
Building Better Concurrency with Kotlin Coroutines
Wenqing Ge

231502002@smail.nju.edu.cn

Abstract
The need for concurrent and synchronized operations gives
rise to many solutions, like threads, callback functions, gener-
ators, fibers, etc. However most of these traditional solutions
bear several problems that could lead to error-proneness,
memory leaks or over-complicated platitude. As a modern
language, Kotlin provides a framework for coroutine that is
able to solve many traditional problems.

CCS Concepts: • Software and its engineering→ Corou-
tines.

Keywords: Kotlin, Coroutine

ACM Reference Format:
Wenqing Ge. 2023. Building Better Concurrency with Kotlin Corou-
tines. In Proceedings of null (PLP Workshop ’23). ACM, New York,
NY, USA, 3 pages. https://doi.org/114514.1919810

1 Introduction
In real-world applications, concurrent and parallel opera-
tions are utilized to maximize efficiency or to reduce block-
age. Concepts like threads, callback functions, primitive
coroutine libraries (like generators or fibers) can be used
by a programmer to implement such requirements. However,
these inventions all do not meet a developer’s requirement
for a “good” solution: lightweight, intuitive and memory-
safe. Threads have the problem of being cost-heavy, callback
functions are not intuitive enough and primitive coroutine
implementations are prone to memory leak. Aimed to create
better concurrency, Kotlin includes Kotlin Coroutinewhich is
a revolutionary tool to implement concurrent operations. In
the following sections, we will talk about how “good” Kotlin
coroutine is compared to the traditional solution, namely in
these three factors: light-weight, intuitive, memory-safe, by
analysing the structure and feature of it.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
PLP Workshop ’23, December 23, 2023, Nanjing, Jiangsu
© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/114514.1919810

2 Light-weight
Threads (or even subprocesses) are the classic solution to
concurrent operations. However they are “cost-heavy” as
they require a lot of resources to boot up or to maintain. The
source of the problem lies in the fact that they are on system
levels. Traditional solutions to cost-heaviness require using
thread pools or other techniques which may result in extra
coding or efficiency-impeding platitude.
However, Kotlin coroutines are light-weight. Because in

Kotlin, coroutines are eventually compiled to Java Bytecode
as a normal function with only few extra seasonings. Ex-
ecuted as normal functions means that they require fewer
resources than threads. This increases the number of concur-
rent jobs that can be executed at the same time. Consider the
code below. If it were threads, we might receive aOutOfMem-
oryError at any moment. But as we are using light-weight
coroutines, we are totally fine.

1 import k o t l i n x . c o r o u t i n e s . ∗
2
3 fun main () = runB lock ing {
4 r e p e a t (5 0 _000) { // launch a lot of coroutines
5 l aunch {
6 de l ay (5 0 0 0 L)
7 p r i n t (".")
8 }
9 }
10 }

Listing 1. Coroutines are light-weight![1]

3 Intuitive
Another solution related to concurrency commonly used in
Javascript or related languages is by utilizing callback func-
tions. However, this breaks the sequential order of execution
that is intuitive to programmers and users alike. This has
many disadvantages. First of all, it is surely anti-intuitive
which might lead to error-proneness. Secondly, it is awkward
for developers to combine parallel and sequential operations.
Thirdly, in a complex scenario, too many stacked callbacks
may result in “Callback Hell” which leads to low readability
and maintainability.
But Kotlin coroutines are intuitive on the contrary. In

Kotlin coroutines, code is by default executed in the same
sequential order as in normal functions, even in separate
functions. The code is also considered to be in the same
scope instead of different functions in callbacks so that fewer
scoping problems of variables may happen.
Doing so has many benefits. First of all, this is easier for

new learners to get started as it does not require knowledge

https://doi.org/114514.1919810
https://doi.org/114514.1919810

PLP Workshop ’23, December 23, 2023, Nanjing, Jiangsu Wenqing Ge

of a completely novel design method. Secondly, this greatly
helps integrating both sequential and concurrent operations
as well as reflecting the programmer’s intuitive logic.
Have a look at the example below and try to predict the

output1:
1 // Sequentially executes doWorld
2 fun main () = runB lock ing {
3 doWorld ()
4 // doWorld () is created by coroutineScope which

will not finish until all children are
finished

5 p r i n t l n ("Done")
6 }
7
8 // Function will not end unless all children are

finished
9 suspend fun doWorld () = co r ou t i n e S cope {
10 // this: CoroutineScope
11 l aunch { //a child
12 de l ay (2 0 0 0 L)
13 p r i n t l n ("World␣2")
14 }
15 l aunch { // another child
16 de l ay (1 0 0 0 L)
17 p r i n t l n ("World␣1")
18 }
19 p r i n t l n ("Hello")
20 }

Listing 2. Basic Concurrency[1]

The program above will display the following text when
finished:

1 He l l o
2 World 1
3 World 2
4 Done

This is exactly what we have expected. Moreover, the pro-
gram clearly shows the flow of execution without requiring
much explanation. However, to write this code using call-
back functions we might need counters and pass callback
function as arguments like in the equivalent code below:

1 var coun t e r =0
2 function che ckCa l l b a ck (c a l l b a c k) {
3 coun t e r ++
4 i f (c oun t e r ==2) {
5 c a l l b a c k ()
6 }
7 }
8 function doWorld (c a l l b a c k) {
9 s e tT imeou t (() => {
10 c on so l e . l og ("World␣2")
11 che ckCa l l b a ck (c a l l b a c k)
12 } , 2 0 0 0) // simulating child1
13 s e tT imeou t (() = >{
14 c on so l e . l og ("World␣1")
15 che ckCa l l b a ck (c a l l b a c k)
16 } , 1 0 0 0) // simulating child2

1suspend is a keyword in Kotlin to indicate that a function is used as/in a
coroutine

17 c on so l e . l og ("Hello")
18 }
19
20 doWorld (() => {
21 c on so l e . l og ("Done")
22 })

Listing 3. Equivalent Code in Javascript Callbacks

As you can see not only does Javascript code require extra
functions, the logic of it is also harder to trace, which is not
considered “good” enough.

4 Memory-safe
Memory leaks or unnecessary extra resource consuming
can happen when an operation is cancelled (e.g. user has
closed the application or decide to undo the last move) but the
underlying threads or coroutines are not terminated properly.
However, terminating such coroutines in primitive libraries
(like in Python generators) can be more easily forgotten by
programmers which result in memory leaks.
Kotlin, on the other hand, implements modern and auto-

matic controls for such task which is called Structured Con-
currency that can prevent memory leaks. As shown in the
structure illustration Figure 1, In Kotlin, multiple coroutines
can form a tree structure in a parent-child style relationship.
CoroutineContext and CoroutineDispatcher will be inherited
in this way by default. A parent coroutine is not considered
as finished unless all children coroutines are finished. When
a parent coroutine is cancelled or timeout-ed, all children
coroutines are also automatically recursively cancelled or
timeout-ed. As this is a automatic process, developers do not
to put much efforts to prevent potential leaks.

Figure 1. A basic runtime structure of Kotlin coroutines

5 Conclusion
In conclusion, Kotlin coroutines provide a light-weight, memory-
safe, intuitive framework for developers, which should make
it a more favorable choice to developers using threads, call-
back functions or traditional coroutine implementations.

Building Better Concurrency with Kotlin Coroutines PLP Workshop ’23, December 23, 2023, Nanjing, Jiangsu

References
[1] Jetbrains. 2023. Coroutines basics. Retrieved Nov 20, 2023 from https:

//kotlinlang.org/docs/coroutines-basics.html

https://kotlinlang.org/docs/coroutines-basics.html
https://kotlinlang.org/docs/coroutines-basics.html

	Abstract
	1 Introduction
	2 Light-weight
	3 Intuitive
	4 Memory-safe
	5 Conclusion
	References

