
System F

Reference: Chapter 23 in Pierce’s TAPL

1 / 27

Recall the Simply-Typed Lambda-Calculus (STLC)
▶ Syntax

(Terms) M ::= x | λx : τ. M | M M
(Types) τ ::= T | τ→ τ

(Values) v ::= λx : τ. M
(Contexts) Γ ::= • | Γ, x : τ

▶ Reduction

(λx : τ. M1)M2 −→ M1[M2/x]
(E-AppAbs)

M1 −→ M′1
M1 M2 −→ M′1 M2

(E-App1)
M2 −→ M′2

M1 M2 −→ M′1 M′2
(E-App2)

M −→ M′

λx : τ. M −→ λx : τ. M′
(E-Abs)

2 / 27

Recall the Simply-Typed Lambda-Calculus (STLC)

▶ Typing

Γ, x : τ ⊢ x : τ
(T-Var)

Γ, x : τ1 ⊢ M : τ2

Γ ⊢ (λx : τ1. M) : τ1 → τ2
(T-Abs)

Γ ⊢ M1 : τ→ τ′ Γ ⊢ M2 : τ

Γ ⊢ M1 M2 : τ′
(T-App)

▶ Soundness

Theorem (Preservation)
For all M, M′ and τ, if • ⊢ M : τ and M −→ M′, then • ⊢ M′ : τ.

Theorem (Progress)
For all M and τ, if • ⊢ M : τ, then either M ∈ Values or
∃M′. M −→ M′.

3 / 27

Recall the Simply-Typed Lambda-Calculus (STLC)

We can write an infinite number of “doubling” functions in STLC:

doubleNat def
= λf : Nat→ Nat. λx : Nat. f (f x)

doubleBool def
= λf : Bool→ Bool. λx : Bool. f (f x)

doubleFun def
= λf : (Nat→ Nat)→ (Nat→ Nat). λx : Nat→ Nat. f (f x)

Different types of arguments, but the same function body.

Can we abstract out the types?

4 / 27

Recall the Simply-Typed Lambda-Calculus (STLC)

We can write an infinite number of “doubling” functions in STLC:

doubleNat def
= λf : Nat→ Nat. λx : Nat. f (f x)

doubleBool def
= λf : Bool→ Bool. λx : Bool. f (f x)

doubleFun def
= λf : (Nat→ Nat)→ (Nat→ Nat). λx : Nat→ Nat. f (f x)

Different types of arguments, but the same function body.

Can we abstract out the types?

5 / 27

Polymorphism

poly = many, morph = form
Allow a single piece of code to be used with multiple types.

Our focus: parametric polymorphism.
▶ Code is typed “generically”, using variables in place of actual

types, and then instantiated with particular types as needed.
▶ Uniform: all of their instances behave the same.
▶ By contrast, ad-hoc polymorphism (e.g. overloading) allows

the code to exhibit different behaviors at different types.

6 / 27

System F

System F was first discovered by Jean-Yves Girard (1972), in the
context of proof theory in logic.

John Reynolds (1974) independently developed a type system with
the same power, called the polymorphic lambda-calculus.

It is also sometimes called the second-order lambda-calculus,
because it corresponds, via the Curry-Howard correspondence, to
second-order intuitionistic logic, which allows quantification not
only over individuals [terms], but also over predicates [types].

7 / 27

Syntax

(Terms) M ::= x | λx : τ. M | M M | Λα. M | M ⟨τ⟩
(Types) τ ::= α | T | τ→ τ | ∀α. τ

(Values) v ::= λx : τ. M | Λα. M

▶ Type variable α
▶ Type abstraction Λα. M
▶ Type application M ⟨τ⟩
▶ Universal type ∀α. τ

8 / 27

Reduction

(λx : τ. M1)M2 −→ M1[M2/x]
(E-AppAbs)

M1 −→ M′1
M1 M2 −→ M′1 M2

(E-App1)
M2 −→ M′2

M1 M2 −→ M′1 M′2
(E-App2)

M −→ M′

λx : τ. M −→ λx : τ. M′
(E-Abs)

(Λα. M1) ⟨τ2⟩ −→ M1[τ2/α]
(E-TAppTAbs)

M1 −→ M′1
M1 ⟨τ2⟩ −→ M′1 ⟨τ2⟩

(E-TApp)
M −→ M′

Λα. M −→ Λα. M′
(E-TAbs)

9 / 27

Statics

(Terms) M ::= x | λx : τ. M | M M | Λα. M | M ⟨τ⟩
(Types) τ ::= α | T | τ→ τ | ∀α. τ

(Values) v ::= λx : τ. M | Λα. M

(Contexts) Γ ::= • | Γ, x : τ
(TypeVarContexts) ∆ ::= • | ∆, α

Type well-formedness: ∆ ⊢ τ

Typing judgment: ∆; Γ ⊢ M : τ

10 / 27

Type Well-Formedness

∆, α ⊢ α ∆ ⊢ T

∆ ⊢ τ1 ∆ ⊢ τ2

∆ ⊢ τ1 → τ2

∆, α ⊢ τ

∆ ⊢ ∀α. τ

An alternative formulation :

fv(τ) ⊆ ∆

∆ ⊢ τ

fv(α) def
= {α} fv(T) def

= ∅ fv(τ1 → τ2)
def
= fv(τ1) ∪ fv(τ2)

fv(∀α. τ) def
= fv(τ) − {α}

11 / 27

Typing

∆; Γ, x : τ ⊢ x : τ
(T-Var)

∆ ⊢ τ1 ∆; Γ, x : τ1 ⊢ M : τ2

∆; Γ ⊢ (λx : τ1. M) : τ1 → τ2
(T-Abs)

∆; Γ ⊢ M1 : τ→ τ′ ∆; Γ ⊢ M2 : τ

∆; Γ ⊢ M1 M2 : τ′
(T-App)

∆, α; Γ ⊢ M : τ

∆; Γ ⊢ (Λα. M) : ∀α.τ
(T-TAbs)

∆; Γ ⊢ M1 : ∀α.τ ∆ ⊢ τ2

∆; Γ ⊢ M1 ⟨τ2⟩ : τ[τ2/α]
(T-TApp)

12 / 27

Examples

▶ id def
= Λα. λx : α. x
▶ id : ∀α. α→ α
▶ id ⟨Nat⟩ : Nat→ Nat
▶ id ⟨Nat→ Nat⟩ : (Nat→ Nat)→ (Nat→ Nat)

▶ double def
= Λα. λf : α→ α. λx : α. f (f x)

▶ double : ∀α. (α→ α)→ α→ α
▶ double ⟨Nat⟩ : (Nat→ Nat)→ Nat→ Nat

▶ quadruple def
= Λα. double ⟨α→ α⟩ (double ⟨α⟩)

▶ quadruple : ∀α. (α→ α)→ α→ α

▶ selfApp def
= λx : (∀α. α→ α). x ⟨∀α. α→ α⟩ x

▶ selfApp : (∀α. α→ α)→ (∀α. α→ α)
▶ Recall in STLC there’s no way to type λx. x x.

13 / 27

Examples

▶ id def
= Λα. λx : α. x
▶ id : ∀α. α→ α
▶ id ⟨Nat⟩ : Nat→ Nat
▶ id ⟨Nat→ Nat⟩ : (Nat→ Nat)→ (Nat→ Nat)

▶ double def
= Λα. λf : α→ α. λx : α. f (f x)

▶ double : ∀α. (α→ α)→ α→ α
▶ double ⟨Nat⟩ : (Nat→ Nat)→ Nat→ Nat

▶ quadruple def
= Λα. double ⟨α→ α⟩ (double ⟨α⟩)

▶ quadruple : ∀α. (α→ α)→ α→ α

▶ selfApp def
= λx : (∀α. α→ α). x ⟨∀α. α→ α⟩ x

▶ selfApp : (∀α. α→ α)→ (∀α. α→ α)
▶ Recall in STLC there’s no way to type λx. x x.

14 / 27

Examples

▶ id def
= Λα. λx : α. x
▶ id : ∀α. α→ α
▶ id ⟨Nat⟩ : Nat→ Nat
▶ id ⟨Nat→ Nat⟩ : (Nat→ Nat)→ (Nat→ Nat)

▶ double def
= Λα. λf : α→ α. λx : α. f (f x)

▶ double : ∀α. (α→ α)→ α→ α
▶ double ⟨Nat⟩ : (Nat→ Nat)→ Nat→ Nat

▶ quadruple def
= Λα. double ⟨α→ α⟩ (double ⟨α⟩)

▶ quadruple : ∀α. (α→ α)→ α→ α

▶ selfApp def
= λx : (∀α. α→ α). x ⟨∀α. α→ α⟩ x

▶ selfApp : (∀α. α→ α)→ (∀α. α→ α)
▶ Recall in STLC there’s no way to type λx. x x.

15 / 27

Examples

▶ id def
= Λα. λx : α. x
▶ id : ∀α. α→ α
▶ id ⟨Nat⟩ : Nat→ Nat
▶ id ⟨Nat→ Nat⟩ : (Nat→ Nat)→ (Nat→ Nat)

▶ double def
= Λα. λf : α→ α. λx : α. f (f x)

▶ double : ∀α. (α→ α)→ α→ α
▶ double ⟨Nat⟩ : (Nat→ Nat)→ Nat→ Nat

▶ quadruple def
= Λα. double ⟨α→ α⟩ (double ⟨α⟩)

▶ quadruple : ∀α. (α→ α)→ α→ α

▶ selfApp def
= λx : (∀α. α→ α). x ⟨∀α. α→ α⟩ x

▶ selfApp : (∀α. α→ α)→ (∀α. α→ α)
▶ Recall in STLC there’s no way to type λx. x x.

16 / 27

Properties

Theorem (Preservation)
For all M, M′ and τ, if •; • ⊢ M : τ and M −→ M′, then •; • ⊢ M′ : τ.

Theorem (Progress)
For all M and τ, if •; • ⊢ M : τ, then either M ∈ Values or
∃M′. M −→ M′.

Strong normalization: Every reduction path starting from a
well-typed System F term is guaranteed to terminate.

17 / 27

Church Encodings

Recall in the untyped λ-calculus, we can encode boolean values:

True def
= λx. λy. x

False def
= λx. λy. y

In System F:

True def
= Λα. λx : α. λy : α. x

False def
= Λα. λx : α. λy : α. y

Their type: Bool def
= ∀α. α→ α→ α.

not def
= λb : Bool. Λα. λx : α. λy : α. b ⟨α⟩ y x

Its type: Bool→ Bool.

18 / 27

Church Encodings

Recall in the untyped λ-calculus, we can encode boolean values:

True def
= λx. λy. x

False def
= λx. λy. y

In System F:

True def
= Λα. λx : α. λy : α. x

False def
= Λα. λx : α. λy : α. y

Their type: Bool def
= ∀α. α→ α→ α.

not def
= λb : Bool. Λα. λx : α. λy : α. b ⟨α⟩ y x

Its type: Bool→ Bool.

19 / 27

Church Encodings

Recall the untyped Church numerals:

0 def
= λf . λx. x

1 def
= λf . λx. f x

2 def
= λf . λx. f (f x)

In System F:

0 def
= Λα. λf : α→ α. λx : α. x

1 def
= Λα. λf : α→ α. λx : α. f x

2 def
= Λα. λf : α→ α. λx : α. f (f x)

Read TAPL for the encodings of many other data and operators.

20 / 27

Parametricity

Parametricity: polymorphic terms behave uniformly on their type
variables.
▶ Given a parametrically polymorphic type, we know quite a bit

about the behavior of any term of that type.

Example
Write down all the functions that have type ∀α. α→ α.

Every term you write behaves identically to Λα. λx : α. x.

Intuition: Because the term with type ∀α. α→ α is polymorphic in
α, whatever it wants to do needs to work for every possible type α,
and the lambda calculus is so simple that the only such thing it can
do is to return the argument.

21 / 27

Parametricity

Parametricity: polymorphic terms behave uniformly on their type
variables.
▶ Given a parametrically polymorphic type, we know quite a bit

about the behavior of any term of that type.

Example
Write down all the functions that have type ∀α. α→ α.

Every term you write behaves identically to Λα. λx : α. x.

Intuition: Because the term with type ∀α. α→ α is polymorphic in
α, whatever it wants to do needs to work for every possible type α,
and the lambda calculus is so simple that the only such thing it can
do is to return the argument.

22 / 27

Parametricity

Parametricity: polymorphic terms behave uniformly on their type
variables.
▶ Given a parametrically polymorphic type, we know quite a bit

about the behavior of any term of that type.

Example
Write down all the functions that have type ∀α. α→ α.

Every term you write behaves identically to Λα. λx : α. x.

Intuition: Because the term with type ∀α. α→ α is polymorphic in
α, whatever it wants to do needs to work for every possible type α,
and the lambda calculus is so simple that the only such thing it can
do is to return the argument.

23 / 27

Parametricity

Parametricity: polymorphic terms behave uniformly on their type
variables.
▶ Given a parametrically polymorphic type, we know quite a bit

about the behavior of any term of that type.

Example
Consider the type Bool def

= ∀α. α→ α→ α.

Only two terms: Λα. λx : α. λy : α. x and Λα. λx : α. λy : α. y.

They are exactly the terms True and False.

Read the paper Theorems for free! written by Phil Wadler in 1989.
It’s a fun paper and a famous application of parametricity.

24 / 27

https://people.mpi-sws.org/~dreyer/tor/papers/wadler.pdf

Parametricity

Parametricity: polymorphic terms behave uniformly on their type
variables.
▶ Given a parametrically polymorphic type, we know quite a bit

about the behavior of any term of that type.

Example
Consider the type Bool def

= ∀α. α→ α→ α.

Only two terms: Λα. λx : α. λy : α. x and Λα. λx : α. λy : α. y.

They are exactly the terms True and False.

Read the paper Theorems for free! written by Phil Wadler in 1989.
It’s a fun paper and a famous application of parametricity.

25 / 27

https://people.mpi-sws.org/~dreyer/tor/papers/wadler.pdf

Impredicativity

The polymorphism of System F is often called impredicative.

In general, a definition (of a set, a type, etc.) is called impredicative
if it involves a quantifier whose domain includes the very thing
being defined.

For example, in System F, the type variable α in the type
τ = ∀α. α→ α ranges over all types, including τ itself (so that, for
example, we can instantiate a term of type τ at type τ, yielding a
function from τ to τ).

26 / 27

Lambda Cube

Proposed by Henk Barendregt in 1991.
The theoretical basis of Coq: Calculus of Inductive Constructions
(CC + inductive definitions).

27 / 27

