Statically typing and dynamically typing

Ziming Ren

Abstract

Every programming language has a data type system. With-
out a type system, computers wouldn’t know how to rep-
resent the data in our programs. The type system of a pro-
gramming language can be categorized into dynamically
typing and statically typing. This article will introduce what
dynamic typing and static typing are, analyze the strengths
and weaknesses of both types, and examine under which ap-
plication requirements one should choose a particular type
of language to fully leverage the advantages of the language.

Keywords: statically typing, dynamically typing

ACM Reference Format:

Ziming Ren. 2023. Statically typing and dynamically typing. In
Proceedings of ACM Conference (Conference’17). ACM, New York,
NY, USA, 2 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction: What Are Data Types?

In programming, a data type is what we tell the computer
the type of data it’s dealing with, e.g. a string, number, or
object. When defining a variable, a computer needs both the
name and the type of data before it can store and process it.
This way it knows much much memory to set aside, how to
access it and how to change it. Each programming language
has a different way of handling how it assigns data types.

2 Definition
2.1 statically typing

In statically typed programming languages, type checking
occurs at compile time. At compile time, source code in a
specific programming language is converted to a machine-
readable format. This means that before source code is com-
piled, the type associated with each and every single variable
must be known.For most of these languages, the programmer
is required to explicitly state the data type of each variable
when the variable is being declared. Another notable charac-
teristic of this category of programming languages is that
the detection of errors in variable-data type associations will

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA

© 2023 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. .. $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

halt the compilation process until the error has been rectified.
For example, Java, C, C++ are statically typed programming
languages.

2.2 dynamically typing

In dynamically typed languages, type checking takes place at
runtime or execution time. For this category of programming
languages, there’s no requirement to explicitly state the data
type during variable declarations. The language system is
able to detect the type of a variable at runtime. In addition,
altering the data type of previously declared variables is
allowed. For example, JavaScript, PHP, Python, Ruby are
dynamically typed programming languages.

3 The advantages and disadvantages
3.1 statically typing

Advantages of statically typed languages include the early
detection of type mismatches during compilation, enabling
editors to help prevent potential errors that might occur
during runtime. Additionally, explicit type declarations in
the program allow the compiler to perform optimizations,
enhancing the program’s execution speed.

int x = 1;
if (x > 0)

int b = 2;
else

int ¢ = "123";

In the above code, even though statements with type errors
will never be executed, the compiler is unaware of this fact.
It still detects the type errors during compilation. This code
wouldn’t compile, preventing errors at their root. So for this
type of language, errors related to data types are essentially
non-existent at runtime.

int s = 0;
for (int i = 1; i <= 100000000; i++)
s += 1;

For code with a substantial amount of runtime execution
like this, statically typed languages can deliver results more
quickly compared to dynamically typed languages, which
tend to be slower.

The drawbacks of statically typed languages lie in the re-
quirement for programmers to adhere to strict contracts by
specifying data types for each variable. Furthermore, type

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA

declarations introduce additional code, potentially distract-
ing programmers from concentrating on business logic dur-
ing the coding process.

int a =1
double pi = 3.14159

"

string s = "statically"
int add (int a, int b) {
return a + b

In C++ code, it is necessary to include the types of vari-
ables and functions before their declarations, leading to a
significant increase in content and code volume, especially
when working on large-scale projects.

3.2 dynamically typing

Advantages of dynamically typed languages include reduced
code volume and a more concise appearance, enabling pro-
grammers to focus more on business logic. Fewer lines of
code contribute to improved readability during program in-
spection. The flexibility introduced by the leniency toward
variable types in dynamically typed languages provides sig-
nificant coding flexibility. Without the need for type check-
ing, programmers can attempt to invoke methods on any
object without considering its original design with respect
to that method.

a =1

b =a+ 2
a "PL"
a = max

In the above code snippet, the flexibility of dynamic typing
is evident. The type of variable a can change arbitrarily,
including integers, strings, and functions, without triggering
errors. This provides programmers with greater versatility
and possibilities in their code.

The main drawback of dynamically typed languages is
the inability to guarantee variable types, potentially leading
to type-related errors during program execution. And the
lack of type differentiation may make the program harder to
understand in certain situations. Data types in these dynamic
languages are typically determined at runtime. This makes
it hard to catch many errors until they reach a production
environment. It may work fine on your local development
machine, but the production runtime environment could be
slightly different, yielding some different guesswork by the
interpreter.

def f(x):
if x >0:

Ziming Ren

return x + 3
else:

" "

return x + "abc

In this code snippet, if it were in a statically typed lan-
guage, it would not pass compilation. However, in a dynami-
cally typed language, the program would run successfully,
and calling f(1) would complete without errors, potentially
confusing the programmer. It’s only when running f(-1)
that an error would occur, allowing the programmer to catch
the mistake.

4 Application

Deciding which language to use is usually dependent on the
programmer and the purpose of the program. It’s difficult to
conclude that one is better than the other, as they both have
their own perks and drawbacks.

Here are some suggestions:

e Large-scale Projects: For large and complex projects,
static typing languages are often more suitable as they
provide stronger type safety and performance opti-
mizations.

e Rapid Prototyping: If you need rapid prototyping or
are working on a small-scale project, dynamic typing
languages may be more appropriate as they can offer
faster development speed and greater programming
flexibility.

e Team Collaboration: In team collaboration, static typ-
ing languages are generally more advantageous for
maintenance and collaboration since type information
can provide more documentation and readability.

e Personal Projects: For personal projects, you can choose
between static or dynamic typing languages based on
your preference to meet your own needs. For instance,
ifa programmer wants to write and execute code easier,
then dynamically typed languages are a good match.
However, it’s the responsibility of the programmer to
practice good type management. If more rigid code is
preferred, then a better option would be a statically
typed language.

5 Conclusion

This article aims to provide a comprehensive overview of
the definitions and fundamental differences between dy-
namic and static typing languages, comparing their respec-
tive strengths and weaknesses. It discusses how to make
informed decisions when it comes to selecting the appro-
priate language for our projects, especially concerning type
systems.

	Abstract
	1 Introduction: What Are Data Types?
	2 Definition
	2.1 statically typing
	2.2 dynamically typing

	3 The advantages and disadvantages
	3.1 statically typing
	3.2 dynamically typing

	4 Application
	5 Conclusion

