
A Comparative Study of Pointers
Yifei Guan

Nanjing University
Nanjing, China

231220044@smail.nju.edu.cn

Abstract
Pointers, as an important programming concept, have dif-
ferent implementations and applications across various pro-
gramming languages. This paper aims to compare and ana-
lyze the usage of pointers in programming languages such
as C/C++, Go, Java and Python.
ACM Reference Format:
Yifei Guan. 2023. A Comparative Study of Pointers. In Proceedings
of (PLP Workshop ’23). ACM, New York, NY, USA, 2 pages. https:
//doi.org/404.404

1 Introduction
Pointers are a type of variable that stores a memory address
and can be used to access and manipulate data stored at that
address. In programming, pointers offer several advantages,
such as direct memory access, dynamic memory allocation,
and passing data between functions. However, due to the
flexibility and complexity of pointers, they can also pose
security issues, such as dangling pointers and memory leaks.
Different programming languages have different ways of
handling pointers and rules regarding their usage. In this
paper, we will delve into the differences and usage of point-
ers in various programming languages. We will explore the
characteristics, advantages, and limitations of pointers in
different languages. Through comparative analysis, we can
better understand how different programming languages
handle pointers and provide developers with a more compre-
hensive perspective and guidance to make informed choices
in practical applications. In conclusion, this paper aims to
explore the differences in pointers among different program-
ming languages and compare and analyze them. By studying
various languages, we can gain a better understanding of the
concept and usage of pointers and provide developers with
guidance and directions for consideration.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
PLP Workshop ’23, Dec 23, 2023, Nanjing,Jiangsu
© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/404.404

2 Features
In the following section, I will present examples illustrat-
ing the applications of pointers in different programming
languages. By analyzing these examples, we can examine
the unique features and distinctions of pointers across these
languages.

2.1 Pointers in C/C++
In C/C++, a pointer is a variable type that stores a memory
address. Through pointers, we can directly access and ma-
nipulate the data stored at that address. The declaration of
a pointer requires specifying the data type it points to, en-
suring that the pointer correctly dereferences and operates
on the data. Pointers can also be used to pass data between
functions. By passing a pointer as a parameter to a function,
we can achieve modification of the original data instead of
just passing a copy. This is highly efficient when dealing
with large amounts of data or when in-place modification
is required. However, the use of pointers requires caution
because incorrect pointer operations can lead to program
crashes or unpredictable results. Common pointer issues
include dangling pointers (pointing to invalid memory ad-
dresses) and memory leaks (failure to properly deallocate
allocated memory).

int *ptr; // Declare a pointer to an
integer variable

int num = 10;
int *ptr = # // Initialize the

pointer ptr with the address of num
*ptr = 20;// After modification , the

value of num is: 20
int *ptr = new int; // Dynamically

allocate memory space for an integer
variable

*ptr = 10; // Store a value in the
memory pointed to by the pointer

delete ptr; // Release the dynamically
allocated memory space

2.2 Pointers in Go
Unlike some other programming languages, pointers in Go
have similar usage to regular variables. We can use pointers
to access and modify the value of variables, and we can also
pass pointers as arguments to functions, and so on.

https://doi.org/404.404
https://doi.org/404.404
https://doi.org/404.404

PLP Workshop ’23, Dec 23, 2023, Nanjing,Jiangsu Yifei Guan

It’s important to note that in Go language, pointers cannot
be used for pointer arithmetic (i.e., adding or subtracting).
This limitation is in place to avoid illegal memory access and
overflow issues.

var num int = 10
var ptr *int = &num
*ptr = 20// Modify the value of the

variable pointed to by the pointer
fmt.Println(num) // Output: 20
func updateNum(ptr *int) {

// Modify the value of the
variable pointed to by the
pointer

*ptr = 20
}
var num int = 10
updateNum (&num)
fmt.Println(num) // Output: 20

2.3 References in Java
In Java, unlike languages such as C or C++, there is no direct
concept of pointers. Memory management in Java is handled
automatically by the garbage collector, so developers do
not need to manage memory manually. However, Java has
a similar mechanism to pointers, called references.In Java,
references are an essential concept used for working with
objects. Unlike primitive types (such as int, char, etc.), which
store the actual value, references store the address of an
object in memory. In Java, when you create an object using
the new keyword, memory is allocated on the heap to hold
the object’s data. The reference variable holds the memory
address where the object is stored, allowing you to access
and manipulate the object’s properties and methods.

class Person {
String name;
void sayHello () {

System.out.println("
Hello , my name is "
+ name);

}
}
public class Main {

public static void main(String []
args) {

Person person = new
Person (); //
Declare and create a
reference to a

Person object

person.name = "John";
// Set the value of
the object 's
attribute

person.sayHello (); //
Call the object 's
method

}
}

2.4 References in Python
Python, like Java, does not have a direct concept of pointers,
but it has references. When we create an object in Python, it
allocates a block of memory to store the object and returns a
reference to that object. Variables store references to objects,
not the objects themselves. Therefore, we can manipulate
objects through their references. Unlike in C/C++, references
in Python do not need to be explicitly declared or released.
When there are no references pointing to an object, the
garbage collector will reclaim the memory occupied by that
object. It is important to note that in Python, the type of
an object can be changed. For example, we can convert an
integer object into a string object. This means that the same
object can have multiple references and different references
can point to objects of different types. This dynamic feature
is one of the characteristics of the Python language.
def update_list(lst):
lst[0] = 100
my_list = [1, 2, 3]
update_list(my_list)
print(my_list) # output: [100, 2, 3]
x = [1, 2, 3]
y = x
y.append (4)
print(x) # output: [1, 2, 3, 4]
x = 10
print(type(x)) # output: <class 'int '>
x = 'Hello '
print(type(x)) # output: <class 'str '>

3 Conclusion
Overall, C/C++ provides the lowest-level memory access
and manipulation capabilities, but requires programmers to
manage memory manually. Go language maintains flexibility
while increasing code readability and maintainability by lim-
iting pointer operations and introducing receiver pointers.
Java and Python provide higher-level abstractions, automat-
ically manage memory, and offer greater security. Choosing
the appropriate programming language and using pointers
or references appropriately depends on specific needs and
application scenarios.

	Abstract
	1 Introduction
	2 Features
	2.1 Pointers in C/C++
	2.2 Pointers in Go
	2.3 References in Java
	2.4 References in Python

	3 Conclusion

