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Sets – Basic Notations

x ∈ S membership

S ⊆ T subset

S ⊂ T proper subset

S ⊆fin T finite subset

S = T equivalence

∅ the empty set

N natural numbers

Z integers

B {true, false}
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Sets – Basic Notations

S ∩ T intersection
def
= {x | x ∈ S and x ∈ T}

S ∪ T union
def
= {x | x ∈ S or x ∈ T}

S − T difference
def
= {x | x ∈ S and x ̸∈ T}

P(S) powerset
def
= {T | T ⊆ S}

[m, n] integer range
def
= {x | m ≤ x ≤ n}
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Generalized Unions of Sets

⋃
S def

= {x | ∃T ∈ S. x ∈ T}⋃
i∈I

S(i)
def
=

⋃
{S(i) | i ∈ I}

n⋃
i=m

S(i)
def
=

⋃
i∈[m,n]

S(i)

Here S is a set of sets. S(i) is a set whose definition depends on i .
For instance, we may have

S(i) = {x | x > i + 3}

Given i = 1, 2, . . . , n, we know the corresponding S(i).
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Generalized Unions of Sets

Example (1)

A ∪ B =
⋃

{A,B}

Proof?

Example (2)

Let S(i) = [i , i + 1] and I = {j2 | j ∈ [1, 3]}, then⋃
i∈I

S(i) = {1, 2, 4, 5, 9, 10}

7 / 46



Generalized Intersections of Sets

⋂
S def

= {x | ∀T ∈ S. x ∈ T}⋂
i∈I

S(i)
def
=

⋂
{S(i) | i ∈ I}

n⋂
i=m

S(i)
def
=

⋂
i∈[m,n]

S(i)
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Generalized Unions and Intersections of Empty Sets

From ⋃
S def

= {x | ∃T ∈ S. x ∈ T}⋂
S def

= {x | ∀T ∈ S. x ∈ T}

we know ⋃
∅ = ∅⋂
∅ meaningless

⋂
∅ is meaningless, since it denotes the paradoxical ”set of

everything” (see Russell’s paradox).
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Relations

We need to first define the Cartesian product of two sets A and B:
A× B = {(x , y) | x ∈ A and y ∈ B}
Here (x , y) is called a pair.

Projections over pairs:
π0(x , y) = x and π1(x , y) = y .

Then, ρ is a relation from A to B if ρ ⊆ A× B.
Or, written as ρ ∈ P(A× B).
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Relations

ρ is a relation from A to B if ρ ⊆ A× B, or ρ ∈ P(A× B).

ρ is a relation on S if ρ ⊆ S × S .

We say ρ relates x and y if (x , y) ∈ ρ. Sometimes we write it as
x ρ y .

ρ is an identity relation if ∀(x , y) ∈ ρ. x = y .
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Relations – Basic Notations

the identity on S IdS
def
= {(x , x) | x ∈ S}

the domain of ρ dom(ρ)
def
= {x | ∃y . (x , y) ∈ ρ}

the range of ρ ran(ρ)
def
= {y | ∃x . (x , y) ∈ ρ}

composition of ρ and ρ′ ρ′ ◦ ρ def
=

{(x , z) | ∃y . (x , y) ∈ ρ ∧ (y , z) ∈ ρ′}

inverse of ρ ρ−1 def
= {(y , x) | (x , y) ∈ ρ}

13 / 46



Relations – Properties and Examples

(ρ3 ◦ ρ2) ◦ ρ1 = ρ3 ◦ (ρ2 ◦ ρ1)
ρ ◦ IdS = ρ = IdT ◦ ρ, if ρ ⊆ S × T

dom(IdS) = S = ran(IdS)

IdT ◦ IdS = IdT∩S

IdS
−1 = IdS(

ρ−1
)−1

= ρ

(ρ2 ◦ ρ1)−1 = ρ1
−1 ◦ ρ2−1

ρ ◦ ∅ = ∅ = ∅ ◦ ρ
Id∅ = ∅ = ∅−1

dom(ρ) = ∅ ⇐⇒ ρ = ∅
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Relations – Properties and Examples

< ⊆ ≤
< ∪ IdN = ≤
≤ ∩ ≥ = IdN

< ∩ ≥ = ∅
< ◦ ≤ = <

≤ ◦ ≤ = ≤
≥ = ≤−1
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Equivalence Relations

ρ is an equivalence relation on S if it is reflexive, symmetric and
transitive.

Reflexivity: IdS ⊆ ρ

Symmetry: ρ−1 = ρ

Transitivity: ρ ◦ ρ ⊆ ρ
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Functions

A function f from A to B is a special relation from A to B.
A relation ρ is a function if, for all x , y and y ′, (x , y) ∈ ρ and
(x , y ′) ∈ ρ imply y = y ′.

Function application f (x) can also be written as f x .
Below we only consider total functions: dom(f ) = A.
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Functions

∅ and IdS are functions.

If f and g are functions, then g ◦ f is a function.

(g ◦ f ) x = g(f x)

If f is a function, f −1 is not necessarily a function. (f −1 is a
function if f is an injection.)

19 / 46



Functions – Injection, Surjection and Bijection

Injective and non-surjective:

Bijective:

Surjective and non-injective:

Non-injective and non-surjective:
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Functions – Denoted by Typed Lambda Expressions

λx ∈ S .E denotes the function f with domain S such that
f (x) = E for all x ∈ S .

Example

λx ∈ N. x + 3 denotes the function {(x , x + 3) | x ∈ N}.
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Functions – Variation

Variation of a function at a single argument:

f {x ⇝ n} def
= λz .

{
f z if z ̸= x
n if z = x

Note that x does not have to be in dom(f ).

dom(f {x ⇝ n}) = dom(f ) ∪ {x}
ran(f {x ⇝ n}) = ran(f − {(x , n′) | (x , n′) ∈ f }) ∪ {n}

Example

(λx ∈ [0, 2]. x + 1){2⇝ 7} = {(0, 1), (1, 2), (2, 7)}
(λx ∈ [0, 1]. x + 1){2⇝ 7} = {(0, 1), (1, 2), (2, 7)}
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Function Types

We use A → B to represent the set of all functions from A to B.

→ is right associative. That is,

A → B → C = A → (B → C ) .

If f ∈ A → B → C , a ∈ A and b ∈ B, then f a b = (f (a))b ∈ C .
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Functions with multiple arguments

f ∈ A1 × A2 × · · · × An → A

f = λx ∈ A1 × A2 × · · · × An.E

f (a1, a2, . . . , an)

Currying it gives us a function

g ∈ A1 → A2 → · · · → An → A

g = λx1 ∈ A1. λx2 ∈ A2. . . . λxn ∈ An.E

g a1 a2 . . . an
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Cartesian Products

Recall A× B = {(x , y) | x ∈ A and y ∈ B}.
Projections over pairs: π0(x , y) = x and π1(x , y) = y .

Generalize to n sets:
S0 × S1 × · · · × Sn−1 = {(x0, . . . , xn−1) | ∀i ∈ [0, n − 1]. xi ∈ Si}
We say (x0, . . . , xn−1) is an n-tuple.

Then we have πi (x0, . . . , xn−1) = xi .
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Tuples as Functions

We can view a pair (x , y) as a function

λi ∈ 2.

{
x if i = 0
y if i = 1

where 2 = {0, 1}.

A× B
def
= {f | dom(f ) = 2, and f 0 ∈ A and f 1 ∈ B}

(We re-define A× B in this way, in order to generalize × later. Functions and
relations are still defined based on the old definitions of ×.)
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Tuples as Functions

Similarly, we can view an n-tuple (x0, . . . , xn−1) as a function

λi ∈ n.


x0 if i = 0
. . . . . .
xn−1 if i = n − 1

where n = {0, 1, . . . , n − 1}.

S0 × · · · × Sn−1
def
= {f | dom(f ) = n, and ∀i ∈ n. f i ∈ Si}
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Generalized Products

From

S0 × · · · × Sn−1
def
= {f | dom(f ) = n, and ∀i ∈ n. f i ∈ Si}

we can generalize S0 × · · · × Sn−1 to an infinite number of sets.

∏
i∈I

S(i)
def
= {f | dom(f ) = I , and ∀i ∈ I . f i ∈ S(i)}

n∏
i=m

S(i)
def
=

∏
i∈[m,n]

S(i)
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Generalized Products

Let θ is a function from a set of indices to a set of sets, i.e., θ is an
indexed family of sets. We can define Π θ as follows.

Π θ
def
= {f | dom(f ) = dom(θ), and ∀i ∈ dom(θ). f i ∈ θ i}

Example

Let θ = λi ∈ I .S(i). Then

Π θ =
∏
i∈I

S(i)
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Generalized Products – Examples

Π θ
def
= {f | dom(f ) = dom(θ), and ∀i ∈ dom(θ). f i ∈ θ i}

Example (1)

Let θ = λi ∈ 2.B. Then

Π θ = { {(0, true), (1, true)},
{(0, true), (1, false)},
{(0, false), (1, true)},
{(0, false), (1, false)} }

That is, Π θ = B× B.

(Here B× B uses the new definition of ×. If we use its old definition, we will
see an elegant correspondence between Π θ and B× B.)
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Generalized Products – Examples

Π θ
def
= {f | dom(f ) = dom(θ), and ∀i ∈ dom(θ). f i ∈ θ i}

Example (2)

Π ∅ = {∅}.

Example (3)

If ∃i ∈ dom(θ). θ i = ∅, then Π θ = ∅.

32 / 46



Exponentiation

Recall
∏
x∈T

S(x) = Πλx ∈ T . S(x).

We write ST for
∏
x∈T

S if S is independent of x .

ST =
∏
x∈T

S = Πλx ∈ T .S

= {f | dom(f ) = T , and ∀x ∈ T . f x ∈ S} = (T → S)

Recall that T → S is the set of all functions from T to S.
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Exponentiation – Example

We sometimes use 2S for powerset P(S). Why?

2S = (S → 2)

For any subset T of S , we can define

f = λx ∈ S .

{
1 if x ∈ T
0 if x ∈ S − T

Then f ∈ (S → 2).

On the other hand, for any f ∈ (S → 2), we can construct a
subset of S .
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Sums (or Disjoint Unions)

Example

Let A = {1, 2, 3} and B = {2, 3}.
To define the disjoint union of A and B, we need to index the
elements according to which set they originated in:

A′ = {(0, 1), (0, 2), (0, 3)}
B ′ = {(1, 2), (1, 3)}

A+ B = A′ ∪ B ′
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Sums (or Disjoint Unions)

A+ B
def
= {(i , x) | i = 0 and x ∈ A, or i = 1 and x ∈ B}

Injection operations:

ι0A+B ∈ A → A+ B

ι1A+B ∈ B → A+ B

The sum can be generalized to n sets:

S0 + S1 + · · ·+ Sn−1
def
= {(i , x) | i ∈ n and x ∈ Si}
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Generalized Sums (or Disjoint Unions)

It can also be generalized to an infinite number of sets.∑
i∈I

S(i)
def
= {(i , x) | i ∈ I and x ∈ S(i)}

n∑
i=m

S(i)
def
=

∑
i∈[m,n]

S(i)

The sum of θ is

Σ θ
def
= {(i , x) | i ∈ dom(θ) and x ∈ θ i}

So ∑
i∈I

S(i) = Σλi ∈ I .S(i)
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Generalized Sums (or Disjoint Unions) – Examples

Σ θ
def
= {(i , x) | i ∈ dom(θ) and x ∈ θ i}

Example (1)∑
i∈n

S(i) = Σλi ∈ n.S(i) = {(i , x) | i ∈ n and x ∈ S(i)}

Example (2)

Let θ = λi ∈ 2.B. Then

Σ θ = { (0, true), (0, false), (1, true), (1, false) }

That is, Σ θ = 2× B.
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Generalized Sums (or Disjoint Unions) – Examples

Σ θ
def
= {(i , x) | i ∈ dom(θ) and x ∈ θ i}

Example (3)

Σ ∅ = ∅.

Example (4)

If ∀i ∈ dom(θ). θ i = ∅, then Σ θ = ∅.

Example (5)

Let θ = λi ∈ 2.

{
B if i = 0
∅ if i = 1

,

then Σ θ = {(0, true), (0, false)}.
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More on Generalized Sums (or Disjoint Unions)

Σ θ
def
= {(i , x) | i ∈ dom(θ) and x ∈ θ i}∑

x∈T
S(x)

def
= Σλx ∈ T .S(x)

We can prove
∑
x∈T

S = T × S if S is independent of x .

∑
x∈T

S = Σλx ∈ T . S

= {(x , y) | x ∈ T and y ∈ S} = (T × S)
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Quizzes
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Quiz 1: True or false?

Let A and B be two sets. Then

(A → B) ∈ P(A× B).
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Quiz 2: True or false?

We define the relation ▷◁ between two functions f , g ∈ N → N as
follows:

f ▷◁ g iff ∀x , y . (f (x) = 42) ∧ (g(y) = 42) =⇒ (x = y).

Then ▷◁ is transitive, that is,

∀f , g , h. (f ▷◁ g) ∧ (g ▷◁ h) =⇒ (f ▷◁ h).
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Quiz 3: True or false?

Let

H =
⋃

S⊆finN

(S → N).

Then

∀h1, h2. (h1 ∈ H) ∧ (h2 ∈ H) =⇒ (h1 ∪ h2 ∈ H).
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