
The Evolution of C++: A Comparative Study with C
and its Futuristic Development

Yinhao Fang
231502010@smail.nju.edu.cn

Nanjing University
Nanjing, Jiangsu, People’s Republic of China

Abstract
After a comprehensive analysis of the origin and develop-
ment of C++, it is indisputable that its potential cannot be
ignored. This paper explores the historical progression of
C++, its core differences from C, and key enhancements in-
troduced in the updates C++98 and C++11. Furthermore,
the philosophical duality of Object-Oriented Programming
(OOP) and Procedural Programming paradigms are con-
trasted, focusing particularly on C++. Finally, the future
development trends of C++ are evaluated amidst the increas-
ing popularity of C and Java.

Keywords: C++, C++98, C++11, OOP
ACM Reference Format:
Yinhao Fang. 2023. The Evolution of C++: A Comparative Study
with C and its Futuristic Development. In Proceedings of ACM
Conference (Conference’17). ACM, New York, NY, USA, 2 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
C++ and C, although branches of a similar lineage, have di-
verged profoundly in their stylistic and syntactical elements.
The evolution of C++ includes significant shifts, primarily
driven by the transition from procedural to OOP.

This study evaluates the semantic differences of code writ-
ten in C++ as compared with C and sheds light on the tran-
sition and advancements in programming paradigms. It also
aims to explore the trend of C++’s future development.

2 Distinctions between C and C++
Although C++ can be seen as a superset of C, which even
abandon some tendency to keep compatible with C, the en-
capsulation of data and functions into objects in C++ sets

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

it apart from C significantly, elucidating the nuances be-
tween the procedural and object-oriented extrapolation of
real-world problems.

After its formal separation from C, C++ proved to be an ex-
tensible, powerful, and flexible language with significant em-
phasis on data abstraction, encapsulation, and inheritance.
All I mention below is main differences beginners feel

most frequently:
First, class, which is a burden for beginners. The encapsu-

lation of the class makes the beginner tired of the program,
feel uncomfortable and troublesome.

Second, references. references in C++ is best to try not to
use it, unless absolutely necessary. References are even more
confusing for beginners, not knowing which is a reference
and which is a variable.

Third, function overload, beginners to learn the function
overload seems to be no harm, but this will make the be-
ginners subconscious on the importance of the C language
variable type to dilute, to remember that the C language is
the most sensitive to the variable type, the importance of the
variable type in the C language is self-evident.

3 Innovations from C++98 to C++11
1. Initialize the form

(1) C++98 supports: assignment symbol initialization, paren-
thesis initialization, implicit initialization of custom type
entities

(2) New in C++11: Brace initialization
I. When initialized with curly braces, the assignment sym-

bol is optional.
ii, when using curly braces for initialization, some unin-

tended implicit conversions can be disallowed (for example,
disallowing truncation from floating-point numbers to inte-
gers).

2. Constant
(1) C++98 support: using const to modify the type of an

entity is the programmer’s promise to never write to the
entity.

(2) New in C++11: The use of constexpr to modify the type
of the entity is the programmer’s suggestion to "calculate the
value of the entity at compile time", which helps the compiler
to take some optimization strategies for "reading the value
of the entity in the process."

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Yinhao Fang

I. Expressions evaluated at the compilation stage are collec-
tively referred to as constant expressions. Most commonly
used: length when declaring arrays, case branches, some
template arguments, initializing constexpr entities.
ii, constexpr can modify the return type of a function.

However, the function call expression can only be treated as
a constant expression if the function is called with constant
arguments. If called with variable arguments, the function
call expression cannot be treated as a constant expression.

3. Null pointer
C++98 supports: 0, NULL
(2) New in C++11: nullptr.
i. All pointer types share the same nullptr.
Unlike 0 or NULL, nullptr cannot be implicitly converted

to integer type.
etc.

4 Understanding ’Object-Oriented
Programming’

Object-Oriented Programming (OOP) is a programming para-
digm that revolves around the concept of "objects," which can
encapsulate data and behavior. C++, being an extension of
the C programming language, introduces powerful features
for object-oriented programming.

Class and Object: At the core of C++ OOP is the concept
of a "class." A class is a blueprint for creating objects, defin-
ing their properties (data members) and behaviors (member
functions/methods). An "object" is an instance of a class.

1 / / Example of a c l a s s def in i t ion
2 c l a s s Car {
3 pr ivate :
4 s t r ing brand ;
5 in t year ;
6
7 public :
8 void s e tB rand (s t r ing b) {
9 brand = b ;
10 }
11
12 void s e t Y e a r (in t y) {
13 year = y ;
14 }
15 } ;

Encapsulation:C++ supports encapsulation, whichmeans
bundling the data (attributes) and methods (functions) that
operate on the data within a single unit, i.e., the class. Access
specifiers (public, private, protected) control the visibility of
members.

1 c l a s s C i r c l e {
2 pr ivate :
3 double r a d i u s ;
4
5 public :
6 void s e t R a d i u s (double r) {
7 i f (r > 0) {

8 r a d i u s = r ;
9 }
10 }
11
12 double c a l c u l a t eA r e a () {
13 return 3 . 1 4 ∗ r a d i u s ∗ r a d i u s ;
14 }
15 } ;

Inheritance:Inheritance allows a class to inherit the prop-
erties and behaviors of another class. This promotes code
reusability and establishes an "is-a" relationship between
classes.

1 / / Base c l a s s
2 c l a s s Animal {
3 public :
4 void e a t () {
5 cou t << " Animal i s e a t i n g . " << end l ;
6 }
7 } ;
8
9 / / Derived c l a s s
10 c l a s s Dog : public Animal {
11 public :
12 void bark () {
13 cou t << "Dog i s ba rk ing . " << end l ;
14 }
15 } ;

In summary, C++’s Object-Oriented Programming pro-
vides a robust framework for creating modular, reusable,
and maintainable code through the use of classes, encapsu-
lation, inheritance, polymorphism, abstraction, constructors,
and templates. These features collectively contribute to the
flexibility, scalability, and efficiency of C++ programs.

5 Future Trends for C++
Note that C++ passing by reference has no special identifier
for function calls, which is indeed a language design error.
The fundamental reason is that the address operator was
reused when the reference syntax was first developed. This
flaw is one of the early design flaws of C++, and C++ ’s
insistence on not adding keywords is actually one of the
reasons why it has become so complex, and another reason is
to try to be compatible with C.You can see that any language
has historical baggage.
C++’s future in the face of growing popularity of C and

Java is a point of critical enquiry given the paradigmatic
differences these languages propagate and the challenges
they independently address. However, the robustness and
extensibility of C++ cannot be understated, making its dis-
appearance highly improbable but rather evolution into a
more sophisticated toolset.

	Abstract
	1 Introduction
	2 Distinctions between C and C++
	3 Innovations from C++98 to C++11
	4 Understanding 'Object-Oriented Programming'
	5 Future Trends for C++

