerful tool to verify program cor-
rectness. It can establish a transformation between program
code and logic formulas.

1 Introduction
Computer programming is an exact science, so when a pro-
grammer is programming, it is important to verify that the
code is correct. So it is desirable to use a valid logic to ver-
ify the program correctness. In fact, all the consequences of
excuting a program can be found out ”bymeans of purely de-
ductive reasoning.” [1], and Hoare Logic is such a powerful
dedutive logic system based on predicate logic. On its basis,
we can establish a transformation between code and logic
formulas, thus ensuring that our programs are validated. To
ensure the process of verification of program is valid, the
axioms and rules of inference must be elucidated clearly.
Therefore, I will next give the definitions of Hoare Triple,
the Assignment Axiom, the Conditional Rule, the Sequenc-
ing Rule, and the Iteration Rule.

2 Axioms and Rules
2.1 Hoare triple
Hoare introduced the followingnotation to specifywhat
a program does:

{𝑃}𝐶{𝑄}
In many cases, the validity of the results of a program will
depend on the initial conditions. So before proving the re-
sult is correct, we must introduce Hoare Triple to describe
the transformation between precondition to postcondition
after excuting a piece of code. It is the formalized representa-
tion of the verification of a program. In this triples,𝐶 means
a command, which is a code block. 𝑃 is the pre-condition,
and 𝑄 is the post-condition. The meaning of the triple is
that, assuming 𝐶 is executable and executed in a state satis-
fying 𝑃 , when 𝐶 is executed, the state will satisfy 𝑄 .
For example:

{𝑥 = 𝑦}𝑧 = 𝑥{𝑦 = 𝑧} : 𝑡𝑟𝑢𝑒
{𝑥 = 1, 𝑦 = 1}𝑦 = 0{𝑥 = 𝑦} : 𝑓 𝑎𝑙𝑠𝑒

2.2 The Assignment Axiom
Assignment is the most characteristic and basic feature of a
program, It distinguishes computer science from any other
branch of mathematics.

𝐷𝑒𝑓 𝑖𝑛𝑖𝑡𝑖𝑜𝑛 : ⊢ {𝑄 [𝐸/𝑉]}𝑉 := 𝐸{𝑄}

⊢ is the notation means that the proposition can be syntacti-
cally derived. := means assignment, and𝑄 [𝐸/𝑉] means the
result of replacing all occurrences of 𝑉 in 𝑄 by 𝐸.
Here 𝑉 is a variable identifier, 𝐸 is an identified expression,
𝑄 is any statement. The axiom means the final value of𝑉 is
the value of 𝐸 in the initial state after the assignment.
Example

1 X:=Y+1

And the code above is equal to the triple below:
⊢ {𝑌 + 1 = 𝑉 }𝑋 = 𝑌 + 1{𝑋 = 𝑉 }

2.3 The Sequencing Rule
Thededuction system requires a valid rule of inferencewhich
permits the deduction of new theoroms from one proved
theorem or axiom to new theorems. So as a result we need
to introduce the Sequencing Rule.

𝐷𝑒𝑓 𝑖𝑛𝑖𝑡𝑖𝑜𝑛 :
⊢ {𝑃}𝐶1{𝑄}, ⊢ {𝑄}𝐶2{𝑅}

⊢ {𝑃}𝐶1;𝐶2{𝑅}
Here 𝑃1

𝑃2
means that, if the correctness of 𝑃1 is ensured,

𝑃2 can be proved correct. And this triple means that, after
the execution of 𝐶1 and 𝐶2, state 𝑃 can produce 𝑄 and 𝑅
sequentially.
Example

1 R:=X
2 Y:=R

And the expected result 𝑌 = 𝑋 can be verified sequentially
with the triple below:

⊢ {𝑋 = 𝑋 }𝑅 = 𝑋 {𝑅 = 𝑋 }, ⊢ {𝑅 = 𝑋 }𝑌 = 𝑅{𝑌 = 𝑋 }
⊢ {𝑋 = 𝑋 }𝑅 = 𝑋 ;𝑌 = 𝑅{𝑌 = 𝑋 }

2.4 The Conditional Rule
In some cases, the argumentation process will branch out.
This means that we need to discuss the situation separately.
And then the Conditional Rule will have to be considered.

𝐷𝑒𝑓 𝑖𝑛𝑖𝑡𝑖𝑜𝑛 :
⊢ {𝑃 ∧ 𝑆}𝐶1{𝑄}, ⊢ {𝑃 ∧ ¬𝑆}𝐶2{𝑄}
⊢ {𝑃}𝐼𝐹 𝑆 𝑇𝐻𝐸𝑁 𝐶1 𝐸𝐿𝑆𝐸 𝐶2{𝑄}

Here ∧ means ”and”, ∨ means ”or”, ¬ means not. In initial
state 𝑃 is true, and if 𝑆 is true then execute 𝐶1, if S is false
then executed 𝐶2. After execution, 𝑄 is true.
Example

1 IF X <= Y THEN
2 Z := X
3 ELSE
4 Z := Y

The First Workshop on Programming Language Pearls, Dec 12–23, 2023, Huajun Lu

The code above is to assign the greater value of 𝑋 and 𝑌 to
𝑍 . And we can formalize the code and verify the correctness
as the proposition below:

⊢{𝑋 ≤𝑌 }𝑍 :=𝑋 {𝑍=𝑚𝑖𝑛{𝑋,𝑌 }},⊢{¬(𝑋 ≤𝑌) }𝑍 :=𝑌 {𝑍=𝑚𝑖𝑛{𝑋,𝑌 }}
⊢{𝑇𝑟𝑢𝑒 }𝐼𝐹 𝑋 ≤𝑌 𝑇𝐻𝐸𝑁 𝑍 :=𝑋 𝐸𝐿𝑆𝐸 𝑍 :=𝑌 {𝑍=𝑚𝑖𝑛{𝑋,𝑌 }}

2.5 The Iteration Rule
Since it is inevitable in programming that we want to make
the computer perform a large number of repetitive steps, the
cyclic execution is of great importance when coding. How
to ensure the correctness of a piece of cyclic code requires
the introduction of the Iteration Rule.

𝐷𝑒𝑓 𝑖𝑛𝑖𝑡𝑖𝑜𝑛 :
⊢ {𝑃 ∧ 𝑆}𝐶{𝑃}

⊢ {𝑃}𝑊𝐻𝐼𝐿𝐸 𝑆 𝐷𝑂 𝐶{𝑃 ∧ ¬𝑆}
It should be mentioned that 𝑃 is the invariant of the

wholeWhile-Command,whichmeans 𝑃 is always truewhile
this part of code is being excuted. And 𝑆 is the condition to
check whether the loop should be terminated or continue.
When executing this piece of code, the computer first tests
the condition 𝑆 . If 𝑆 is false, 𝐶 is omitted, and execution of
the cyclic program is complete. Otherwise,𝐶 is executed and
𝑆 is tested again. This action is repeated until 𝑆 is found to
be false. So when a While-Command terminates, then the
state 𝑃 ∧ 𝑆 must be false.
Example

1 X := 1
2 WHILE X <= 7 DO
3 X := X + 3

Wewant to prove that the value of𝑋 is 10 after the loop, but
how to find an appropriate invariant so that we can confirm
the result is exactly what we are expecting? It can be noted
that𝑋 ≡ 1(𝑚𝑜𝑑 3) is a useful invariant when doing verifica-
tion. So formally we can formalize the verification process
with the proposition below.

⊢{𝑋≡1(𝑚𝑜𝑑 3)∧𝑋 ≤10∧𝑋 ≤7}𝑋 :=𝑋+3{𝑋≡1(𝑚𝑜𝑑 3)∧𝑋 ≤10}
⊢{𝑋≡1(𝑚𝑜𝑑 3)∧𝑋 ≤10}𝑊𝐻𝐼𝐿𝐸 𝑋 ≤7 𝐷𝑂 𝑋 :=𝑋+3{𝑋≡1(𝑚𝑜𝑑 3)∧𝑋 ≤10∧𝑋>7}
And obviously it is easy to find proposition 𝑋 ≡ 1(𝑚𝑜𝑑 3) ∧
𝑋 ≤ 10 ∧ 𝑋 > 7 is equal to 𝑋 = 10.

3 A Complete Example
1 X := A
2 Y := B
3 RES := 0;
4 WHILE NOT (X = Y) DO
5 IF X > Y THEN
6 X := X - 1
7 ELSE
8 Y := Y - 1
9 RES := RES + 1

𝐴 and 𝐵 are constanst. Our target is to prove that 𝑅𝐸𝑆 =
|𝐴−𝐵 |. And now we can use Hoare Logic to transform code
into formalized propositions.

At the beginning, Line 2 ,Line 3 and Line 4 are three assign-
ments, so we use the Assignment Axiom to assign values 𝐴
and 𝐵 to variable identifiers 𝑋 and 𝑌 . And now proposition
1, namely 𝑃 , is true.

𝑃 : 𝑋 = 𝐴 ∧ 𝑌 = 𝐵 ∧ 𝑅𝐸𝑆 = 0
To achieve our final target, we need to find a proper invari-
ant. And here 𝐼 just meets our initial condition:

⊢ 𝑋 = 𝐴 ∧ 𝑌 = 𝐵 ∧ 𝑅𝐸𝑆 = 0
⊢ 𝑅𝐸𝑆 + |𝑋 − 𝑌 | = |𝐴 − 𝐵 |

𝐼 : 𝑅𝐸𝑆 + |𝑋 − 𝑌 | = |𝐴 − 𝐵 | (invariant)
Why 𝐼 is much better than other invariants like 𝑅𝐸𝑆 ≥ 0?
Because the former one is closely related to the final target
and the loop next, which reveals useful properties of 𝑅𝐸𝑆 .
However, the invariant remains to be checked during the
loop.
As we get the initial condition, we begin to transform the
loop code. Start from the loop condition 𝐿.

𝐿 : 𝑋 ≠ 𝑌
After the loop condition, the body of the loop code has two
statements. One is a conditional statement with the condi-
tion 𝑆 and the other is an assignment. First we transform the
conditional statement using the Conditional Rule. Here we
immediately realize that if 𝐼 is the pre-condition, the prop-
erty of 𝐼 will be temporarily changed after the conditional
statement. We name the post-condition 𝐼 ′.

𝑆 : 𝑥 > 𝑦
𝐼 ′ = 𝑅𝐸𝑆 + |𝑋 − 𝑌 | = |𝐴 − 𝐵 | − 1 (Temporary Change)

And the IF-ELSE code can be then transformed into the propo-
sition below.

⊢ {𝐼 ∧ 𝑆}𝑋 := 𝑋 − 1{𝐼 ′}, {𝐼 ∧ ¬𝑆}𝑌 := 𝑌 − 1{𝐼 ′}
⊢ {𝐼 }𝐼𝐹 𝑆 𝑇𝐻𝐸𝑁 𝑋 := 𝑋 − 1 𝐸𝐿𝑆𝐸 𝑌 := 𝑌 − 1{𝐼 ′}

Next is the assignment of 𝑅𝐸𝑆 , which changes 𝐼 ′ back into
𝐼 .

⊢ {𝐼 ′}𝑅𝐸𝑆 := 𝑅𝐸𝑆 + 1{𝐼 } (Line 9)
And now, we can say that 𝐼 is indeed a invariant that never
changes after each loop. Since the correctness of 𝐼 is ensured,
we can formalize the whole WHILE-DO code. Here𝐶 repre-
sents the body of the loop code.

⊢ {𝐼 ∧ 𝐿}𝐶{𝐼 }
⊢ {𝐼 }𝑊𝐻𝐼𝐿𝐸 𝐿 𝐷𝑂 𝐶{𝐼 ∧ ¬𝐿}

And it’s easy to prove 𝐼 ∧ ¬𝐿, namely 𝑅𝐸𝑆 + |𝑋 − 𝑌 | =
|𝐴 − 𝐵 | ∧ 𝑋 = 𝑌 , is equal to our target 𝑅𝐸𝑆 = |𝐴 − 𝐵 |.

4 Conclusion
This article discusses the core concepts of Hoare Logic, and
give a complete example of code verification with Hoare
Logic. However, the formal material presented only repre-
sents a small proportion of Hoare Logic. If you are interested
in Hoare Logic, consider going deeper into the relevant pa-
pers.

References
[1] C. A. R. Hoare. 1983. An Axiomatic Basic for Computer Programming.

Commun. ACM 26, 1 (1983), 53–56.

	Abstract
	1 Introduction
	2 Axioms and Rules
	2.1 Hoare triple
	2.2 The Assignment Axiom
	2.3 The Sequencing Rule
	2.4 The Conditional Rule
	2.5 The Iteration Rule

	3 A Complete Example
	4 Conclusion
	References

