Assignment on Operational Semantics

All the problems use the language HW whose syntax and small-step opera-

tional semantics are given in the appendix at the end of this document.

1. Suppose (¢1 5¢2,0) —* (c2,0"). Show that it is not necessarily the case

that (¢1,0) —* (skip, o’).

. In this problem we add the expressions z++4 and +-4x to the language
HW. We extend the syntax as follows:

(IEzp) e == ... |z++ | ++z

The expression z+- returns the value of the variable x and then incre-
ments z (i.e. updates the value of x to be one greater than the old value).
Its semantics can be formalized as follows:

o(z) = n]
(r4+4,0) — (n,0{z ~ [n] +1})

(a) Give the small-step operational semantics rule for +4x, which in-
crements x and then returns the result.

(b) Give the full execution path for the program
while z < 2 do z := (z++) + (++2)
from the initial state {z ~~ 1}.

. In this problem we add “side-effecting expressions” to the language HW.
We extend the syntax as follows:

(IEzp) e == ... | docreturne

The new expression first runs the command ¢ and then returns the value
of e. For example, do x := 1 return x will set z to 1 and return 1.

(a) Give the small-step operational semantics rules for the new expression
do ¢ return e.

(b) We define < between two expressions as follows (here we write —*
for zero-or-multiple steps of —):

e1 < ep iff
VO',nl,l’lz,O'l,O'g. ((61,0’) — (nl,al)) A ((62,0’) —* (112,0'2))
= (Im] < [n2])



For each of the following properties, does it hold? If your answer is
yes, just say yes. If your answer is no, give a counterexample (that
is, in (i) and (ii), instantiate eq, es so that the relation < breaks; in
(iii), instantiate e so that e < e; in (iv), instantiate eg, ea, e3 so that
the implication fails) and explain why the property does not hold at
your example.

i. Vey,eq. (e1+e3) <(e1 +e2+1)
ii. Vey,es. (e1 +e2) < (ea+e1+1)
iii. Ve. =(e < ¢)
iv. Vey,eqa,e3. (61 < e2) A(ex <e3) = (e; <e3)



Appendix: The Language HW

Syntax:
(IEzp) e == ml|z|ede]|...
(BEzp) b == true |false |e<e]| ...
(Comm) ¢ == skip | z:=e€ | c;c | if b then c else ¢ | while b do ¢
(State) o €  Var— Nat

Small-step operational semantics rules:

(e1,0) — (e1,0) (e2,0) — (e3,0”)
(e1 4+ e2,0) — (e} + e2,07) (n+eg,0) — (n+e),0")
ni] + [n2] = [n] o(z) = n]
(n; + ny,0) — (n,0) (x,0) — (n,0)
(e1,0) — (e1,0") (e2,0) — (e5,0”)
(e1 < eg,0) — (e} < ea,0") n<eyo)— (n<eh o)
[n1] < [no] [ni] > [ny]
(n; < ng,0) — (true, o) (n; < ng,0) — (false, 0)
(e,0) — (¢/,0’)
(x:=e,0) — (z:=¢€,0") (x :=mn,0) — (skip,o{z ~ [n]})
(CU’ U) — (067 UI)
(co3c1, 0) — (ch5¢1, 0') (skip; ey, 0) — (c1, 0)

(b,O’) — (b/70-/)
(if b then ¢g else ¢1,0) — (if ¥’ then ¢j else ¢1,07)

(if true then ¢ else c1, ) — (co, o)

(if false then ¢j else ¢1, 0) — (¢1, 0)

(while b do ¢,0) — (if b then (c¢;while b do ¢) else skip, o)
Zero-or-more steps:
(c,0) =0 (c, ") it (c,0)=(c,0")
(c,0) =Ft1 (o) iff 3" 0" (c,0) = (",0") A (", 0") =F (¢, o)

(c,0) =* (¢, d’) iff k. (c,0) =F (,0)



