Operational Semantics

1/111

A programming language

> Syntax
> Semantics

2/111

Why formal semantics

Formal semantics gives an unambiguous definition of what a
program written in the language should do.

>

>

vV v. vy

Understand the subtleties of the language

Offer a formal reference and a correctness definition for
implementors of tools (parsers, compilers, interpreters,
debuggers, etc)

Prove global properties of any program written in the language
Verify programs against formal specifications
Prove two different programs are equivalent/non-equivalent

From a computer readable version of the semantics, an
interpreter can be automatically generated (full compiler
generation is not yet feasible)

3/111

Formal semantics of a programming language

» Operational semantics
» Denotational semantics
> Axiomatic semantics

4/111

Operational semantics

Operational semantics defines program executions:

> Sequence of steps, formulated as transitions of an abstract
machine

Configurations of the abstract machine include:
» Expression/statement being evaluated/executed

> States: abstract description of registers, memory and other
data structures involved in computation

5/111

Program

Input
unction

Output

Abstract Machine

—»| Initial Configuration |

(T ———_

| Intermediate Configuration |

(T ———

<

JEe==="

Answer

Function

I Final Configuration |

Figure taken from Franklyn Turbak and David Gifford’s Design Concepts in
Programming Languages.

6/111

Different approaches of operational semantics

> Small-step semantics:
Describe each single step of the execution

> Big-step semantics:
Describe the overall result of the execution

We will explain both in detail by examples.

7/111

After this class...

You should be able to:

> write down the evaluation/execution steps, if given the
operational semantics rules

» formulate the operational semantics rule, if given the informal
meaning of an expression/statement

8/111

Outline

Syntax of a Simple Imperative Language

Operational semantics

Small-step operational semantics
Structural operational semantics (SOS)
Extensions: going wrong, local variable declaration, heap
Contextual semantics (a.k.a. reduction semantics)

Big-step operational semantics

9/111

Outline

Syntax of a Simple Imperative Language

10/111

Syntax

(IntExp)

(BoolExp)

(Comm)

e

b

(o}

n
X
et+ele—-e]|...

true | false
e=el|le<el|le>e
-b|bAb|bVb]|...

skip

X =e

c;c

if b then c else ¢
while b do ¢

11/111

Syntax

(IntExp) e == n|x|e+ele—-e]...
Here n ranges over the numerals 0,1, 2,
We distinguish between numerals, written n, 0, 1, 2, ..., and the
natural numbers, written n, 0, 1, 2, The natural numbers are

the normal numbers that we use in everyday life, while the
numerals are just syntax for describing these numbers.

We write | n] to denote the meaning of n. We assume that |n] = n,
0]=0,|1]=1,....

The distinction is subtle, but important, because it is one
manifestation of the difference between syntax and semantics.

12/111

Syntax

(IntExp)

(BoolExp)

e

b

Syntax

e+e
e—e

true
false
e=e
e<e
-b
bAb
bvb

Semantics |- |

n

_F

true
false

<> 1 Al

13/111

Outline

Operational semantics

14/111

States

To evaluate variables or update variables, we need to know the
current state.
(State) o € Var — Values

What are Values? n or n?

Both are fine. Here we think Values are natural numbers, boolean
values, etc.

15/111

States

(State) o € Var — Values

For example, o1 = {(x,2), (¥, 3), (a, 10)}, which we will write as
{x~2,y~ 3,a~ 10}.

(For simplicity, here we assume that a state always contain all the
variables that may be used in a program.)

16/111

States

(State) o € Var — Values
For example, o1 = {(x,2), (¥, 3), (a, 10)}, which we will write as
{x~2,y~ 3,a~ 10}.

(For simplicity, here we assume that a state always contain all the
variables that may be used in a program.)

Recall

o(z) ifz#x

o{x ~ n} def Az.{n P

For example, oi{y ~ 7} = {x ~ 2,y ~ 7,a ~ 10}.

17/111

States

(State) o € Var — Values
For example, o1 = {(x,2), (¥, 3), (a, 10)}, which we will write as
{x~2,y~ 3,a~ 10}.

(For simplicity, here we assume that a state always contain all the
variables that may be used in a program.)

Recall _
o{x ~ n} def Az. { o(2) !f Z# X
n ifz=x

For example, oi{y ~ 7} = {x ~ 2,y ~ 7,a ~ 10}.

Operational semantics will be defined using configurations of the
forms (e, o), (b,o) and (c, o).

18/111

Small-step structural operational semantics (SOS)

Systematic definition of operational semantics:
» The program syntax is inductively-defined

> So we can also define the semantics of a program in terms of
the semantics of its parts

> “Structural”: syntax oriented and inductive

Examples:
> The state transition for e + e is described using the
transition for e; and the transition for e».
> The state transition for ¢y ; ¢o is described using the transition
for ¢ and the transition for c».

19/111

Small-step SOS for expression evaluation

Recall
(IntExp) e == nlix|e+ele—-e]...

Below we define (e,o) — (€’,0”). We’'ll start from addition.

20/111

Small-step SOS for expression evaluation

Recall
(IntExp) e == nlix|e+ele—-e]...
Below we define (e,o) — (€’,0”). We’'ll start from addition.

(e1,0) — (€], 0) (e2,0) — (e3,0)
(e1 + e2,0) — (€] + e2,0) (n+e,0) — (n+¢e,,0)
1 2

21/111

Small-step SOS for expression evaluation

Recall
(IntExp) e == nlix|e+ele—-e]...
Below we define (e,o) — (€’,0”). We’'ll start from addition.

(e1.0) — (€}.0) (e2.0) — (€,0)
(e1 + e2,0) — (€] + e2,0) (n+e,0) — (n+¢e,,0)
1 2

lni] [+] [n2] = [n]

(n1 +nz,0) — (n,0)

22/111

Small-step SOS for expression evaluation

Recall
(IntExp) e == nlix|e+ele—-e]...
Below we define (e,o) — (€’,0”). We’'ll start from addition.

(e1.0) — (€}.0) (e2.0) — (€,0)
(e1 + e2,0) — (€] + e2,0) (n+e,0) — (n+¢e,,0)
1 2

lni] [+] [n2] = [n]

(n1 +nz,0) — (n,0)

Example: ((10 4+ 12) + (13 + 20), 0)

23/111

Small-step SOS for expression evaluation

It is important to note that the order of evaluation is fixed by the
small-step semantics.

(e1,0) — (€],0) (e2,0) — (€5, 0)
(e1+e2,0) — (6] +e2,0) (n+e2,0)— (n+e;,0)

It is different from the following.

(6’2,0')—>(eé,0') (6‘1,0')—>(e;,0')
(e1 +e2,0) — (e1+€,,0) (e1 +n,0) — (&1 +n,0)

Next: subtraction.

24/111

Small-step SOS for expression evaluation

Transitions for subtraction:

(61,0')—>(e;,0') (82,0')—>(eé,0')

e1—6,0)— (e —es o n-e,o)— (h-¢e.,o
1 2

ni] -] 2] = [n]

(n1 —I12,0') —> (n,O')

Next: variables.

25/111

Small-step SOS for expression evaluation

Recall
(State) o € Var — Values

Transitions for evaluating variables:

26/111

Summary: small-step SOS for expression evaluation

(e1,0) — (e},) (62,0) — (&3,0)

(e1 + e2,0) — (€ + €2,0) (n+e,0) — (n+e),0)
(e1,0) — (], o) (62,0) — (&3,0)

(61 —€2,0) — (& —e2,0) (n—e,0)— (n—gj,0)

ni] [+1In2] = [n] [nq] [=] [M2] = [n] o(x) = Ln]

(N1 +nz,0) — (n,0) (ny =ng,0) — (n,0) (x,0) — (n,0)

Example: Suppose o(x) = 10 and o(y) = 42.

(x+y,0)— (104+y,0) — (10 +42,0) — (52,0)

27/111

Small-step SOS for boolean expressions

Recall

(BoolExp) b true | false

| e=ele<e|e>e
| =b|bAb|bVDb]...

We overload the symbol —.

Transitions for comparisons:

28/111

Small-step SOS for boolean expressions

Recall

(BoolExp) b true | false

| e=ele<e|e>e
| =b|bAb|bVDb]...

We overload the symbol —.

Transitions for comparisons:

(e1,0) — (e, 0) (62,0) — (e5,0)
(e1 =e2,0) — (€] = e2,0) (n=-ep,0)— (n=¢},0)
n1] [=] [n2] =(Ln4] [=] [n2])
(n1 = ny,0) — (true, o) (n1 = ny,0) — (false, o)

Next: negation.

29/111

Small-step SOS for boolean expressions

Transitions for negation:

(b,0) — (b, 0)
(=b,0) — (=b, 0)

(—true, o) — (false, o) (—false, o) — (true, o)

Next: conjunction.

30/111

Small-step SOS for boolean expressions

Transitions for conjunction:

(by,0) — (b}, 0)
(b1 Ab2,0') — (b1/ /\bg,O')

(b2,0) — (bj, o) (b2,0) — (bj,)
(true A bp,0r) — (true A b}, o) (false A bo, o) — (false A b}, o)

(true A true, o) — (true, o) (true A false, o) — (false, o)

(false A true, o) — (false, o) (false A false, o) — (false, o)

31/111

Small-step SOS for boolean expressions

Different transitions for conjunction — short-circuit calculation:

(b1,07) — (bf,0)
(b1 A b2,) — (b] A bo, o)

(true A bp,07) — (b2, 0)

(false A by, o) — (false, o)

Remember that the order of evaluation is fixed by the small-step
semantics.

32/111

Small-step SOS for statements

Recall
(Comm) c¢ := skip
| x:=e€
| csc
| ifbthencelsec
| whilebdoc

Next we define the semantics for statements. Again we will
overload the symbol —.

The statement execution relation has the form of (¢,o) — (¢’, o)
or (c,o) — o’

33/111

Small-step SOS for skip

(skip,o) — o

34/111

Small-step SOS for assignment

35/111

Small-step SOS for assignment

Example:
(x =104+12,0) — (x:=22,0) — o{x ~ 22}
Another example:

(x :=x+1,0") — (x :=224+1,0") — (x :=23,0") — o'{x ~ 23}

Next: sequential composition.

36/111

Small-step SOS for sequential composition

(co, o) — (¢, 0’) (co, o) — o’
(Co;C1,0')—>(C(/);C1,0") (CO;C1,O')—>(C1,O")

37/111

Small-step SOS for sequential composition

(co, o) — (¢, 0’) (co, o) — o’
(coser, o) — (cp3c1, 07) (cosc1, 0) — (1, 07)
Example:

(x:=104+12;x :=x+1,0)
— (x:=22;x:=x4+1,0)
— (x:=x+1,0{x ~ 22})
— (x:=22 41, 0{x ~ 22})
— (x:=23,0{x ~ 22})

— o{x ~ 23}

Next: if-then-else.

38/111

Small-step SOS for if

(b,o) — (b, 0)
(if b then ¢ else ¢y, 0) — (if b’ then ¢; else ¢y, 0)

(if true then ¢, else ¢y, o) — (co, 0)

(if false then ¢ else ¢y, o) — (c1, o)

39/111

Incorrect semantics for while

(b,o) — (b',0)
(while b do c,0) — (while b’ do ¢, o)

(while false do c,0) — o

(while true do ¢, o) —7

40/111

Incorrect semantics for while

(b,o) — (b',0)
(while b do c,0) — (while b’ do ¢, o)

(while false do c,0) — o

(while true do ¢, o) —7

Actually we want to evaluate b every time we go through the loop.
So, when we evaluate it the first time, it is vital that we don’t throw
away the original b.

In fact we can give a single rule for while using the if statement.

41/111

Small-step SOS for while

(while b do c,o") — (if b then (c ; while b do c) else skip, o)

42/111

Zero-or-multiple steps
We define —* as the reflexive transitive closure of —.

For instance,

(c,o) — (¢’,0’) (¢’,o’) —*(c”,0”)
(c,0) —* (c,0) (c,o) —* (¢, 0”)

n-step transitions:

(c,o0) — (¢, 07) (c’,o’) =" (c",0")

(c.0) = (c.0) (c.0) =" (¢, o)
We have (¢,0) —* (¢’,0”) iff An.(c,0) —" (¢’, o).

What about (¢, o) —* 0’?

43/111

Example

Compute the factorial of x and store the result in variable a:

def

c y:=x;a:=1;

while (y > 0) do
(a:=axy;
y=y-1)

Leto ={x~ 3,y ~ 2,a ~» 9}. It should be the case that
(c,o) —" o’
where ¢/ = {x ~ 3,y ~ 0,a ~ 6}.

Let’s check that it is correct.

44/111

Remark

> As you can see, this kind of calculation is horrible to do by
hand. It can, however, be automated to give a simple

interpreter for the language, based directly on the semantics.

> Itis also formal and precise, with no disputes about what
should happen at any given point.

> Finally, it does compute the right answer!

45/111

Some facts about —

Theorem (Determinism)
Forallc,o,c’,0’,c”, 0", if(c,0) — (c¢’,0”’) and
(c,o0) — (¢”,0”), then(c’,o’) = (c”,0”).

Corollary (Confluence)

Forallc,o,c’,0’,c”, 0", if(c,0) —* (¢’,0”) and

(c,o) —* (¢”,0"), then there exist ¢’ and 0"’ such that
(C/,O-I) _>>i< (C/H’O_Hl) and (C,,,O-,,) _)* (CI/I’ O_/I/).

Analogous results hold for the transitions on (e, o) and (b,).

46/111

Some facts about —

Normalization: There are no infinite sequences of configurations
(e1,01),(€2,072),...such that, for all i, (ej, i) — (€i+1,Ti+1).
That is, every evaluation path eventually reaches a normal form.

Normal forms:
> For expressions, the normal forms are (n, o) for numeral n.
> For booleans, the normal forms are (true, o) and (false, o).

Facts: The transition relations on (e, o) and (b, o) are normalizing.

But!! The transition relation on (c, o) is not normalizing.

47/111

Some facts about —

The transition relation on (c, o) is not normalizing.

Specifically, we can have infinite loops. For example, the program
while true do skip loops forever.

Theorem
For any state o, there is no o’ such that
(while true do skip, o) —* o’

Proof?

48/111

Next: we will see some variations of the current small-step
semantics.

Note when we modify the semantics, we define a different
language.

49/111

Variation |

Assignment:
[ellintexpo = n
(x :=e,0) — of{x~ n}

Here

[ellintexp o = n iff (e,0) —* (n,o)and n = |n]

Compared to the original version:

50/111

Variation |

[b1boolexp o = true
(if b then ¢ else ¢y, o) — (¢,)

[[b]]boolexpO' = false
(if b then ¢ else ¢y, o) — (c1, 0)

Compared to the original version:

(b,o) — (b',0)
(if b then ¢ else ¢,0) — (if b’ then ¢, else ¢y, 0)

(if true then ¢, else ¢y, o) — (cp, o)

(if false then ¢y else c1, o) — (c1, o)

51/111

Variation |

[b1lboolexp o = true
(while b do c, o) — (c;while bdo c, o)

[[b]]boolexpO' = false
(whilebdoc, o) — o

Compared to the original version:

(while b do ¢,0") — (if b then (¢ ; while b do c) else skip, o)

52/111

Variation Il

Assignment:
[ellintexp o = n

(x :=e,0) — (skip, o{x ~ n})

Here skip is overloaded as a flag for termination.
(So there is no rule for (skip, 0)).

53/111

Variation Il

Assignment:
[ellintexp o = n
(x := e, o) — (skip, o{x ~ n})

Here skip is overloaded as a flag for termination.
(So there is no rule for (skip, 0)).

Sequential composition:

(co, o) — (g, o)

(cosc1, 0) — (cg3¢1, o) (skip;ci, o) — (c1, 0)

54/111

Variation Il

[ellintexp o = N
(x :=e,0) — (skip, o{x ~ n})

(co, o) — (cé, o)

(cosci, 0) — (cg3¢1, 07) (skip;ci, o) — (cq, o)

One more identity step is introduced after every command:
consider x :=x+1;y:=y+2.
Compared to the earlier rules:

[ellintexoor = N
(x :=e,0) — o{x~ n} (skip,o) — o

(o, o) — (g, o) (co,) — 0’

(Co;C1,0')—>(Cé;C1,0") (CO;C1,0')—)(C1,O")

55/111

Variation Il

Why?
Sometimes it is more convenient.

The earlier versions have two forms of transitions for statements.
(c,o0) — (¢’,07) (c,o) —> 0’

When defining or proving properties of —, we need to consider
both cases.

But, this is not a big deal.

56/111

Variation Il — all rules

[[e]]intexpa' =n
(x :=e,0) — (skip, o{x ~ n})

(co, o) — (cg.)

(coscy, o) — (cg3¢1, o) (skip;cy, o) — (c1, o)

[b]bootexp o = true
(if b then ¢, else ¢y, o) — (co, o)

[[b]]boolexpa' = false
(if b then ¢, else ¢y, o) — (cy, o)

IIb]]boolexp o = true
(while b do ¢, o) — (c ;while b do ¢, o)

[[b]]boolexpo' = false
(while b do ¢, o) — (skip, o)

57/111

Next: we will extend “Variation 11" with the following language
features.

» Going wrong
> Local variable declaration
» Dynamically-allocated data

58/111

Going wrong

We introduce another configuration: abort.

The following will lead to abort:
> Divide by 0
> Access non-existing data
> ..

abort cannot step anymore.

59/111

Going wrong

Expressions:
e o= ...]ele

Expression evaluation:

n2#0 [nq]L/]Ln2] = [n]
(n1/n2,0') —_ (n,O')

(n1/0,0) — abort

60/111

Going wrong

Assignment:
[elintexoor = N [ellintexp o = L
(x :=e,0) — (skip,o{x ~ n}) (x == e,o) — abort
Here

[elinexpo =n iff (e,0) —* (n,o)and n=|n]

[elintexpo = L iff (e,0) —* abort

61/111

Going wrong

Add new rules:

(co, o) — abort
(co;c1, o) — abort

[[b]]boolexpo' =41

(if b then ¢ else ¢y, o) — abort

[[b]]boolexpa' =1
(while b do ¢, o) — abort

62/111

Going wrong

We distinguish “going wrong” from “getting stuck”.

We say c gets stuck at the state o iff there’s no ¢’, o’ such that
(c,o) — (¢, 0’).

In the semantics “Version 117, skip gets stuck at any state.

Note both notions are language-dependent.

Next extension: local variable declaration.

63/111

Local variable declaration

Statements:
C o= ...| newvarx:=einc
An unsatisfactory attempt:

oX=|n]
(newvar x :=einc, o) — (x :=ej;c;x:=n, o)

Unsatisfactory because the value of local variable x could be
exposed to external observers while ¢ is executing.
This is a problem when we have concurrency.

64/111

Semantics for newvar

Solution (due to Eugene Fink):

n = [ellintexp & (c,o{x~ n}) — (¢, o) o' x=|n|]

(newvar x := einc, o) — (newvar x :=n’in ¢/, o’{x ~ o x})

(newvar x := e in skip, o) — (skip, o)

[ellintexp 0o = L
(newvar x := e in ¢, o) — abort

n—= [[e]]intexpa' (C, o{x ~ n}) —> abort
(newvar x := e in c, o) — abort

65/111

Heap for dynamically-allocated data

(States) o == (s,h)
(Stores) s € Var— Values
(Heaps) h € Loc —fp Values

(Values) v e IntuBoolULoc

Here —, represents a partial mapping.

66/111

A simple language with heap manipulation

Statements:
c = ...
| x:=alloc(e) allocation
| y:=][x] lookup
| [x]:=e mutation
| free(x) deallocation

Configurations: (c, (s, h))

67/111

Operational semantics for alloc

I ¢ dom(h) [€llintexp S = N
(x := alloc(e), (s, h)) — (skip, (s{x ~ I}, hw {l ~ n}))

68/111

Operational semantics for free

sx=1 Iledom(h)
(free(x), (s, h)) — (skip, (s, h\{l}))

69/111

Operational semantics for lookup and mutation

sx=1 hl=n
(v == [x]. (s, h)) — (skip, (s{y ~ n}, h))

sx =1 | € dom(h) [elintexps = N
([x] := e, (s, h)) — (skip, (s, h{l ~ n}))

70/111

Summary of small-step structural operational semantics

Form of transition rules:

P1 e Pn
(c.0) = (¢.07)

Ps, ..., P, are the conditions that must hold for the transition to go
through. Also called the premises for the rule. They could be

> Other transitions corresponding to the sub-terms.
> Side conditions: predicates that must be true.

Next: small-step contextual semantics (a.k.a. reduction semantics)

71/111

Review of small-step SOS

(e1,0) — (e],0) (e2,0) — (&5, 7)

(e1 + €,0) — (e1 + e2,0) (n+e,0) — (n+65,0)
(e1,0) — (e}, 0) (e2,0) — (&3,0)

(e1 —e0) — (e1 —e,0) (n—e,0) — (n-e,0)

[ni] [+] [n2] = [n] [n{] [=] n2] = [n] o(x) = [n]

(n1 +ng,0) — (n,0) (n1 =ng,0) — (n,0) (x,0) — (n,0)

Observe that the top four rules look similar. We may combine them
into a single rule:

(e,0) — (¢',0)

(Ele]. o) — (&le’]. o)
HereE:=[]+e | [|]-e | n+[] | n—[]

72/111

A quick feel of contextual semantics

(r.o) — (¢',0)
(&lr], o) — (&le’], o)

Herer:=x | n4+n | n—-n

[ni] [+] 2] = [n] [n{] [—] [n2] = [n] o(x) = [n]

(N1 +nz,0) — (n,0) (ny =nz,0) — (n, o) (x,0) — (n,0)

AndE:=[] | E4+e | E-e | n+E | n=-&

ris called a redex.
& is called an evaluation context (or a reduction context).

73/111

Contextual semantics

An alternative presentation of small-step operational semantics
using redex and evaluation contexts.

Specified in two parts:
» What evaluation rules (for redex) to apply?
> What is an atomic reduction step?
» Where can we apply them?
> Where should we apply the next atomic reduction step?

74/111

Redex

A redex is a syntactic expression or command that can be reduced
(transformed) in one atomic step.

For brevity, below we mix expression and command redexes.

(Redex) r == x

| n4+n

| x:=n

| skip;c

| if true then c else ¢
| if false then c else ¢
| while bdoc

I

Example: (1 + 3) + 2 is not a redex, but 1 + 3 is.

75/111

Local reduction rules

One rule for each redex: (r,o) — (t,07).

o(x) = [n] n{] [+] n2] = [n]

(x,0) — (n,0) (ni +nz,0) — (n,0)

(x :=n,o) — (skip,o{x ~ |n]})

(skip;ci, o) — (c1, o)

(if true then ¢ else ¢y, o) — (¢, o)

(while b do c,0) — (if b then (c ; while b do c) else skip, o)

76/111

Review

A redex is something that can be reduced in one step
» Eg.2+8

Local reduction rules reduce these redexes
» Eg. (24 8,0) — (10,0)

Next: global reduction rules

Consider

» (x:=14+(248),0)

> (while falsedo x :=1+4(2+8),0)
Should we reduce 2 + 8 in these cases?

77/111

Evaluation contexts

An evaluation context is a term with a “hole” in the place of a
sub-term

> Location of the hole indicates the next place for evaluation

> If &is a context, then &[r] is the expression obtained by
replacing redex r for the hole in context &

> Now, if (r,0) — (t,0”), then (&[r], o) — (E]t], o).

Example: x :=1 4[]
» Filling hole with 2 4+ 8 yields E[2 + 8] = (x :==14 (2 + 8))
» Or filling with 10 yields £[10] = (x := 1+ 10)

78/111

Evaluation contexts

(Ctxt) & == []
| &E4e

| n4+6&

| x:=8&

| &;c

| if&thencelsec
|

Examples:
> x:=1+4]]
» NOT: while false do x :=1+[]
» NOT: if b then c else [|

79/111

Evaluation contexts

> & has exactly one hole
> & uniquely identifies the next redex to be evaluated

Consider e = e1 + e2 and its decomposition as &]r].
» Ifer=nyand e =ng, thenr=ny+nxand &E = |
> If e1 = ny and ez is not ny, then 2 = Ez[rjand E = ny + &2
> If ey isnot ny, then ey =&¢[rfland E=E1 + e

In the last two cases the decomposition is done recursively.
In each case the solution is unique.

80/111

Evaluation contexts

Consider ¢ = (¢ ; ¢2) and its decomposition as &[r].
> If c1 = skip, then r = (skip;c2) and & = []
> If ¢1 # skip, then ¢1 = &4[r] and & = (&1 ;5 ¢2)

Consider ¢ = (if b then ¢y else cy) and its decomposition as &|r].
> If b = true or b = false, then r = (if b then c; else c;) and
&=[]
» Otherwise, b = &p[r] and & = (if & then ¢ else c»)

81/111

Evaluation contexts

Decomposition theorem:
» If ¢ # skip, then there exist unique & and r such that ¢ = &[r]
> If e # n, then there exist unique & and r such that e = &]r]

“exists” = progress

“unique” = determinism

82/111

Global reduction rule

General idea of the contextual semantics:
» Decompose the current term into

> the next redex r
> and an evaluation context & (the remaining program).

> Reduce the redex r to some other term t.
> Put t back into the original context, yielding &[t].

Formalized as a small-step rule:

(r.o) — (t, o)
(&lr], o) — (&[t], o)

Contextual semantics rules =
Global reduction rule + Local reduction rules for individual r

83/111

Examples

x:=1+(248)
» Decompose it into an evaluation context & and a redex r
> r=(2+8)
> E=(x:=1+[])
> &[r] = (x :== 14 (24 8)) (original command)
» By local reduction rule, (2 4+ 8,0) — (10, 0)

» By global reduction rule, (§[2 + 8],0) — (&[10],0);
or equivalently (x :=1+4(2+8),0) — (x:=14+10,0)

84/111

Examples

X := 1;x := x + 1 in the initial state {x ~ 0}

Configuration Redex Context
(x:=1;x:=x4+1, {x~0}) x:=1 []sx:=x+1
(skip;x :=x4+1, {x~1}) skip;x:=x+1 []

(x:=x4+1, {x~1}) X x:=[]+1
(x =141, {x~1}) 1+1 x:=]

(x =2, {x~1}) X:=2 []

85/111

Contextual semantics for boolean expressions

Normal evaluation of A:
define the following contexts, redexes, and local rules

E = ...|EAb | trueAE | false AE
r == ... | true A true | true A false | false A true | false A false

(true A true, 0’) — (true, o)

86/111

Contextual semantics for boolean expressions

Normal evaluation of A:
define the following contexts, redexes, and local rules

E = ...|EAb | trueAE | false AE
r == ... | true A true | true A false | false A true | false A false

(true A true, o) — (true, o)

Short-circuit evaluation of A:
define the following contexts, redexes, and local rules

E = ...|EAND
r u= ...|trueAnb | false Ab

(true A b,o) — (b, o) (false A b,0) — (false, o)

The local reduction kicks in before b is evaluated.

87/111

Summary of contextual semantics

Think of a hole as representing a program counter

The rules for advancing holes are non-trivial
» Must decompose entire command at every step
> So, inefficient to implement contextual semantics directly

Major advantage of contextual semantics is that it allows a mix of
global and local reduction rules

> Global rules indicate next redex to be evaluated (defined by
the grammar of the context)

> Local rules indicate how to perform the reduction one for each
redex

88/111

Big-Step Semantics

Different approaches of operational semantics:
» We have discussed small-step semantics, which describes
each single step of the execution.
> Structural operational semantics
> Contextual semantics
(c,o0) — (¢, 0”)
(e,0) — (¢',0)

> Next: big-step semantics (a.k.a. natural semantics), which
describes the overall result of the execution

(c,o) U o’

(e,o)ln

89/111

Big-Step Semantics

oxX=n
(n,o) J Ln] (x,o)Un
(e1,0) U n (e2,0) I no

(e1+ex,0)Uny [+]n

The last rule can be generalized to:

(e1,0) U n (e2,0) U no
(e10p e2,0) | ny lop] no

90/111

Big-Step Semantics

(e1,0) U n (e2,0) I no
(e1 op ez,0) | ny Lop] n2

Compared to small-step SOS:

(e1,0) — (e, 0) (62,0) — (&5, 0)
(e1 0p e2,07) — (€] op e2,0) (nopez,o) — (nop e, o)

Lny] lop] [n2] = [n]

(n1 op nz,0) — (n, o)

91/111

Examples

(2,0) 2 (1,0) U 1
(3,0) 13 (2+1,0) 13
B+ (2+1).,0)U6

92/111

Examples

(2,0)12 (1,0) 1
(3,0) U3 (2+1,0)03
B+(2+1).0)U6

Compared to small-step version:

3+(2+1),0) — (3+3,0) — (6,0)

Big-step semantics more closely models a recursive interpreter.

93/111

Examples

(4,0)] 4 (8,0)U3 (2,0)12 (1,0) 1
(4+3,0)17 (2+1,0)13
(4+3)+(2+1),0) 110

Compared to small-step version:

((443)+(2+1),0) — (7T+(2+1),0) — (7+3,0) — (10,0)

The “boring” rules of small-step semantics specify the order of
evaluation.

94/111

Some facts about |

Theorem (Determinism)
Foralle,o,n,n’, if(e,o) U nand (e,o) | n’, thenn=n’.

Theorem (Totality)
For all e, o, there exists n such that (e,o) | n.

Theorem (Equivalence to small-step semantics)
(e,o) U Ln] iff (e,0) —* (n,0)

95/111

Big-step semantics for boolean expressions

(true, o) || true (false, o) || false

Normal evaluation of A:

(b1,0) || false (b2,0) | true
(b1 A bo, o) || false

96/111

Big-step semantics for boolean expressions

(true, o) || true (false, o) || false

Normal evaluation of A:

(b1,0) | false (bo,0) | true
(b1 A bp,0) || false

Short-circuit evaluation of A:

(by,0) | false
(b1 A by, o) || false

97/111

Big-step semantics for statements

(e,o)Un
(x :=e,0) l ofx ~ n} (skip,o) | o

98/111

Big-step semantics for statements

(e,o)Un
(x :=e,0) l ofx ~ n} (skip,o) | o

(co,0) J o’ (c1,0) L o”
(coscq,0) b o”

99/111

Big-step semantics for statements

(e,o)Un
(x :=e,0) l ofx ~ n} (skip,o) | o
(co,0) J o’ (c1,0) L o” (b,o) | true (co,0) J o’
(cosc1,0) U o” (if b then ¢y else ¢y, o) || o

(b,o) | false (c1,0) I o’
(if b then ¢y else ¢y, o) | o’

100/111

Big-step semantics for statements

(e,o)Un
(x :=e,0) l ofx ~ n} (skip,o) | o

(co,0) J o’ (c1,0) L o” (b,o) | true (co,0) | o’

(cosc1,0) U o” (if b then ¢y else ¢y, o) || o
(b,o) | false (c1,0) I o’ (b,o) || false
(if b then c; else ¢y, o) || o’ (whilebdoc, o) | o

(b,o) | true (c,o) | o’ (while bdo c, o) || o
(whilebdoc, o) | o

101/111

Example

(x :=5;ifx>3theny :=1elsey =2, {x~ 0,y ~ 0})
Ufx~ 3 y~1}

102/111

Divergence (non-termination)

If (¢, o) does not terminate, then there does not exist o such that
(c,o) Lo

Can we apply the inductive rule to (while true do skip, o)?

(b,o) Uy true (c,o) Lo’ (while bdo c, o) || o
(while bdo c, o) || o

103/111

Big-Step Semantics

(e,o)lUn (c,o{x~ n}) | o’
(newvar x :=einc, o) | o’{x ~ o x}

Compared to the small-step semantics:

n=lelinepo (C.o{x~n}) — (¢'.o’) o'x=|n]
(newvar x :=einc, o) — (newvar x :=n’in ¢, o’{x ~ o x})

(newvar x := e in skip, o) — (skip, o)

104/111

Big-Step Semantics

Also, we could add rules to handle the abort case. For instance,

(e,o) || abort (co,0) | abort
(x := e,o) || abort (co;c1,0) || abort

105/111

Equivalence between big-step and small-step semantics

For all c and o,
» (c,o) | abort iff (c,0) —* abort

» (c,o) o’ iff (c,07) — (skip, o)

106/111

Small-step vs. big-step

> Small-step can clearly model more complex features, like
concurrency, divergence, and runtime errors.

> Although one-step-at-a-time evaluation is useful for proving
certain properties, in some cases it is unnecessary work to
talk about each small step.

> Big-step semantics more closely models a recursive
interpreter.

> Big-steps may make it quicker to prove things, because there
are fewer rules. The “boring” rules of the small-step semantics
that specify order of evaluation are folded in big-step rules.

» Big-step: all programs without final configurations (infinite
loops, getting stuck) look the same. So you sometimes can’t
prove things related to these kinds of configurations.

107/111

Summary of operational semantics

> Precise specification of dynamic semantics
Simple and abstract (compared to implementations)

> No low-level details such as memory management, data
layout, etc

v

v

Basis for some proofs about languages

v

Basis for some reasoning about particular programs

v

Point of reference for other semantics

108/111

Recall lambda calculus

Syntax
(Term) M,N == x| Ax.M | MN

Small-step SOS (reduction rules):

M— M
(Ax. M) N — M[N/x] xX. M— x. M’
M— M’ N— N
MN— M'N MN— MN’

This semantics is non-deterministic.

Can we have contextual semantics and big-step semantics?

109/111

More on lambda calculus

Syntax
(Term) M,N == x| Ax.M | MN
Contextual semantics (still non-deterministic):

(Redex) r == (Ax.M)N
(Context) & = []| Ax.E| EN| ME

Local reduction rule:

(Ax. M) N — M[N/x]

Global reduction rule:

r—mMm
&lr] — &[M]

110/111

More on lambda calculus

Syntax
(Term) M,N == x| Ax.M | MN

Big-step semantics:

My M
x| x Ax. M| ax. M

M| ax. M N|N M[N’/x] | P

MN | P

Is this equivalent to the small-step semantics?

111/111

	Syntax of a Simple Imperative Language
	Operational semantics
	Small-step operational semantics
	Big-step operational semantics

