
Decorators in Python
Ziming Xu

231220003@smail.nju.edu.cn

Abstract
This essay examines the versatile use of decorators in Python,
focusing on their role in augmenting functions without al-
tering their core behavior. It explores how decorators facil-
itate logging, timing, and authorization mechanisms. The
essay also demonstrates decorators’ integration into frame-
works like Flask, showcasing their broad applicability in stream-
lining complex tasks within Python applications.
ACM Reference Format:
Ziming Xu. 2023. Decorators in Python. In Proceedings of Hello!
(PLP Workshop ’23). ACM, New York, NY, USA, 2 pages. https://
doi.org/404.404

1 Introduction

Figure 1. Decorator wrapping a callable objects [1]

During developing, it’s necessary to add additional be-
haviors or functionalities to objects dynamically without al-
tering their core structure or behavior. However, directly
adding these codes inside the function changes the original
behaivour of the function and is detrimental to further us-
age and adaption of the function. Moreover, it adds the code
complexity and puts burden on developers. Thus, decorator
pattern emerges. It creates a function which accepts another
function as a parameter, execute the behaviours that deco-
rate the original function and then execute the orginal func-
tion. It is adaptable and won’t change original function’s be-
havior. Thus it has wide application such as logging, timing,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for com-
ponents of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PLP Workshop ’23, December 23, 2023, Nanjing, Jiangsu
© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/404.404

caching and integrating functions into existing behaviours.
Moreover, Python supports decorator pattern grammatically.
The contents below will talk about some of the applications
of decorators in Python.

1 de f c a l c (x) :
p r i n t (’ Execu t i ng c a l c ’)

3 p r i n t (x ∗ 2)
p r i n t (’ Ending c a l c ’)

5 de f c a l c 2 (x) :
p r i n t (’ Execu t i ng c a l c 2 ’)

7 p r i n t (x ∗ 3)
p r i n t (’ Ending c a l c 2 ’)

Listing 1. Traditionally adding behaviors are troublesome

2 Applications
2.1 Logging and timing
It is quite necessary to log which function is executing and
when does it end. It provides history for debugging when an
error occurs and reveal the sequence of events leading up to
the problem. It can also provide real-time information about
the program’s status including the behaviours, performance
and even unexpected events. Decorators can be applied to
log and time any functions. Here is a simple example.

impor t f u n c t o o l s
2 de f l og (func) :

@func too l s . wraps (func)
4 de f wrapper (∗ args , ∗ ∗ kwargs) :

p r i n t (f ” Logging : C a l l i n g { func . __name__ }
with a rg s = { a r g s } and kwargs = { kwargs } ”)

6 r e s u l t = func (∗ args , ∗ ∗ kwargs)
i f r e s u l t : p r i n t (f ” Logging : { func . __name__

} r e t u rn ed { r e s u l t } ”)
8 r e t u r n r e s u l t

r e t u r n wrapper
10 @log

de f c a l c (x) :
12 p r i n t (x ∗ 2)

@log
14 de f c a l c 2 (x) :

p r i n t (x ∗ 3)

Listing 2. A decorator for logging

2.2 Authorization
In software developing, there exists a circumstance where
multiple users are created and different users have differ-
ent access to different objects or data. This type of secu-
rity mechanism is called authorization. Typically, it’s rather
complex to define each user’s permitted functions. However,

https://doi.org/404.404
https://doi.org/404.404
https://doi.org/404.404

PLP Workshop ’23, December 23, 2023, Nanjing, Jiangsu Ziming Xu

with decorators, the mechanism is easy-to-write and also
well-structured.

1 impor t f u n c t o o l s
u s e r _p e rm i s s i on = {

3 ’ admin ’ : [’ r ead ’ , ’ w r i t e ’] ,
’ u s e r 1 ’ : [’ r ead ’] ,

5 ’ u s e r 2 ’ : [’ w r i t e ’]
}

7 de f a u t h o r i z e (r e q u i r e d _ a c t i o n s) :
d e f dec (func) :

9 @functoo l s . wraps (func)
d e f wrapper (user , ∗ args , ∗ ∗ kwargs) :

11 i f a l l (a c t i o n in u s e r _p e rm i s s i on . g e t (
u s e r) f o r a c t i o n in
r e q u i r e d _ a c t i o n s) :
r e t u r n func (user , ∗ args , ∗ ∗ kwargs)

13 e l s e :
r a i s e P e rm i s s i onE r r o r (’ P e rm i s s i on

den i ed . ’)
15 r e t u r n wrapper

r e t u r n dec
17 @author ize ([’ r ead ’])

d e f do_something (u s e r) :
19 r e t u r n ’ something here ’

It is easy and clear to write each function’s behaviours and
required actions before it and this kind of code style is also
easy to debug. Moreover, add required actions after modify-
ing each function won’t take too much effort.

2.3 Integrating functions into existing framework
Flask is a lightweight Python network framework where
decorators are also used. In Flask, the most common used
decorator is @app.route that associates a URL and methods
with a Python function. Here is an example.

1 from f l a s k impor t ∗
app = F l a s k (__name__)

3 # S imple r ou t e r e t u r n i n g a h e l l o message
@app . r ou t e (’ / ’)

5 de f index () :
r e t u r n ’Welcome to my F l a s k a p p l i c a t i o n ! ’

7 # Route hand l i ng a form submi s s i on
@app . r ou t e (’ / submi t ’ , methods =[’GET ’ , ’ POST ’])

9 de f submit () :
i f r e q u e s t . method == ’POST ’ :

11 username = r e qu e s t . form [’ username ’]
r e t u r n f ’ Thank you , { username } ! ’

13 r e t u r n r end e r _ t emp l a t e (’ form . html ’)
i f __name__ == ’ __main__ ’ :

15 app . run (debug=True)

Listing 3. Applications of Python Decorators in Flask

@app.route(’/’) associates the / URL with the index() func-
tion. When a request is made to the root URL, Flask will
execute the index() function and return the specified mes-
sage.

3 Conclusion
The essay talks about decorators in Python, demonstrating
its role in adding behaviours without changing the function.
Moreover, the essay talks about three specific applications
and their association with decorators.

References
[1] Hunt, J. Decorators. Springer International Publishing, Cham, 2023,

pp. 339–351.

	Abstract
	1 Introduction
	2 Applications
	2.1 Logging and timing
	2.2 Authorization
	2.3 Integrating functions into existing framework

	3 Conclusion
	References

