
Decoding Python Memory Management: Navigating
Dynamic Allocation and Cycle Garbage Collection

Zi Li
231502004@smail.nju.edu.cn

Nanjing University
Nanjing, Jiangsu, China

Abstract
This paper navigates the intricacies of Python’s memory
management, including dynamic memory allocation and Cy-
cle Garbage Collection Mechanism for peak performance. It
delves into dynamic arrays, memory allocation strategies,
and the nuances of the Cycle Garbage Collection Mecha-
nism, offering a comprehensive exploration of Python’s dual
memory management approaches.

Keywords: Memory management, Python, Garbage collec-
tion, Dynamic allocation

ACM Reference Format:
Zi Li. 2023. Decoding Python Memory Management: Navigating
Dynamic Allocation and Cycle Garbage Collection. In Proceedings of
ACM Conference (Conference’17). ACM, New York, NY, USA, 2 pages.
https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
In the dynamic realm of programming languages, Python
grapples with the challenge of optimal memory utilization, a
critical concern in dynamic programming scenarios. Employ-
ing two distinct approaches of memory management—Dynamic
Allocation and Cycle Garbage Collection—Python seeks to
address this challenge effectively.

Our exploration is fueled by a fundamental question: how
does Python adeptly navigates memory allocation complex-
ities, especially when confronted with challenges like ap-
pending a new element to a list? This paper unveils the
intricacies of Python’s dual memory management strategies,
emphasizing the complementary roles of Dynamic Alloca-
tion, responsible for the dynamic creation and resizing of
data structures, and Cycle Garbage Collection, which actively
reclaims unused memory and addresses challenges like cyclic
references. Through this dual approach, Python optimizes
memory usage, ensuring efficiency and peak performance.

2 Dynamic Memory Allocation
In the exploration of memory management within the Python
programming language, particular attention is given to the
challenges and solutions encountered in the dynamic alloca-
tion and deallocation of memory.

Conference’17, July 2017, Washington, DC, USA
2023. ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

Dynamic arrays serve as a key example to explore dynamic
allocation in Python’s memory management, particularly
during operations like appending elements. This section
explores their implementation and impact on memory allo-
cation and deallocation.

2.1 Dynamic Arrays and Its Memory Allocation
Python’s list type, the primary sequence data structure, uti-
lizes dynamic arrays. These arrays facilitate dynamic mem-
ory resizing when elements are added. For operations like
a.append(x), Python checks the memory capacity, allocates a
new block if needed, and ensures data integrity by copying
existing elements.

a = [1 , 2 , 3]
a . append (4)
print (a)
Listing 1. Dynamic array implementation in Python

2.2 Unveiling Addressing Dynamics
In Python, memory allocation is dynamic, meaning it adapts
based on the size of the data. The ‘id()‘ function in Python
helps us understand this process by revealing the memory
address of an object. If the current memory block can handle
the growing list, the ‘id(a)‘ remains the same. However, if the
list outgrows the current space, Python’s memory allocation
may create a new block with a different address. This dy-
namic interaction highlights how Python manages memory,
emphasizing the connection between addressing, the ‘id()‘
function, and the principles guiding memory allocation.

a = [1 , 2 , 3]
b = [4 , 5 , 6]
print (" I n i t i a l ␣ Memory ␣ A dd r es s e s : ")
print (" a : " , id (a))
print (" b : " , id (b))

a . append (4)

print (" MemoryAddresses ␣ A f t e r o p e r a t i o n : ")
print (" a : " , id (a))
print (" b : " , id (b))

Listing 2. Memory allocation in Python

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

Conference’17, July 2017, Washington, DC, USA Zi Li

2.3 Stack Memory and Heap Memory
There are two parts of memory: stack memory and heap
memory. The methods/method calls and the references are
stored in stack memory and all the values objects are stored
in heap memory. For instance, the list object is stored in heap
memory.

For stack memory, the allocation happens on contiguous
blocks of memory. We call it stack memory allocation be-
cause the allocation happens in the function call stack. The
size of memory to be allocated is known to the compiler
and whenever a function is called, its variables get memory
allocated on the stack.

Heap memory, on the other hand, is a more flexible region
of a computer’s memory space used for dynamic memory al-
location.Dynamic data structures, such as arrays and linked
lists, are allocated in the heap because they can grow or
shrink in size during program execution.The previous sub-
sections have already shown how Python manages heap
memory allocation when dealing with dynamic arrays.

3 Cycle Garbage Collection Mechanism
Building upon our exploration of dynamic memory allo-
cation, we now shift our focus to Python’s cycle garbage
collection mechanism.

Python’s garbage collection mechanism is a critical com-
ponent of its memory management strategy, and the cycle
garbage collection algorithm plays a central role in handling
more complex memory scenarios.

3.1 Garbage Collection Process
Python’s garbage collection is a dynamic process that iden-
tifies and reclaims memory occupied by objects that are no
longer reachable or referenced by the program. This proac-
tive approach prevents memory leaks and contributes to the
overall stability and efficiency of Python applications.

3.2 Significance of Cycle Garbage Collection
The cycle garbage collection algorithm is particularly sig-
nificant in scenarios involving circular references. Circular
references occur when a group of objects references each
other, forming a cycle. Traditional reference counting mecha-
nisms alone may struggle to identify and reclaim memory in
such situations, necessitating the use of a more sophisticated
approach.

3.3 Algorithmic Insights
• Identification of Circular References: The cycle

garbage collection algorithm employs graph theory
principles to identify and mark objects involved in cir-
cular references. It traverses the object graph, starting
from the known roots, and identifies cycles of objects
that reference each other.

c l a s s Node :

def _ _ i n i t _ _ (s e l f) :
s e l f . next_node = None

C i r c u l a r r e f e r e n c e
node_a = Node ()
node_b = Node ()
node_a . next_node = node_b
node_b . next_node = node_a

Listing 3. Identification of circular references

• Reference Counting and Secondary Collection:
While Python primarily relies on reference counting
for memory management, the cycle garbage collection
acts as a complementary mechanism. It identifies ob-
jects with reference counts that may not reach zero
due to circular references. Objects involved in circular
references are then subject to a secondary collection
process.

import gc
c l a s s C i r c u l a r R e f e r e n c e :

def _ _ i n i t _ _ (s e l f) :
s e l f . c i r c u l a r _ r e f = None

o b j _ a = C i r c u l a r R e f e r e n c e ()
ob j_b = C i r c u l a r R e f e r e n c e ()
C r e a t i n g c i r c u l a r r e f e r e n c e
o b j _ a . c i r c u l a r _ r e f = ob j_b
ob j_b . c i r c u l a r _ r e f = o b j _ a
Manual ly t r i g g e r c o l l e c t i o n
gc . c o l l e c t ()

Listing 4. Reference Counting and Secondary Collection

• Deferred Execution and Generational Approach:
The cycle garbage collection algorithm is designed
for efficiency, and its execution is deferred to times
when the system is idle. Additionally, Python employs
a generational approach, categorizing objects based
on their age. This allows the algorithm to prioritize
newer objects for faster and more efficient collection.

4 Summary
This paper explores Python’s memory management intrica-
cies, focusing on dynamic allocation and the Cycle Garbage
Collection Mechanism. It addresses the challenge of optimal
memory utilization in dynamic programming and introduces
Python’s dual approaches—Dynamic Allocation and Cycle
Garbage Collection. The exploration emphasizes how Python
navigates memory complexities, optimizing usage for effi-
ciency and peak performance.

	Abstract
	1 Introduction
	2 Dynamic Memory Allocation
	2.1 Dynamic Arrays and Its Memory Allocation
	2.2 Unveiling Addressing Dynamics
	2.3 Stack Memory and Heap Memory

	3 Cycle Garbage Collection Mechanism
	3.1 Garbage Collection Process
	3.2 Significance of Cycle Garbage Collection
	3.3 Algorithmic Insights

	4 Summary

