
Ending merge sort halfway can improve its efficiency
HuangZhiDun

231870201@smail.nju.edu.cn

Abstract
Merge sort is one of the most commonly used and most
efficient sorting algorithms. Usually we compile it using
recursive calls until the array to be sorted has only one
element. However, in some cases, if we end the recursion
halfway and use insertion sort instead, we may get the result
faster.

Keywords: Merge Sort, Insertion Sort, Optimization
ACM Reference Format:
HuangZhiDun. 2023. Ending merge sort halfway can improve its
efficiency. In Proceedings of ACM Conference (Conference’17). ACM,
NewYork, NY, USA, 2 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
When handling large-scale data, it is quite common to use
recursion to break down a big problem into multiple smaller
problems, thus reducing the size of the data to be dealt with
at one time. Merge sort is one such example, where the array
to be sorted is continuously divided into two parts until each
sub array has the size one, and then they are merged with
each other. This kind of approach, known as the "Divide
and Conquer"[1] method, has significant advantages when
dealing with large scale data. However, it is not necessary to
divide the array when the data size is sufficiently small. And
it would be faster to use direct methods like insertion sort.
This article will explore, under certain hardware conditions,
when the speed of insertion sort becomes faster than merge
sort for a given data size after being divided.

2 Key Ideas
Let’s look at an example here, where themerge sort algorithm[2]
and the insertion sort algorithm[3] are asked to deal with
an array that is suffciently small(has the length of 5 in this
case). We’ll implement these two algorithms in python, and
let’s see which algorithm takes less steps to sort the array out.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

de f i n s e r t i o n _ s o r t (a r r) :
f o r i i n range (1 , l e n (a r r)) :

key = a r r [i]
j = i − 1
whi l e j >= 0 and a r r [j] > key :

a r r [j + 1] = a r r [j]
j −= 1

a r r [j + 1] = key
r e t u r n a r r

According to the interpreter,it takes 56 steps for the inser-
tion sort to sort out the array in the worst case.

d e f merge_sor t (a r r) :
i f l e n (a r r) <= 1 :

r e t u r n a r r
mid = l en (a r r) / / 2
l e f t _ h a l f = a r r [: mid]
r i g h t _ h a l f = a r r [mid :]
l e f t _ h a l f = merge_sor t (l e f t _ h a l f)
r i g h t _ h a l f = merge_sor t (r i g h t _ h a l f)
r e t u r n merge (l e f t _ h a l f , r i g h t _ h a l f)

d e f merge (l e f t , r i g h t) :
merged = []
i = j = 0
whi l e i < l en (l e f t) and j < l en (r i g h t) :

i f l e f t [i] < r i g h t [j] :
merged . append (l e f t [i])
i += 1

e l s e :
merged . append (r i g h t [j])
j += 1

whi l e i < l en (l e f t) :
merged . append (l e f t [i])
i += 1

whi l e j < l en (r i g h t) :
merged . append (r i g h t [j])
j += 1

r e t u r n merged

According to the interpreter,it takes 120 steps for the
merge sort to sort out the array in the worst case.

Here’s a template for how to combine merge sort with
insertion sort properly.

d e f s o r t (a r r) :

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA HuangZhiDun

i f l e n (a r r) <= CONSTANT :
r e t u r n i n s e r t i o n _ s o r t (a r r)

e l s e :
r e t u r n merge_sor t (a r r)

3 Technical Meat
So far, we have only been measuring the efficiency of algo-
rithms based on the vague concept of "fast" or "slow". In order
to compare the efficiency of algorithms more accurately, we
quantify the time required by algorithms using the concept
of complexity.
First, we introduce the big o notation 𝑂 . Here’s it definition.
Let 𝐹 and 𝐺 be functions from the set of integers or the
set of real numbers to the set of real numbers. We say that
𝐹 (𝑥) is 𝑂 (𝐺 (𝑥)) if there are constants 𝐶 and 𝑘 such that
|𝐹 (𝑥) | ≤ |𝑘𝐺 (𝑥) | whenever 𝑥 > 𝑘 .
As you can see, the big o notation 𝑂 is only useful when
dealing with sufficiently large n for it only cares about situa-
tions when 𝑥 > 𝑘 .[4]

Initially, let’s calculate the complexity of merge sort when
it meets an array with the length n which is totally re-
versed.(Worst Case)

Assume it’ll take 𝑓 (𝑛) steps for an array with the length
of n to be completely sorted by merge sort.
For the first step, we have

𝑓 (𝑛) = 2𝑓 (𝑛/2) + 𝑛

Taking it a step further in recursion.

𝑓 (𝑛/2) = 2𝑓 (𝑛/4) + 𝑛/2

And as this goes on, eventually we’ll get

𝑓 (𝑛) = 𝑛𝑓 (1) + 𝑛 log2 𝑛

And as we all know, arrays with only one element don’t
need to be sorted, so 𝑓 (1) = 1

Finally, we get 𝑓 (𝑛) = 𝑂 (𝑛 log2 𝑛)

Then let’s look at insertion sort.(Also the worst case, also
an array with the the length n.
In this case, each element in the array needs to be com-

pared for n - 1 times. So 𝑓 (𝑛) = 𝑛(𝑛 − 1)/4, which is 𝑂 (𝑛2).
Now we reach the conclusion that when dealing with large
scale data, merge sort comes much faster.

Then ,let’s focus on how many times each expression are
called when dealing with these two algorithms.
We should analyze under the same hardware conditions,

so let’s assume all assignment statements take time t1, all

comparison statements take time t2, all return statements
take time t3, and all function creation statements take time
t4.

The for expression gets called𝑛 times. And the assignment
expression to follow gets called (𝑛 − 1) times each, which is
2(𝑛−1) times in total.The while expression, cause it contains
two comparing statement, takes (𝑛 − 1) ∗ (𝑛 − 2) times. The
last assigning statement gets called (𝑛 − 1) times. To sum up,
it takes(𝑛2 − 2𝑛 + 2) ∗ 𝑡1 + (𝑛2 + 𝑛 − 2) ∗ 𝑡2.

As for the merge sort, because of the existence of loga-
rithm, we cannot accurately list out how many times each
expressions are called, we can only induct the final answer.

At each level of recursion, the if len(arr) <= 1 comparison
is performed once. This occurs for a total of log2 𝑛 levels.
The assignment operations during the merging process

occur a total of n times.
The return arr statement is executed once for each recur-

sive call in the base case, which happens a total of n times.
The functions included also get called n times in total.
So, we get the total time consumed to be 𝑛 ∗ 𝑡1 + log2 𝑛 ∗

𝑡2 + 𝑛 ∗ 𝑡3 + 𝑛 ∗ 𝑡4.

For different computers and compilers, 𝑡1, 𝑡2, 𝑡3, 𝑡4 vary.
When (𝑛2 − 2𝑛 + 2) ∗ 𝑡1 + (𝑛2 + 𝑛 − 2) ∗ 𝑡2 is smaller than
𝑛 ∗ 𝑡1 + log2 𝑛𝑡2 + 𝑛 ∗ 𝑡3 + 𝑛 ∗ 𝑡4, we can use insertion sort
instead of merge sort for higher efficiency.

4 Reference
References
[1] Bentley, J. L. (1980). Multidimensional divide-and-conquer. Communi-

cations of the ACM, 23(4), 214-229..
[2] Cole, R. (1988). Parallel merge sort. SIAM Journal on Computing, 17(4),

770-785.
[3] Sort, I. (2006). Insertion Sort. Sort, 9(4), 2..
[4] Danziger, P. (2010). Big o notation. Source internet: http://www. scs.

ryerson. ca/mth110/Handouts/PD/bigO. pdf, Retrieve: April, 1(1), 6.

	Abstract
	1 Introduction
	2 Key Ideas
	3 Technical Meat
	4 Reference
	References

