Operational Semantics
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A programming language

> Syntax
> Semantics
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Why formal semantics

Formal semantics gives an unambiguous definition of what a
program written in the language should do.

>

>

vV v. vy

Understand the subtleties of the language

Offer a formal reference and a correctness definition for
implementors of tools (parsers, compilers, interpreters,
debuggers, etc)

Prove global properties of any program written in the language
Verify programs against formal specifications
Prove two different programs are equivalent/non-equivalent

From a computer readable version of the semantics, an
interpreter can be automatically generated (full compiler
generation is not yet feasible)
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Formal semantics of a programming language

» Operational semantics
» Denotational semantics
> Axiomatic semantics
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Operational semantics

Operational semantics defines program executions:

> Sequence of steps, formulated as transitions of an abstract
machine

Configurations of the abstract machine include:
» Expression/statement being evaluated/executed

> States: abstract description of registers, memory and other
data structures involved in computation

5/111



Program

Input
unction

Output

Abstract Machine

—»| Initial Configuration |

(T ———_

| Intermediate Configuration |

(T ———

<

JEe==="

Answer

Function

I Final Configuration |

Figure taken from Franklyn Turbak and David Gifford’s Design Concepts in
Programming Languages.
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Different approaches of operational semantics

> Small-step semantics:
Describe each single step of the execution

> Big-step semantics:
Describe the overall result of the execution

We will explain both in detail by examples.
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After this class...

You should be able to:

> write down the evaluation/execution steps, if given the
operational semantics rules

» formulate the operational semantics rule, if given the informal
meaning of an expression/statement
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Outline

Syntax of a Simple Imperative Language

Operational semantics

Small-step operational semantics
Structural operational semantics (SOS)
Extensions: going wrong, local variable declaration, heap
Contextual semantics (a.k.a. reduction semantics)

Big-step operational semantics
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Outline

Syntax of a Simple Imperative Language
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Syntax

(IntExp)

(BoolExp)

(Comm)

e

b

(o}

n
X
et+ele—-e]|...

true | false
e=el|le<el|le>e
-b|bAb|bVb]|...

skip

X =e

c;c

if b then c else ¢
while b do ¢
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Syntax

(IntExp) e == n|x|e+ele—-e]...
Here n ranges over the numerals 0,1, 2, ....
We distinguish between numerals, written n, 0, 1, 2, ..., and the
natural numbers, written n, 0, 1, 2, .... The natural numbers are

the normal numbers that we use in everyday life, while the
numerals are just syntax for describing these numbers.

We write | n] to denote the meaning of n. We assume that |n] = n,
0]=0,|1]=1,....

The distinction is subtle, but important, because it is one
manifestation of the difference between syntax and semantics.
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Syntax

(IntExp)

(BoolExp)

e

b

Syntax

e+e
e—e

true
false
e=e
e<e
-b
bAb
bvb

Semantics |- |

n

_F

true
false

<> 1 Al
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Outline

Operational semantics
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States

To evaluate variables or update variables, we need to know the
current state.
(State) o € Var — Values

What are Values? n or n?

Both are fine. Here we think Values are natural numbers, boolean
values, etc.
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States

(State) o € Var — Values

For example, o1 = {(x,2), (¥, 3), (a, 10)}, which we will write as
{x~2,y~ 3,a~ 10}.

(For simplicity, here we assume that a state always contain all the
variables that may be used in a program.)
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States

(State) o € Var — Values
For example, o1 = {(x,2), (¥, 3), (a, 10)}, which we will write as
{x~2,y~ 3,a~ 10}.

(For simplicity, here we assume that a state always contain all the
variables that may be used in a program.)

Recall

o(z) ifz#x

o{x ~ n} def Az.{n P

For example, oi{y ~ 7} = {x ~ 2,y ~ 7,a ~ 10}.
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States

(State) o € Var — Values
For example, o1 = {(x,2), (¥, 3), (a, 10)}, which we will write as
{x~2,y~ 3,a~ 10}.

(For simplicity, here we assume that a state always contain all the
variables that may be used in a program.)

Recall _
o{x ~ n} def Az. { o(2) !f Z# X
n ifz=x

For example, oi{y ~ 7} = {x ~ 2,y ~ 7,a ~ 10}.

Operational semantics will be defined using configurations of the
forms (e, o), (b,o) and (c, o).
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Small-step structural operational semantics (SOS)

Systematic definition of operational semantics:
» The program syntax is inductively-defined

> So we can also define the semantics of a program in terms of
the semantics of its parts

> “Structural”: syntax oriented and inductive

Examples:
> The state transition for e + e is described using the
transition for e; and the transition for e».
> The state transition for ¢y ; ¢o is described using the transition
for ¢ and the transition for c».
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Small-step SOS for expression evaluation

Recall
(IntExp) e == nlix|e+ele—-e]...

Below we define (e,o) — (€’,0”). We’'ll start from addition.
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Small-step SOS for expression evaluation

Recall
(IntExp) e == nlix|e+ele—-e]...
Below we define (e,o) — (€’,0”). We’'ll start from addition.

(e1,0) — (€], 0) (e2,0) — (e3,0)
(e1 + e2,0) — (€] + e2,0) (n+e,0) — (n+¢e,,0)
1 2
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Small-step SOS for expression evaluation

Recall
(IntExp) e == nlix|e+ele—-e]...
Below we define (e,o) — (€’,0”). We’'ll start from addition.

(e1.0) — (€}.0) (e2.0) — (€,0)
(e1 + e2,0) — (€] + e2,0) (n+e,0) — (n+¢e,,0)
1 2

lni] [+] [n2] = [n]

(n1 +nz,0) — (n,0)
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Small-step SOS for expression evaluation

Recall
(IntExp) e == nlix|e+ele—-e]...
Below we define (e,o) — (€’,0”). We’'ll start from addition.

(e1.0) — (€}.0) (e2.0) — (€,0)
(e1 + e2,0) — (€] + e2,0) (n+e,0) — (n+¢e,,0)
1 2

lni] [+] [n2] = [n]

(n1 +nz,0) — (n,0)

Example: ((10 4+ 12) + (13 + 20), 0)
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Small-step SOS for expression evaluation

It is important to note that the order of evaluation is fixed by the
small-step semantics.

(e1,0) — (€],0) (e2,0) — (€5, 0)
(e1+e2,0) — (6] +e2,0) (n+e2,0)— (n+e;,0)

It is different from the following.

(6’2,0')—>(eé,0') (6‘1,0')—>(e;,0')
(e1 +e2,0) — (e1+€,,0) (e1 +n,0) — (&1 +n,0)

Next: subtraction.
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Small-step SOS for expression evaluation

Transitions for subtraction:

(61,0')—>(e;,0') (82,0')—>(eé,0')

e1—6,0)— (e —es o n-e,o)— (h-¢e.,o
1 2

ni] -] 2] = [n]

(n1 —I12,0') —> (n,O')

Next: variables.
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Small-step SOS for expression evaluation

Recall
(State) o € Var — Values

Transitions for evaluating variables:
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Summary: small-step SOS for expression evaluation

(e1,0) — (e}, ) (62,0) — (&3,0)

(e1 + e2,0) — (€ + €2,0) (n+e,0) — (n+e),0)
(e1,0) — (], o) (62,0) — (&3,0)

(61 —€2,0) — (& —e2,0) (n—e,0)— (n—gj,0)

ni] [+1In2] = [n]  [nq] [=] [M2] = [n] o(x) = Ln]

(N1 +nz,0) — (n,0) (ny =ng,0) — (n,0) (x,0) — (n,0)

Example: Suppose o(x) = 10 and o(y) = 42.

(x+y,0)— (104+y,0) — (10 +42,0) — (52,0)
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Small-step SOS for boolean expressions

Recall

(BoolExp) b true | false

| e=ele<e|e>e
| =b|bAb|bVDb]...

We overload the symbol —.

Transitions for comparisons:
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Small-step SOS for boolean expressions

Recall

(BoolExp) b true | false

| e=ele<e|e>e
| =b|bAb|bVDb]...

We overload the symbol —.

Transitions for comparisons:

(e1,0) — (e, 0) (62,0) — (e5,0)
(e1 =e2,0) — (€] = e2,0) (n=-ep,0)— (n=¢},0)
n1] [=] [n2] =(Ln4] [=] [n2])
(n1 = ny,0) — (true, o) (n1 = ny,0) — (false, o)

Next: negation.
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Small-step SOS for boolean expressions

Transitions for negation:

(b,0) — (b, 0)
(=b,0) — (=b, 0)

(—true, o) — (false, o) (—false, o) — (true, o)

Next: conjunction.
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Small-step SOS for boolean expressions

Transitions for conjunction:

(by,0) — (b}, 0)
(b1 Ab2,0') — (b1/ /\bg,O')

(b2,0) — (bj, o) (b2,0) — (bj, )
(true A bp,0r) — (true A b}, o) (false A bo, o) — (false A b}, o)

(true A true, o) — (true, o) (true A false, o) — (false, o)

(false A true, o) — (false, o) (false A false, o) — (false, o)
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Small-step SOS for boolean expressions

Different transitions for conjunction — short-circuit calculation:

(b1,07) — (bf,0)
(b1 A b2, ) — (b] A bo, o)

(true A bp,07) — (b2, 0)

(false A by, o) — (false, o)

Remember that the order of evaluation is fixed by the small-step
semantics.
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Small-step SOS for statements

Recall
(Comm) c¢ := skip
| x:=e€
| csc
| ifbthencelsec
| whilebdoc

Next we define the semantics for statements. Again we will
overload the symbol —.

The statement execution relation has the form of (¢,o) — (¢’, o)
or (c,o) — o’
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Small-step SOS for skip

(skip,o) — o
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Small-step SOS for assignment
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Small-step SOS for assignment

Example:
(x =104+12,0) — (x:=22,0) — o{x ~ 22}
Another example:

(x :=x+1,0") — (x :=224+1,0") — (x :=23,0") — o'{x ~ 23}

Next: sequential composition.
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Small-step SOS for sequential composition

(co, o) — (¢, 0’) (co, o) — o’
(Co;C1,0')—>(C(/);C1,0") (CO;C1,O')—>(C1,O")

37/111



Small-step SOS for sequential composition

(co, o) — (¢, 0’) (co, o) — o’
(coser, o) — (cp3c1, 07) (cosc1, 0) — (1, 07)
Example:

(x:=104+12;x :=x+1,0)
— (x:=22;x:=x4+1,0)
— (x:=x+1,0{x ~ 22})
— (x:=22 41, 0{x ~ 22})
— (x:=23,0{x ~ 22})

— o{x ~ 23}

Next: if-then-else.
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Small-step SOS for if

(b,o) — (b, 0)
(if b then ¢ else ¢y, 0) — (if b’ then ¢; else ¢y, 0)

(if true then ¢, else ¢y, o) — (co, 0)

(if false then ¢ else ¢y, o) — (c1, o)
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Incorrect semantics for while

(b,o) — (b',0)
(while b do c,0) — (while b’ do ¢, o)

(while false do c,0) — o

(while true do ¢, o) —7
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Incorrect semantics for while

(b,o) — (b',0)
(while b do c,0) — (while b’ do ¢, o)

(while false do c,0) — o

(while true do ¢, o) —7

Actually we want to evaluate b every time we go through the loop.
So, when we evaluate it the first time, it is vital that we don’t throw
away the original b.

In fact we can give a single rule for while using the if statement.
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Small-step SOS for while

(while b do c,o") — (if b then (c ; while b do c) else skip, o)
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Zero-or-multiple steps
We define —* as the reflexive transitive closure of —.

For instance,

(c,o) — (¢’,0’) (¢’,o’) —*(c”,0”)
(c,0) —* (c,0) (c,o) —* (¢, 0”)

n-step transitions:

(c,o0) — (¢, 07) (c’,o’) =" (c",0")

(c.0) = (c.0) (c.0) =" (¢, o)
We have (¢,0) —* (¢’,0”) iff An.(c,0) —" (¢’, o).

What about (¢, o) —* 0’?
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Example

Compute the factorial of x and store the result in variable a:

def

c y:=x;a:=1;

while (y > 0) do
(a:=axy;
y=y-1)

Leto ={x~ 3,y ~ 2,a ~» 9}. It should be the case that
(c,o) —" o’
where ¢/ = {x ~ 3,y ~ 0,a ~ 6}.

Let’s check that it is correct.
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Remark

> As you can see, this kind of calculation is horrible to do by
hand. It can, however, be automated to give a simple

interpreter for the language, based directly on the semantics.

> Itis also formal and precise, with no disputes about what
should happen at any given point.

> Finally, it does compute the right answer!
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Some facts about —

Theorem (Determinism)
Forallc,o,c’,0’,c”, 0", if(c,0) — (c¢’,0”’) and
(c,o0) — (¢”,0”), then(c’,o’) = (c”,0”).

Corollary (Confluence)

Forallc,o,c’,0’,c”, 0", if(c,0) —* (¢’,0”) and

(c,o) —* (¢”,0"), then there exist ¢’ and 0"’ such that
(C/,O-I) _>>i< (C/H’O_Hl) and (C,,,O-,,) _)* (CI/I’ O_/I/).

Analogous results hold for the transitions on (e, o) and (b, ).
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Some facts about —

Normalization: There are no infinite sequences of configurations
(e1,01),(€2,072),...such that, for all i, (ej, i) — (€i+1,Ti+1).
That is, every evaluation path eventually reaches a normal form.

Normal forms:
> For expressions, the normal forms are (n, o) for numeral n.
> For booleans, the normal forms are (true, o) and (false, o).

Facts: The transition relations on (e, o) and (b, o) are normalizing.

But!! The transition relation on (c, o) is not normalizing.
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Some facts about —

The transition relation on (c, o) is not normalizing.

Specifically, we can have infinite loops. For example, the program
while true do skip loops forever.

Theorem
For any state o, there is no o’ such that
(while true do skip, o) —* o’

Proof?
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Next: we will see some variations of the current small-step
semantics.

Note when we modify the semantics, we define a different
language.
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Variation |

Assignment:
[ellintexpo = n
(x :=e,0) — of{x~ n}

Here

[ellintexp o = n iff (e,0) —* (n,o)and n = |n]

Compared to the original version:
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Variation |

[b1boolexp o = true
(if b then ¢ else ¢y, o) — (¢, )

[[b]]boolexpO' = false
(if b then ¢ else ¢y, o) — (c1, 0)

Compared to the original version:

(b,o) — (b',0)
(if b then ¢ else ¢,0) — (if b’ then ¢, else ¢y, 0)

(if true then ¢, else ¢y, o) — (cp, o)

(if false then ¢y else c1, o) — (c1, o)
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Variation |

[b1lboolexp o = true
(while b do c, o) — (c;while bdo c, o)

[[b]]boolexpO' = false
(whilebdoc, o) — o

Compared to the original version:

(while b do ¢,0") — (if b then (¢ ; while b do c) else skip, o)
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Variation Il

Assignment:
[ellintexp o = n

(x :=e,0) — (skip, o{x ~ n})

Here skip is overloaded as a flag for termination.
(So there is no rule for (skip, 0)).
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Variation Il

Assignment:
[ellintexp o = n
(x := e, o) — (skip, o{x ~ n})

Here skip is overloaded as a flag for termination.
(So there is no rule for (skip, 0)).

Sequential composition:

(co, o) — (g, o)

(cosc1, 0) — (cg3¢1, o) (skip;ci, o) — (c1, 0)
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Variation Il

[ellintexp o = N
(x :=e,0) — (skip, o{x ~ n})

(co, o) — (cé, o)

(cosci, 0) — (cg3¢1, 07) (skip;ci, o) — (cq, o)

One more identity step is introduced after every command:
consider x :=x+1;y:=y+2.
Compared to the earlier rules:

[ellintexoor = N
(x :=e,0) — o{x~ n} (skip,o) — o

(o, o) — (g, o) (co, ) — 0’

(Co;C1,0')—>(Cé;C1,0") (CO;C1,0')—)(C1,O")
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Variation Il

Why?
Sometimes it is more convenient.

The earlier versions have two forms of transitions for statements.
(c,o0) — (¢’,07) (c,o) —> 0’

When defining or proving properties of —, we need to consider
both cases.

But, this is not a big deal.
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Variation Il — all rules

[[e]]intexpa' =n
(x :=e,0) — (skip, o{x ~ n})

(co, o) — (cg. )

(coscy, o) — (cg3¢1, o) (skip;cy, o) — (c1, o)

[b]bootexp o = true
(if b then ¢, else ¢y, o) — (co, o)

[[b]]boolexpa' = false
(if b then ¢, else ¢y, o) — (cy, o)

IIb]]boolexp o = true
(while b do ¢, o) — (c ;while b do ¢, o)

[[b]]boolexpo' = false
(while b do ¢, o) — (skip, o)
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Next: we will extend “Variation 11" with the following language
features.

» Going wrong
> Local variable declaration
» Dynamically-allocated data
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Going wrong

We introduce another configuration: abort.

The following will lead to abort:
> Divide by 0
> Access non-existing data
> ..

abort cannot step anymore.
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Going wrong

Expressions:
e o= ...]ele

Expression evaluation:

n2#0  [nq]L/]Ln2] = [n]
(n1/n2,0') —_ (n,O')

(n1/0,0) — abort
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Going wrong

Assignment:
[elintexoor = N [ellintexp o = L
(x :=e,0) — (skip,o{x ~ n}) (x == e,o) — abort
Here

[elinexpo =n iff (e,0) —* (n,o)and n=|n]

[elintexpo = L iff (e,0) —* abort
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Going wrong

Add new rules:

(co, o) — abort
(co;c1, o) — abort

[[b]]boolexpo' =41

(if b then ¢ else ¢y, o) — abort

[[b]]boolexpa' =1
(while b do ¢, o) — abort
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Going wrong

We distinguish “going wrong” from “getting stuck”.

We say c gets stuck at the state o iff there’s no ¢’, o’ such that
(c,o) — (¢, 0’).

In the semantics “Version 117, skip gets stuck at any state.

Note both notions are language-dependent.

Next extension: local variable declaration.
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Local variable declaration

Statements:
C o= ...| newvarx:=einc
An unsatisfactory attempt:

oX=|n]
(newvar x :=einc, o) — (x :=ej;c;x:=n, o)

Unsatisfactory because the value of local variable x could be
exposed to external observers while ¢ is executing.
This is a problem when we have concurrency.
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Semantics for newvar

Solution (due to Eugene Fink):

n = [ellintexp & (c,o{x~ n}) — (¢, o) o' x=|n|]

(newvar x := einc, o) — (newvar x :=n’in ¢/, o’{x ~ o x})

(newvar x := e in skip, o) — (skip, o)

[ellintexp 0o = L
(newvar x := e in ¢, o) — abort

n—= [[e]]intexpa' (C, o{x ~ n}) —> abort
(newvar x := e in c, o) — abort
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Heap for dynamically-allocated data

(States) o == (s,h)
(Stores) s € Var— Values
(Heaps) h € Loc —fp Values

(Values) v e IntuBoolULoc

Here —, represents a partial mapping.
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A simple language with heap manipulation

Statements:
c = ...
| x:=alloc(e) allocation
| y:=][x] lookup
| [x]:=e mutation
| free(x) deallocation

Configurations: (c, (s, h))
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Operational semantics for alloc

I ¢ dom(h) [€llintexp S = N
(x := alloc(e), (s, h)) — (skip, (s{x ~ I}, hw {l ~ n}))
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Operational semantics for free

sx=1 Iledom(h)
(free(x), (s, h)) — (skip, (s, h\{l}))
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Operational semantics for lookup and mutation

sx=1 hl=n
(v == [x]. (s, h)) — (skip, (s{y ~ n}, h))

sx =1 | € dom(h) [elintexps = N
([x] := e, (s, h)) — (skip, (s, h{l ~ n}))
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Summary of small-step structural operational semantics

Form of transition rules:

P1 e Pn
(c.0) = (¢.07)

Ps, ..., P, are the conditions that must hold for the transition to go
through. Also called the premises for the rule. They could be

> Other transitions corresponding to the sub-terms.
> Side conditions: predicates that must be true.

Next: small-step contextual semantics (a.k.a. reduction semantics)
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Review of small-step SOS

(e1,0) — (e],0) (e2,0) — (&5, 7)

(e1 + €,0) — (e1 + e2,0) (n+e,0) — (n+65,0)
(e1,0) — (e}, 0) (e2,0) — (&3,0)

(e1 —e0) — (e1 —e,0) (n—e,0) — (n-e,0)

[ni] [+] [n2] = [n]  [n{] [=] n2] = [n] o(x) = [n]

(n1 +ng,0) — (n,0) (n1 =ng,0) — (n,0) (x,0) — (n,0)

Observe that the top four rules look similar. We may combine them
into a single rule:

(e,0) — (¢',0)

(Ele]. o) — (&le’]. o)
HereE:=[]+e | [|]-e | n+[] | n—[]
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A quick feel of contextual semantics

(r.o) — (¢',0)
(&lr], o) — (&le’], o)

Herer:=x | n4+n | n—-n

[ni] [+] 2] = [n]  [n{] [—] [n2] = [n] o(x) = [n]

(N1 +nz,0) — (n,0) (ny =nz,0) — (n, o) (x,0) — (n,0)

AndE:=[] | E4+e | E-e | n+E | n=-&

ris called a redex.
& is called an evaluation context (or a reduction context).
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Contextual semantics

An alternative presentation of small-step operational semantics
using redex and evaluation contexts.

Specified in two parts:
» What evaluation rules (for redex) to apply?
> What is an atomic reduction step?
» Where can we apply them?
> Where should we apply the next atomic reduction step?
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Redex

A redex is a syntactic expression or command that can be reduced
(transformed) in one atomic step.

For brevity, below we mix expression and command redexes.

(Redex) r == x

| n4+n

| x:=n

| skip;c

| if true then c else ¢
| if false then c else ¢
| while bdoc

I

Example: (1 + 3) + 2 is not a redex, but 1 + 3 is.
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Local reduction rules

One rule for each redex: (r,o) — (t,07).

o(x) = [n] n{] [+] n2] = [n]

(x,0) — (n,0) (ni +nz,0) — (n,0)

(x :=n,o) — (skip,o{x ~ |n]})

(skip;ci, o) — (c1, o)

(if true then ¢ else ¢y, o) — (¢, o)

(while b do c,0) — (if b then (c ; while b do c) else skip, o)

76/111



Review

A redex is something that can be reduced in one step
» Eg.2+8

Local reduction rules reduce these redexes
» Eg. (24 8,0) — (10,0)

Next: global reduction rules

Consider

» (x:=14+(248),0)

> (while falsedo x :=1+4(2+8),0)
Should we reduce 2 + 8 in these cases?
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Evaluation contexts

An evaluation context is a term with a “hole” in the place of a
sub-term

> Location of the hole indicates the next place for evaluation

> If &is a context, then &[r] is the expression obtained by
replacing redex r for the hole in context &

> Now, if (r,0) — (t,0”), then (&[r], o) — (E]t], o).

Example: x :=1 4[]
» Filling hole with 2 4+ 8 yields E[2 + 8] = (x :==14 (2 + 8))
» Or filling with 10 yields £[10] = (x := 1+ 10)
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Evaluation contexts

(Ctxt) & == []
| &E4e

| n4+6&

| x:=8&

| &;c

| if&thencelsec
|

Examples:
> x:=1+4]]
» NOT: while false do x :=1+[ ]
» NOT: if b then c else [ |

79/111



Evaluation contexts

> & has exactly one hole
> & uniquely identifies the next redex to be evaluated

Consider e = e1 + e2 and its decomposition as &]r].
» Ifer=nyand e =ng, thenr=ny+nxand &E = |
> If e1 = ny and ez is not ny, then 2 = Ez[rjand E = ny + &2
> If ey isnot ny, then ey =&¢[rfland E=E1 + e

In the last two cases the decomposition is done recursively.
In each case the solution is unique.
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Evaluation contexts

Consider ¢ = (¢ ; ¢2) and its decomposition as &[r].
> If c1 = skip, then r = (skip;c2) and & = [ ]
> If ¢1 # skip, then ¢1 = &4[r] and & = (&1 ;5 ¢2)

Consider ¢ = (if b then ¢y else cy) and its decomposition as &|r].
> If b = true or b = false, then r = (if b then c; else c;) and
&=[]
» Otherwise, b = &p[r] and & = (if & then ¢ else c»)
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Evaluation contexts

Decomposition theorem:
» If ¢ # skip, then there exist unique & and r such that ¢ = &[r]
> If e # n, then there exist unique & and r such that e = &]r]

“exists” = progress

“unique” = determinism
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Global reduction rule

General idea of the contextual semantics:
» Decompose the current term into

> the next redex r
> and an evaluation context & (the remaining program).

> Reduce the redex r to some other term t.
> Put t back into the original context, yielding &[t].

Formalized as a small-step rule:

(r.o) — (t, o)
(&lr], o) — (&[t], o)

Contextual semantics rules =
Global reduction rule + Local reduction rules for individual r
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Examples

x:=1+(248)
» Decompose it into an evaluation context & and a redex r
> r=(2+8)
> E=(x:=1+[])
> &[r] = (x :== 14 (24 8)) (original command)
» By local reduction rule, (2 4+ 8,0) — (10, 0)

» By global reduction rule, (§[2 + 8],0) — (&[10],0);
or equivalently (x :=1+4(2+8),0) — (x:=14+10,0)
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Examples

X := 1;x := x + 1 in the initial state {x ~ 0}

Configuration Redex Context
(x:=1;x:=x4+1, {x~0}) x:=1 []sx:=x+1
(skip;x :=x4+1, {x~1}) skip;x:=x+1 []

(x:=x4+1, {x~1}) X x:=[]+1
(x =141, {x~1}) 1+1 x:=]

(x =2, {x~1}) X:=2 []
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Contextual semantics for boolean expressions

Normal evaluation of A:
define the following contexts, redexes, and local rules

E = ...|EAb | trueAE | false AE
r == ... | true A true | true A false | false A true | false A false

(true A true, 0’) — (true, o)
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Contextual semantics for boolean expressions

Normal evaluation of A:
define the following contexts, redexes, and local rules

E = ...|EAb | trueAE | false AE
r == ... | true A true | true A false | false A true | false A false

(true A true, o) — (true, o)

Short-circuit evaluation of A:
define the following contexts, redexes, and local rules

E = ...|EAND
r u= ...|trueAnb | false Ab

(true A b,o) — (b, o) (false A b,0) — (false, o)

The local reduction kicks in before b is evaluated.
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Summary of contextual semantics

Think of a hole as representing a program counter

The rules for advancing holes are non-trivial
» Must decompose entire command at every step
> So, inefficient to implement contextual semantics directly

Major advantage of contextual semantics is that it allows a mix of
global and local reduction rules

> Global rules indicate next redex to be evaluated (defined by
the grammar of the context)

> Local rules indicate how to perform the reduction one for each
redex
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Big-Step Semantics

Different approaches of operational semantics:
» We have discussed small-step semantics, which describes
each single step of the execution.
> Structural operational semantics
> Contextual semantics
(c,o0) — (¢, 0”)
(e,0) — (¢',0)

> Next: big-step semantics (a.k.a. natural semantics), which
describes the overall result of the execution

(c,o) U o’

(e,o)ln
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Big-Step Semantics

oxX=n
(n,o) J Ln] (x,o)Un
(e1,0) U n (e2,0) I no

(e1+ex,0)Uny [+]n

The last rule can be generalized to:

(e1,0) U n (e2,0) U no
(e10p e2,0) | ny lop] no
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Big-Step Semantics

(e1,0) U n (e2,0) I no
(e1 op ez,0) | ny Lop] n2

Compared to small-step SOS:

(e1,0) — (e, 0) (62,0) — (&5, 0)
(e1 0p e2,07) — (€] op e2,0) (nopez,o) — (nop e, o)

Lny] lop] [n2] = [n]

(n1 op nz,0) — (n, o)
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Examples

(2,0) 2 (1,0) U 1
(3,0) 13 (2+1,0) 13
B+ (2+1).,0)U6
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Examples

(2,0)12 (1,0) 1
(3,0) U3 (2+1,0)03
B+(2+1).0)U6

Compared to small-step version:

3+(2+1),0) — (3+3,0) — (6,0)

Big-step semantics more closely models a recursive interpreter.
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Examples

(4,0) ] 4 (8,0)U3 (2,0)12 (1,0) 1
(4+3,0)17 (2+1,0)13
(4+3)+(2+1),0) 110

Compared to small-step version:

((443)+(2+1),0) — (7T+(2+1),0) — (7+3,0) — (10,0)

The “boring” rules of small-step semantics specify the order of
evaluation.
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Some facts about |

Theorem (Determinism)
Foralle,o,n,n’, if(e,o) U nand (e,o) | n’, thenn=n’.

Theorem (Totality)
For all e, o, there exists n such that (e,o) | n.

Theorem (Equivalence to small-step semantics)
(e,o) U Ln] iff (e,0) —* (n,0)
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Big-step semantics for boolean expressions

(true, o) || true (false, o) || false

Normal evaluation of A:

(b1,0) || false (b2,0) | true
(b1 A bo, o) || false
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Big-step semantics for boolean expressions

(true, o) || true (false, o) || false

Normal evaluation of A:

(b1,0) | false  (bo,0) | true
(b1 A bp,0) || false

Short-circuit evaluation of A:

(by,0) | false
(b1 A by, o) || false
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Big-step semantics for statements

(e,o)Un
(x :=e,0) l ofx ~ n} (skip,o) | o
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Big-step semantics for statements

(e,o)Un
(x :=e,0) l ofx ~ n} (skip,o) | o

(co,0) J o’ (c1,0) L o”
(coscq,0) b o”
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Big-step semantics for statements

(e,o)Un
(x :=e,0) l ofx ~ n} (skip,o) | o
(co,0) J o’ (c1,0) L o” (b,o) | true (co,0) J o’
(cosc1,0) U o” (if b then ¢y else ¢y, o) || o

(b,o) | false  (c1,0) I o’
(if b then ¢y else ¢y, o) | o’
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Big-step semantics for statements

(e,o)Un
(x :=e,0) l ofx ~ n} (skip,o) | o

(co,0) J o’ (c1,0) L o” (b,o) | true  (co,0) | o’

(cosc1,0) U o” (if b then ¢y else ¢y, o) || o
(b,o) | false  (c1,0) I o’ (b,o) || false
(if b then c; else ¢y, o) || o’ (whilebdoc, o) | o

(b,o) | true  (c,o) | o’ (while bdo c, o) || o
(whilebdoc, o) | o
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Example

(x :=5;ifx>3theny :=1elsey =2, {x~ 0,y ~ 0})
Ufx~ 3 y~1}
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Divergence (non-termination)

If (¢, o) does not terminate, then there does not exist o such that
(c,o) Lo

Can we apply the inductive rule to (while true do skip, o)?

(b,o) Uy true  (c,o) Lo’ (while bdo c, o) || o
(while bdo c, o) || o
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Big-Step Semantics

(e,o)lUn (c,o{x~ n}) | o’
(newvar x :=einc, o) | o’{x ~ o x}

Compared to the small-step semantics:

n=lelinepo  (C.o{x~n}) — (¢'.o’) o'x=|n]
(newvar x :=einc, o) — (newvar x :=n’in ¢, o’{x ~ o x})

(newvar x := e in skip, o) — (skip, o)
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Big-Step Semantics

Also, we could add rules to handle the abort case. For instance,

(e,o) || abort (co,0) | abort
(x := e,o) || abort (co;c1,0) || abort
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Equivalence between big-step and small-step semantics

For all c and o,
» (c,o) | abort iff (c,0) —* abort

» (c,o) o’ iff (c,07) — (skip, o)
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Small-step vs. big-step

> Small-step can clearly model more complex features, like
concurrency, divergence, and runtime errors.

> Although one-step-at-a-time evaluation is useful for proving
certain properties, in some cases it is unnecessary work to
talk about each small step.

> Big-step semantics more closely models a recursive
interpreter.

> Big-steps may make it quicker to prove things, because there
are fewer rules. The “boring” rules of the small-step semantics
that specify order of evaluation are folded in big-step rules.

» Big-step: all programs without final configurations (infinite
loops, getting stuck) look the same. So you sometimes can’t
prove things related to these kinds of configurations.

107/111



Summary of operational semantics

> Precise specification of dynamic semantics
Simple and abstract (compared to implementations)

> No low-level details such as memory management, data
layout, etc

v

v

Basis for some proofs about languages

v

Basis for some reasoning about particular programs

v

Point of reference for other semantics
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Recall lambda calculus

Syntax
(Term) M,N == x| Ax.M | MN

Small-step SOS (reduction rules):

M— M
(Ax. M) N — M[N/x] xX. M— x. M’
M— M’ N— N
MN— M'N MN— MN’

This semantics is non-deterministic.

Can we have contextual semantics and big-step semantics?
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More on lambda calculus

Syntax
(Term) M,N == x| Ax.M | MN
Contextual semantics (still non-deterministic):

(Redex) r == (Ax.M)N
(Context) & = []| Ax.E| EN| ME

Local reduction rule:

(Ax. M) N — M[N/x]

Global reduction rule:

r—mMm
&lr] — &[M]
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More on lambda calculus

Syntax
(Term) M,N == x| Ax.M | MN

Big-step semantics:

My M
x| x Ax. M| ax. M

M| ax. M N|N M[N’/x] | P

MN | P

Is this equivalent to the small-step semantics?
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