Why Do We Need the Object-oriented Programming

Zhihui Yin
3359839025@qq.com

Abstract

As the amount of code continues to expand, programmers
encounter more and more problems in the process of process-
oriented programming, and a new programming method is
needed - object-oriented programming. Object-oriented pro-
gramming is to compose a set of data structures and methods
to process them, classify objects with the same behavior into
classes, hide internal details through encapsulation, gener-
alize classes through inheritance, and implement dynamic
assignment based on object types through polymorphism. It
has the advantages of rationally arranging the accessibility
of data and reducing the coupling between different parts
of the program, thereby improving the efficiency of code
augmentation, code modification, and code reuse.

Keywords: Data, Methods, Objects, Classes, Encapsulation,
Inheritance, Polymorphism

ACM Reference Format:

Zhihui Yin. 2023. Why Do We Need the Object-oriented Program-
ming. In Proceedings of ACM Conference (Conference’17). ACM, New
York, NY, USA, 2 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction

Before the advent of object-oriented programming, most
programmers used process-oriented programming, or struc-
tured programming. But structured programming can be
difficult to understand and maintain as it scales up; not con-
ducive to modification and expansion; Not conducive to the
reuse of code. As the scale of software continues to expand, it
is becoming more and more difficult for structured program-
ming to adapt to the needs of software development.In order
to solve the above problems, OOP has the following advan-
tages: object-oriented programming tightly connects data
and algorithms that manipulate data through abstraction
and encapsulation. In this way, the accessibility of data can
be reasonably arranged, and the coupling between different
parts of the program can be reduced, thereby improving the
efficiency of code augmentation, code modification, and code

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA

© 2023 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. .. $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

reuse. OOP uses "inheritance” to easily extend new functions
and features.

In the second section, I'll show you the disadvantages
of structured programming by describing a piece of game
code in C. In the third section, you can see how C++ OOP
overcomes these shortcomings.

2 An instance of a game program fragment

In this section, I'm going to show you the disadvantages of
structured programming in C for game development. Let’s
take the game "Might and Magic" as an example.

There are all kinds of monsters in the game "Might and
Magic", such as knights, angels, and many more. Each mon-
ster has two attributes: vitality and attack power. Monsters
are able to attack each other, and the attacked person will be
injured and fight back. Monsters have corresponding actions
when they actively attack, are attacked, and counterattack.

In response to these requirements, if you write in C, you
will have to write a separate struct for each monster, and
write a separate global function for each struct, such as at-
tack, counterattack, and damage. In fact, if the game has n
monsters, you have to write n(n-1) attack functions, n dam-
age functions, and n(n-1) counterattack functions - even if
they are basically the same. And when the game version is
upgraded and new monsters are added, 2n attack functions
and counterattack functions will be added. This is a huge
amount of work in real life.

3 The results and methods of OOP to solve
the above problems

I'm going to show you how OOP solves these problems in

C++ in this section. It also introduces the tools for OOP

to solve problems. Using OOP to complete the scenario in
Section 2 results are as follows.

class CCreature {
protected:
int lifeValue , power;
public:
virtual void Attack(CCreaturex p) {};
virtual void Hurted(int nPower) {};
virtual void FightBack(CCreatures p) {};
}s
class CDraon :public CCreature {
public:
virtual void Attack(CCreature+ p) {
p->Hurted (power);

https://orcid.org/19308749570
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA

p->FightBack (this);

}

virtual void Hurted(int nPower) {
lifeValue -= nPower;

}

virtual void FightBack(CCreature+ p) {
p->Hurted (power / 2);

}
}s

3.1 What tools does C++ need to make it?

In the above, I have used some of the following tools.

Class: On the basis of structs, it supports member func-
tions, methods that represent objects. And the member func-
tions of a class can call each other, and the member functions
of the class can be overloaded and the default value of the
parameters can also be set. The "class” in the sample code is
the keyword that defines the class.

Inheritance and derivation: When defining a new class B,
if you find that it has all the features of the written class A,
and there are other features that class A does not have, you
don’t have to write class B from scratch, but use A as the
base class, and expand and modify it to get B on top of that.
This can be said to be the inheritance of class A by B. The
CDragon class in the sample code is derived from CCreature.

Virtual function: A virtual member function is preceded
by a declaration.

Polymorphism: The address of a derived class object can be
assigned to a base class pointer. If you call a virtual function
statement with the same name and the same parameters that
both the base class and the derived class have through the
base class pointer, it is not determined which virtual function
will be executed during compilation. When the program runs
to the statement, if the base class pointer points to a base
class object, the virtual function of the base class is executed,
and if it points to the derived class, the virtual function of the
derived class is executed. This mechanism is called "polymor-
phism". For example, in the example, CCreture defines three
virtual functions: attack, damage, and counterattack, so that
different subclasses do not need to write their own functions
when interacting, but can directly call the corresponding
functions of the required object during compilation through
the base class pointer parameters.

3.2 The advantages of object-oriented programming

We can see that in the above writing, we can clearly see that
the code is more coupled, the data and the operations related
to it are closely linked, the code is reused, and only the
base class or a derived class can be modified when it needs
to be modified. For example, when we need to add a new
monster, we only need to inherit from the parent class, and
we don’t need to add new functions for other monsters, that
is, other classes don’t need to be modified at all, so of course,

Trovato et al.

the scalability of the program is greatly improved. In fact,
even without taking extensibility into account, the program
itself is much more streamlined than the structure-oriented
C language.

4 Conclusion

Through its unique tools and concepts, object-oriented pro-
gramming solves the problems that cannot be solved by
process-oriented programming due to the trend of larger
code sizes. The code becomes easy to understand and main-
tain, and the extensibility of the code itself has been greatly
improved, reducing the workload of programmers and greatly
liberating productivity. So we really need object-oriented
programming.

	Abstract
	1 Introduction
	2 An instance of a game program fragment
	3 The results and methods of OOP to solve the above problems
	3.1 What tools does C++ need to make it?
	3.2 The advantages of object-oriented programming

	4 Conclusion

