
The Programming Languages of Vim and Emacs:
Advantages and Disadvantages

Long Ling

Abstract
Vim and Emacs are two legendary text editors that have
gained a cult following for their extensive customization ca-
pabilities. A significant factor contributing to their flexibility
and extensibility is the choice of programming languages for
configuring the editors. This paper explores the differences
between these two editors’ configuration languages, namely
Emacs Lisp (Elisp) andVimscript, as well as Lua, the language
used in modern versions of Neovim (nvim). It compares their
advantages and disadvantages in terms of configuring the
editors and discusses how these languages have shaped the
ecosystems surrounding Vim and Emacs.

ACM Reference Format:
Long Ling. 2018. The Programming Languages of Vim and Emacs:
Advantages and Disadvantages. In Proceedings of Make sure to en-
ter the correct conference title from your rights confirmation emai
(Conference acronym ’XX). ACM, New York, NY, USA, 2 pages.
https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
When it comes to configuring 𝐸𝑚𝑎𝑐𝑠 and 𝑉𝑖𝑚, three lan-
guages stand out: 𝑉𝑖𝑚𝑠𝑐𝑟𝑖𝑝𝑡 , 𝐸𝑙𝑖𝑠𝑝 , and 𝐿𝑢𝑎. Each language
has its own characteristics and considerations.
𝑉𝑖𝑚𝑠𝑐𝑟𝑖𝑝𝑡 is known for its lightweight nature, making it

easy for programmers to configure. However, its lightweight
nature also poses a challenge when it comes to comprehen-
sive configuration. While it allows for quick and straightfor-
ward customization, achieving a fully-fledged configuration
can be difficult.
On the other hand, 𝐸𝑙𝑖𝑠𝑝 supports extensive configura-

tion capabilities, resembling that of an operating system.
It provides a comprehensive set of tools for customization.
However, one drawback of 𝐸𝑙𝑖𝑠𝑝 is its age, which makes it
less approachable for modern programmers. Its syntax and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/XXXXXXX.XXXXXXX

concepts can sometimes be obscure and challenging to grasp,
requiring a significant learning curve.
𝐿𝑢𝑎, another language used for configuring 𝑉𝑖𝑚, offers a

balance between ease of learning and comprehensive config-
uration support. It provides a simpler syntax and is relatively
easy to pick up, making it accessible to a wide range of
programmers. Additionally, 𝐿𝑢𝑎 can handle more advanced
configurations when needed. However, one downside of 𝐿𝑢𝑎
is its tendency to be less stable and undergo frequent updates
and iterations.

2 key idea
2.1 Emacs Lisp (Elisp)
𝐸𝑚𝑎𝑐𝑠𝐿𝑖𝑠𝑝 , a dialect of 𝐿𝑖𝑠𝑝 , is the primary configuration
language for 𝐸𝑚𝑎𝑐𝑠 .You can find detailed information in
the following website:https://www.gnu.org/software/emacs/
manual/html_node/eintr/

2.1.1 Extensive Configuration Capabilities. 𝐸𝑙𝑖𝑠𝑝 , the
Emacs Lisp language, is specifically designed for configur-
ing and extending the Emacs text editor. It provides a wide
range of features and APIs that allow users to customize
almost every aspect of Emacs, making it highly versatile and
powerful for comprehensive configuration. Its capabilities go
beyond simple customization and enable users to create com-
plex workflows, define new commands, and extend Emacs
functionalities to suit their specific needs.

2.1.2 System-like Configuration. 𝐸𝑙𝑖𝑠𝑝’s configurabil-
ity resembles that of an operating system, where users can
define their own commands, keybindings, modes, and even
create custom packages. This system-like configuration capa-
bility gives Emacs users unparalleled control over their edit-
ing environment, making it a favored choice among power
users and developers who require extensive customization
options.

2.1.3 LearningCurve forModernProgrammers. 𝐸𝑙𝑖𝑠𝑝’s
age and historical context can make it challenging for mod-
ern programmers to learn. Its syntax, concepts, and pro-
gramming style may differ significantly from more modern
programming languages, making it less intuitive for new-
comers. The initial learning curve can be steep, requiring
programmers to familiarize themselves with Emacs-specific
conventions and functional programming concepts.

2.1.4 Obscurity and Complexity. 𝐸𝑙𝑖𝑠𝑝’s extensive ca-
pabilities and flexibility can sometimes lead to complex and
obscure code. Emacs, being a highly extensible editor, allows

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://www.gnu.org/software/emacs/manual/html_node/eintr/
https://www.gnu.org/software/emacs/manual/html_node/eintr/


Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Trovato and Tobin, et al.

users to modify its core behavior extensively. This flexibility,
combined with the historical accumulation of features and
customizations, can result in codebases that are difficult to
understand and maintain, especially for programmers not
well-versed in Elisp.

2.2 Vimscript
𝑉𝑖𝑚𝑠𝑐𝑟𝑖𝑝𝑡 , a scripting language specifically designed for
𝑉𝑖𝑚, is examined in this section.You can find the detailed
information for 𝑉𝑖𝑚𝑠𝑐𝑟𝑖𝑝𝑡 in the following website:https:
//learnvimscriptthehardway.stevelosh.com/

2.2.1 Simplicity andMinimalism. 𝑉𝑖𝑚𝑠𝑐𝑟𝑖𝑝𝑡 is designed
to be simple and minimalist, focusing on providing basic
functionality and customization options. Its lightweight na-
ture allows programmers to quickly grasp the language and
make simple configurations without much complexity.

2.2.2 Lack ofAdvancedData Structures. 𝑉𝑖𝑚𝑠𝑐𝑟𝑖𝑝𝑡 lacks
advanced data structures like arrays, dictionaries, or objects
that are commonly found in other programming languages.
This limitation makes it challenging to organize and manip-
ulate data in a more comprehensive and efficient manner,
hindering complex configurations that require sophisticated
data handling.

2.2.3 Limited Control Flow Constructs. 𝑉𝑖𝑚𝑠𝑐𝑟𝑖𝑝𝑡 has
a relatively basic set of control flow constructs, such as con-
ditionals and loops. While they are sufficient for simple con-
figurations, they may become less expressive and restrictive
when attempting to achieve more intricate and comprehen-
sive configurations.

2.2.4 Modularity and Scripting. 𝑉𝑖𝑚𝑠𝑐𝑟𝑖𝑝𝑡 encourages
modularity by allowing the creation of small, reusable scripts
called "vimrc" files. This modularity makes it easy for pro-
grammers to configure specific aspects of Vim to their liking.
However, combining multiple configurations into a cohe-
sive and comprehensive setup can be challenging due to
the lack of a standardized module system or dependency
management.

2.2.5 Lack of Standard Libraries. Unlike many program-
ming languages that come with extensive standard libraries,
𝑉𝑖𝑚𝑠𝑐𝑟𝑖𝑝𝑡 has a limited set of built-in functions and com-
mands. This lack of comprehensive standard libraries can
make it difficult to handle complex tasks, requiring program-
mers to either rely on external plugins or write custom func-
tions from scratch.

2.3 Lua in Neovim
𝐿𝑢𝑎, a configuring language in 𝑛𝑒𝑜𝑣𝑖𝑚.You can find detailed
information in the following website: https://www.lua.org/

2.3.1 Simplicity and Ease of Learning. 𝐿𝑢𝑎 is designed
to be a lightweight and easy-to-learn scripting language. It

has a clean and concise syntax, with a minimalistic set of fea-
tures and a small core API. Its simplicity makes it accessible
to programmers of various skill levels, including beginners,
who can quickly grasp the language and start configuring
applications.

2.3.2 Versatile Configuration Capabilities. 𝐿𝑢𝑎’s flexi-
bility allows it to be used for a wide range of configurations,
including in applications like text editors (such as Vim). It
provides mechanisms for defining custom behaviors, extend-
ing functionality, and configuring various aspects of the
application. 𝐿𝑢𝑎’s lightweight nature and straightforward
syntax make it well-suited for customization tasks, allowing
developers to tailor the configuration to their specific needs.

2.3.3 Instability and Rapid Updates. 𝐿𝑢𝑎 has a reputa-
tion for being a dynamic language that undergoes frequent
updates and iterations. The 𝐿𝑢𝑎 development team actively
introduces new features, enhancements, and bug fixes, which
can lead to changes in the language and its ecosystem. While
these updates improve the language’s capabilities and ad-
dress issues, they can also introduce compatibility concerns
and require developers to adapt their configurations when
migrating to newer versions.

2.3.4 Evolution of LuaVersions. 𝐿𝑢𝑎 has evolved through
different major versions, such as 𝐿𝑢𝑎5.1, 𝐿𝑢𝑎5.2, 𝐿𝑢𝑎5.3, and
𝐿𝑢𝑎5.4. Each version introduces new features and improve-
ments, but it also brings potential incompatibilities with pre-
vious versions. This evolution, while necessary for progress,
can make it challenging for developers to maintain and up-
date existing 𝐿𝑢𝑎 configurations, especially if they heavily
rely on specific features or libraries that may have changed.

2.3.5 Community and Ecosystem Dynamics. 𝐿𝑢𝑎 has
a vibrant community that actively contributes to its devel-
opment, libraries, and frameworks. However, this dynamic
nature can result in a diverse and sometimes fragmented
ecosystem. Different 𝐿𝑢𝑎 libraries may have different levels
of compatibility with various 𝐿𝑢𝑎 versions or specific config-
urations. This fragmentation can make it harder to ensure
stability and consistency when building and maintaining
comprehensive 𝐿𝑢𝑎 configurations

3 Conclusion
In summary, this paper explores the configuration languages
used in𝑉𝑖𝑚,𝐸𝑚𝑎𝑐𝑠 , and𝑁𝑒𝑜𝑣𝑖𝑚. It compares𝐸𝑚𝑎𝑐𝑠𝐿𝑖𝑠𝑝 (𝐸𝑙𝑖𝑠𝑝),
𝑉𝑖𝑚𝑠𝑐𝑟𝑖𝑝𝑡 , and 𝐿𝑢𝑎 in terms of their advantages and disad-
vantages for configuring the respective editors. The paper
also discusses the impact of these languages on the ecosys-
tems surrounding 𝑉𝑖𝑚 and 𝐸𝑚𝑎𝑐𝑠 .

https://learnvimscriptthehardway.stevelosh.com/
https://learnvimscriptthehardway.stevelosh.com/
https://www.lua.org/

	Abstract
	1 Introduction
	2 key idea
	2.1 Emacs Lisp (Elisp)
	2.2 Vimscript
	2.3 Lua in Neovim

	3 Conclusion

