
Generational Garbage Collection in Python and Java
Yikun Su

Abstract
During the process of the program, GarbageCollection helps
to save memory space and improve efficiency of our com-
puters. In this article, we are going to give a brief introduc-
tion of an important algorithm in GC called Generational
Garbage Collection, which can help improve the speed of
memory allocation and save time.
ACM Reference Format:
Yikun Su. 2023. Generational Garbage Collection in Python and
Java. In Proceedings of ACM Conference (Conference’17).ACM, New
York, NY, USA, 2 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
Garbage Collection, also called GC, plays an significant role
in savingmemory space and improving computers’ efficiency.
During the process of the program, it is common that the
program produces many objects(like variables) which still
occupy memory space after finishing their “work”. If we
do not clear(or release) these “garbage”, it is easy to result
in a serious problem that the memory space runs out be-
cause of too much garbage, which leads to system break-
down. In order to solve such problems and improve comput-
ers’ efficiency, designers have designed a special algorithm
called “Garbage Collection”, also called GC, which can re-
lease garbage and recycle memory space automatically. It
is run by “Garbage Collectors” and supported by GC Algo-
rithms.

In Java and Python especially, we also use GC to collect
garbage in an efficient way. No matter how different their
exact algorithms are from each other, they do both apply
one of the most important GC algorithms, the Generational
Garbage Collection, to be their main idea when running GC.
Generational Garbage Collection, in which we divide mem-
ory space into several parts and process them in different
ways, is used to improve the efficiency of objects’ memory
allocation and garbage collection. But before we talk about
it, let’s look back at how objects are stored in memory space.
For most objects, they have a short lifetime and only a few

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for compo-
nents of this work owned by others than ACM must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2023 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM…$15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

have a long lifetime. This should be carefully noticed since
garbage collection would result in ”stop the world”(STW)
stage while running, which means that the program would
stop processing. Put it simply, if we just use the algorithms
without certain conditions, the ”STW” would be really time-
consuming and leads to low efficiency.
In an effort to solve such problem and improve the speed

of memory allocation, Java and Python, as we have talked
about above, adopt the thought of Generational Garbage
Collection.The following will look into why and how they
use such thought more deeply.

2 GGC Specifically for Python and Java
2.1 For Python
In Python [1], Generational Garbage Collection is used to
solve the problem of circular reference which may happen
in Reference Counting Algorithm. In Reference Counting
Algorithm, each object corresponds to a counter. If an ob-
ject is created or referred to, we have the counter increment;
else if the object is released from the reference, we have the
counter decrement. When the counter is equal to 0, the re-
lated object is viewed as garbage and released.
As Reference Counting Algorithm features easy, high ef-

ficiency and low-latency operations, it is adopted to do the
major GC work regardless of the problem of circular refer-
ence. Meanwhile, other algorithms have some complicated
problems. For example, Tracing GC can avoid producing cir-
cular reference, but it is used mainly in dealing with big
data and would cause the whole program to stop, which
is bothmemory-consuming and time-consuming.Therefore,
Python choose a combination of Reference Counting Algo-
rithm and Circular GC.The latter method mainly deals with
the problem of circular reference, using the thought of Gen-
erational Garbage Collection.
While using Generational Garbage Collection in Python,

we devidememory into 3 parts, which are respectively called
the younger generation, the middle generation and the old
generation. The frequency of GC in the three generations
would decrease as the life of objects become longer.

The newly created objects will be stored in the young
generation and their generation will add 1 after finding and
clearing the inactive (not cited) objects. The older the object
is, the longer their time to live is, namely bigger their thresh-
old is. That is to say, we will perform GC process while the
number of objects reaches the threshold. Then the objects
survived will be transported to the middle generation, then
the old generation. Therefore, the objects in the old genera-
tion are the oldest and maybe live in the whole process of
the system.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Yikun Su

2.2 For Java
As for Java [2], there still exists the problem of circular refer-
ence. This time, Java choose not to use Reference Counting
Algorithm but simply do the Generational Garbage Collec-
tion. Many garbage collectors in Java adopt the thought of
Generational Garbage Collection, including G1, CMS and
Serial GC. The following mainly talks about how Genera-
tional Garbage Collection works.

In this process, the memory is divided into 2 parts, which
are respectively called the young generation and the old gen-
eration. The young generation occupy 1

3 of the heap mem-
ory and the old generation 2

3 of it. The newly created objects
would be stored in the young generation, and the ones liv-
ing after GC process for many times will be stored in the old
generation. The transportation from the young generation
to the old generation is performed if the objects are too old
or have occupied too many space of memory.

3 Other differences on GC
What we talked about above is really different from Python
and Java. Now let’s take a brief look at other differences on
GC in the two programming language.

3.1 On the method
Python choosemainly Reference Counting Algorithmwhile
Java choose Generational Garbage Collection directly.

3.2 On the solutions of circular reference
Python choose Generational Garbage Collection while Java
simply get rid of Reference Counting Algorithm.

3.3 On the specific Generational Garbage Collection
Python divides memory space into 3 parts, adopting a sim-
ple mechanism but might have trouble with large data sets.
Java divides memory space into 2 parts, doing well in pro-
gramswhich requires high-performance but needsmore com-
plicated algorithms like Tracing GC, whose problems are
difficult to solve.

4 Conclusion
For the growing concern about memory safety and more
efficient programs, GC with Generational Garbage Collec-
tion will play a more important role in programming lan-
guages, and more advanced garbage collectors and GC algo-
rithms will be developed, including Parallel and concurrent
garbage collection mechanism to be applied in Python and
G1, CMS, and ZGC [3]frequently used in Java.

References
[1] GUO Fen,LIU Ming. Principle of Python garbage collector and

its application[J]. INFORMATION TECHNOLOGY,2009(7):93-97.
DOI:10.3969/j.issn.1009-2552.2009.07.026.

[2] ZENG Tian hui,YU Shi cai,DONG Rong hui. Performance tuning of
Java garbage collection mechanism[J]. COMPUTER ENGINEERING

AND DESIGN,2006,27(17):3242-3244,3247. DOI:10.3969/j.issn.1000-
7024.2006.17.042.

[3] HETING Li. Recoverable Generational Garbage Collector for
Java in NVM[D].Shanghai Jiao Tong University School of Soft-
ware, School of Electronic Information and Electrical Engineer-
ing,2020.DOI:10.27307/d.cnki.gsjtu.2019.002771.

	Abstract
	1 Introduction
	2 GGC Specifically for Python and Java
	2.1 For Python
	2.2 For Java

	3 Other differences on GC
	3.1 On the method
	3.2 On the solutions of circular reference
	3.3 On the specific Generational Garbage Collection

	4 Conclusion
	References

