
Hoare Logic

1 / 191

Floyd-Hoare Logic

This class is concerned with Floyd-Hoare Logic
▶ also known just as Hoare Logic

Hoare Logic is a method of reasoning mathematically about
imperative programs

It is the basis of mechanized program verification systems

It is a kind of axiomatic semantics of imperative programs

Developments to the logic still under active development, e.g.
▶ separation logic (reasoning about pointers)
▶ concurrent program logics

2 / 191

A simple imperative language

(IntExp) e ::= n
| x
| e + e | e − e | . . .

(BoolExp) b ::= true | false
| e = e | e < e | e > e
| ¬b | b ∧ b | b ∨ b | . . .

(Comm) c ::= skip
| x := e
| c ; c
| if b then c else c
| while b do c

(State) σ ∈ Var→ Int

3 / 191

Outline

Program Specifications using Hoare’s Notation

Inference Rules of Hoare Logic

Automated Program Verification

Soundness and Completeness

Discussions

4 / 191

Outline

Program Specifications using Hoare’s Notation

Inference Rules of Hoare Logic

Automated Program Verification

Soundness and Completeness

Discussions

5 / 191

Specifications of imperative programs

6 / 191

Hoare’s notation (Hoare triples)

For a program c,
▶ partial correctness specification:

{p}c{q}

▶ total correctness specification:

[p]c[q]

Here p and q are assertions, i.e., conditions on the program
variables used in c.
▶ p is called precondition, and q is called postcondition

Hoare’s original notation was p{c}q not {p}c{q}, but the latter form
is now more widely used

7 / 191

Meanings of Hoare triples

A partial correctness specification {p}c{q} is valid, iff
▶ if c is executed in a state initially satisfying p
▶ and if the execution of c terminates
▶ then the final state satisfies q

It is “partial” because for {p}c{q} to be true it is not necessary for
the execution of c to terminate when started in a state satisfying p

It is only required that if the execution terminates, then q holds

8 / 191

Meanings of Hoare triples

A partial correctness specification {p}c{q} is valid, iff
▶ if c is executed in a state initially satisfying p
▶ and if the execution of c terminates
▶ then the final state satisfies q

A total correctness specification [p]c[q] is valid, iff
▶ if c is executed in a state initially satisfying p
▶ then the execution of c terminates
▶ and the final state satisfies q

Informally: Total correctness = Termination + Partial correctness

9 / 191

Examples of program specs

{x = 1} x := x + 1 {x = 2} valid

{x = 1} x := x + 1 {x = 3} invalid

{x − y > 3} x := x − y {x > 2} valid

[x − y > 3] x := x − y [x > 2] valid

{x ≤ 10} while x , 10 do x := x + 1 {x = 10} valid

[x ≤ 10] while x , 10 do x := x + 1 [x = 10] valid

{true} while x , 10 do x := x + 1 {x = 10} valid

[true] while x , 10 do x := x + 1 [x = 10] invalid

{x = 1} while true do skip {x = 2} valid

10 / 191

Examples of program specs

{x = 1} x := x + 1 {x = 2} valid

{x = 1} x := x + 1 {x = 3} invalid

{x − y > 3} x := x − y {x > 2} valid

[x − y > 3] x := x − y [x > 2] valid

{x ≤ 10} while x , 10 do x := x + 1 {x = 10} valid

[x ≤ 10] while x , 10 do x := x + 1 [x = 10] valid

{true} while x , 10 do x := x + 1 {x = 10} valid

[true] while x , 10 do x := x + 1 [x = 10] invalid

{x = 1} while true do skip {x = 2} valid

11 / 191

Examples of program specs

{x = 1} x := x + 1 {x = 2} valid

{x = 1} x := x + 1 {x = 3} invalid

{x − y > 3} x := x − y {x > 2} valid

[x − y > 3] x := x − y [x > 2] valid

{x ≤ 10} while x , 10 do x := x + 1 {x = 10} valid

[x ≤ 10] while x , 10 do x := x + 1 [x = 10] valid

{true} while x , 10 do x := x + 1 {x = 10} valid

[true] while x , 10 do x := x + 1 [x = 10] invalid

{x = 1} while true do skip {x = 2} valid

12 / 191

Examples of program specs

{x = 1} x := x + 1 {x = 2} valid

{x = 1} x := x + 1 {x = 3} invalid

{x − y > 3} x := x − y {x > 2} valid

[x − y > 3] x := x − y [x > 2] valid

{x ≤ 10} while x , 10 do x := x + 1 {x = 10} valid

[x ≤ 10] while x , 10 do x := x + 1 [x = 10] valid

{true} while x , 10 do x := x + 1 {x = 10} valid

[true] while x , 10 do x := x + 1 [x = 10] invalid

{x = 1} while true do skip {x = 2} valid

13 / 191

Examples of program specs

{x = 1} x := x + 1 {x = 2} valid

{x = 1} x := x + 1 {x = 3} invalid

{x − y > 3} x := x − y {x > 2} valid

[x − y > 3] x := x − y [x > 2] valid

{x ≤ 10} while x , 10 do x := x + 1 {x = 10} valid

[x ≤ 10] while x , 10 do x := x + 1 [x = 10] valid

{true} while x , 10 do x := x + 1 {x = 10} valid

[true] while x , 10 do x := x + 1 [x = 10] invalid

{x = 1} while true do skip {x = 2} valid

14 / 191

Examples of program specs

{x = 1} x := x + 1 {x = 2} valid

{x = 1} x := x + 1 {x = 3} invalid

{x − y > 3} x := x − y {x > 2} valid

[x − y > 3] x := x − y [x > 2] valid

{x ≤ 10} while x , 10 do x := x + 1 {x = 10} valid

[x ≤ 10] while x , 10 do x := x + 1 [x = 10] valid

{true} while x , 10 do x := x + 1 {x = 10} valid

[true] while x , 10 do x := x + 1 [x = 10] invalid

{x = 1} while true do skip {x = 2} valid

15 / 191

Examples of program specs

{x = 1} x := x + 1 {x = 2} valid

{x = 1} x := x + 1 {x = 3} invalid

{x − y > 3} x := x − y {x > 2} valid

[x − y > 3] x := x − y [x > 2] valid

{x ≤ 10} while x , 10 do x := x + 1 {x = 10} valid

[x ≤ 10] while x , 10 do x := x + 1 [x = 10] valid

{true} while x , 10 do x := x + 1 {x = 10} valid

[true] while x , 10 do x := x + 1 [x = 10] invalid

{x = 1} while true do skip {x = 2} valid

16 / 191

Examples of program specs

{x = 1} x := x + 1 {x = 2} valid

{x = 1} x := x + 1 {x = 3} invalid

{x − y > 3} x := x − y {x > 2} valid

[x − y > 3] x := x − y [x > 2] valid

{x ≤ 10} while x , 10 do x := x + 1 {x = 10} valid

[x ≤ 10] while x , 10 do x := x + 1 [x = 10] valid

{true} while x , 10 do x := x + 1 {x = 10} valid

[true] while x , 10 do x := x + 1 [x = 10] invalid

{x = 1} while true do skip {x = 2} valid

17 / 191

Total correctness

Informally: Total correctness = Termination + Partial correctness

Total correctness is the ultimate goal
▶ it is usually easier to show partial correctness and termination

separately

Termination is usually straightforward to show, but there are
examples where it is not: no one knows whether the program
below terminates for all values of x

while x > 1 do
if odd(x) then x := (3 ∗ x) + 1 else x := x/2

18 / 191

Logical variables

{x = x0 ∧ y = y0} r := x ; x := y ; y := r {x = y0 ∧ y = x0}

This says that if the execution of r := x ; x := y ; y := r terminates
(which it does), then the values of x and y are exchanged.

The variables x0 and y0 are used to name the initial values of
program variables x and y.
▶ Used in assertions only. Not occur in the program.
▶ Have constant values.

They are called logical variables. (Sometimes it is also called
ghost variables.)

19 / 191

More simple examples

▶ {x = x0 ∧ y = y0} x := y ; y := x {x = y0 ∧ y = x0}

▶ This says that x := y ; y := x exchanges the values of x and y
▶ This is not valid

▶ {true}c{q}
▶ This says that whenever c terminates, then q holds

▶ [true]c[q]
▶ This says that c always terminates and ends in a state where q

holds

▶ {p}c{true}
▶ This is valid for every condition p and every command c

▶ [p]c[true]
▶ This says that c terminates if initially p holds
▶ It says nothing about the final state

20 / 191

More simple examples

▶ {x = x0 ∧ y = y0} x := y ; y := x {x = y0 ∧ y = x0}

▶ This says that x := y ; y := x exchanges the values of x and y
▶ This is not valid

▶ {true}c{q}
▶ This says that whenever c terminates, then q holds

▶ [true]c[q]
▶ This says that c always terminates and ends in a state where q

holds

▶ {p}c{true}
▶ This is valid for every condition p and every command c

▶ [p]c[true]
▶ This says that c terminates if initially p holds
▶ It says nothing about the final state

21 / 191

More simple examples

▶ {x = x0 ∧ y = y0} x := y ; y := x {x = y0 ∧ y = x0}

▶ This says that x := y ; y := x exchanges the values of x and y
▶ This is not valid

▶ {true}c{q}
▶ This says that whenever c terminates, then q holds

▶ [true]c[q]
▶ This says that c always terminates and ends in a state where q

holds

▶ {p}c{true}
▶ This is valid for every condition p and every command c

▶ [p]c[true]
▶ This says that c terminates if initially p holds
▶ It says nothing about the final state

22 / 191

More simple examples

▶ {x = x0 ∧ y = y0} x := y ; y := x {x = y0 ∧ y = x0}

▶ This says that x := y ; y := x exchanges the values of x and y
▶ This is not valid

▶ {true}c{q}
▶ This says that whenever c terminates, then q holds

▶ [true]c[q]
▶ This says that c always terminates and ends in a state where q

holds

▶ {p}c{true}
▶ This is valid for every condition p and every command c

▶ [p]c[true]
▶ This says that c terminates if initially p holds
▶ It says nothing about the final state

23 / 191

More simple examples

▶ {x = x0 ∧ y = y0} x := y ; y := x {x = y0 ∧ y = x0}

▶ This says that x := y ; y := x exchanges the values of x and y
▶ This is not valid

▶ {true}c{q}
▶ This says that whenever c terminates, then q holds

▶ [true]c[q]
▶ This says that c always terminates and ends in a state where q

holds

▶ {p}c{true}
▶ This is valid for every condition p and every command c

▶ [p]c[true]
▶ This says that c terminates if initially p holds
▶ It says nothing about the final state

24 / 191

Specification can be tricky

“The program must set y to the maximum of x and y”

[true]c[y = max(x, y)]
▶ A suitable program:

▶ if x ≥ y then y := x else skip
▶ Another?

▶ if x ≥ y then x := y else skip
▶ Or even?

▶ y := x

Later you will be able to prove that these programs are all
“correct”...

The postcondition y = max(x, y) says “y is the maximum of x and
y in the final state”

25 / 191

Specification can be tricky

“The program must set y to the maximum of x and y”

[true]c[y = max(x, y)]

▶ A suitable program:
▶ if x ≥ y then y := x else skip

▶ Another?
▶ if x ≥ y then x := y else skip

▶ Or even?
▶ y := x

Later you will be able to prove that these programs are all
“correct”...

The postcondition y = max(x, y) says “y is the maximum of x and
y in the final state”

26 / 191

Specification can be tricky

“The program must set y to the maximum of x and y”

[true]c[y = max(x, y)]
▶ A suitable program:

▶ if x ≥ y then y := x else skip

▶ Another?
▶ if x ≥ y then x := y else skip

▶ Or even?
▶ y := x

Later you will be able to prove that these programs are all
“correct”...

The postcondition y = max(x, y) says “y is the maximum of x and
y in the final state”

27 / 191

Specification can be tricky

“The program must set y to the maximum of x and y”

[true]c[y = max(x, y)]
▶ A suitable program:

▶ if x ≥ y then y := x else skip
▶ Another?

▶ if x ≥ y then x := y else skip

▶ Or even?
▶ y := x

Later you will be able to prove that these programs are all
“correct”...

The postcondition y = max(x, y) says “y is the maximum of x and
y in the final state”

28 / 191

Specification can be tricky

“The program must set y to the maximum of x and y”

[true]c[y = max(x, y)]
▶ A suitable program:

▶ if x ≥ y then y := x else skip
▶ Another?

▶ if x ≥ y then x := y else skip
▶ Or even?

▶ y := x

Later you will be able to prove that these programs are all
“correct”...

The postcondition y = max(x, y) says “y is the maximum of x and
y in the final state”

29 / 191

Specification can be tricky

“The program must set y to the maximum of x and y”

[true]c[y = max(x, y)]
▶ A suitable program:

▶ if x ≥ y then y := x else skip
▶ Another?

▶ if x ≥ y then x := y else skip
▶ Or even?

▶ y := x

Later you will be able to prove that these programs are all
“correct”...

The postcondition y = max(x, y) says “y is the maximum of x and
y in the final state”

30 / 191

Specification can be tricky

“The program must set y to the maximum of x and y”

The intended specification was probably not properly captured by

[true]c[y = max(x, y)]

The correct formalization of what was intended is probably

[x = x0 ∧ y = y0]c[y = max(x0, y0)]

The lesson
▶ it is easy to write the wrong specification!
▶ a proof system will not help since the incorrect programs

could have been proved “correct”
▶ testing would have helped!

31 / 191

A quick review of predicate logic

Predicate logic (a.k.a. first-order logic) forms the basis for program
specification
▶ It is used to describe the acceptable initial states, and

intended final states of programs

(IntExp) e ::= n
| x (program variables, logical variables)
| e + e | e − e | . . .

(Assn) p, q ::= true | false
| e = e | e < e | e > e | . . . (predicates)
| ¬p | p ∧ p | p ∨ p | p ⇒ p
| ∀x. p | ∃x. p

32 / 191

Derivation of assertions

⊢ p: there exists a proof or derivation of p following the inference
rules.

(Proof of formulas within predicate logic assumed known.)

33 / 191

Semantics of assertions

σ |= p: p holds (is true) in σ, or σ satisfies p

σ |= true always

σ |= false never

σ |= e1 = e2 iff ⟦e1⟧intexp σ = ⟦e2⟧intexp σ

σ |= ¬p iff ¬(σ |= p)

σ |= p ∧ q iff (σ |= p) ∧ (σ |= q)

σ |= p ∨ q iff (σ |= p) ∨ (σ |= q)

σ |= p ⇒ q iff (σ |= p)⇒ (σ |= q)

34 / 191

Universal quantification and existential quantification

σ |= ∀x. p iff ∀n. σ{x { n} |= p

σ |= ∃x. p iff ∃n. σ{x { n} |= p

▶ ∀x. p means

“for all values of x, the assertion p is true”
▶ ∃x. p means

“for some value of x, the assertion p is true”

35 / 191

Validity of assertions

▶ p holds in σ (i.e. σ |= p)

▶ p is valid: for all σ, p holds in σ

▶ p is unsatisfiable: ¬p is valid

36 / 191

Summary

Predicate logic forms the basis for program specification

It is used to describe the states of programs

We will next look at how to prove programs meet their
specifications

37 / 191

Outline

Program Specifications using Hoare’s Notation

Inference Rules of Hoare Logic

Automated Program Verification

Soundness and Completeness

Discussions

38 / 191

Floyd-Hoare logic

To construct formal proofs of partial correctness specifications,
axioms and rules of inference are needed

This is what Floyd-Hoare logic provides
▶ the formulation of the deductive system is due to Hoare
▶ some of the underlying ideas originated with Floyd

A proof in Floyd-Hoare logic is a sequence of lines, each of which
is either an axiom of the logic or follows from earlier lines by a rule
of inference of the logic
▶ proofs can also be trees, if you prefer

A formal proof makes explicit what axioms and rules of inference
are used to arrive at a conclusion

39 / 191

Judgments

Three kinds of things that can be judgments
▶ predicate logic formulas, e.g. x + 1 > x
▶ partial correctness specification {p}c{q}
▶ total correctness specification [p]c[q]

⊢ J means J can be proved
▶ how to prove predicate logic formulas assumed known
▶ Hoare logic provides axioms and rules for proving program

correctness specifications

40 / 191

Recall our simple imperative language

(IntExp) e ::= n
| x
| e + e | e − e | . . .

(BoolExp) b ::= true | false
| e = e | e < e | e > e
| ¬b | b ∧ b | b ∨ b | . . .

(Comm) c ::= skip
| x := e
| c ; c
| if b then c else c
| while b do c

41 / 191

The assignment rule of Hoare logic

{p[e/x]} x := e {p}
(as)

The most central aspect of imperative languages is reduced to
simple syntactic formula substitution!

Examples:

{y + 1 = 42} x := y + 1 {x = 42}

{42 = 42} x := 42 {x = 42}

{x − y > 3} x := x − y {x > 3}

{x + 1 > 0} x := x + 1 {x > 0}

42 / 191

The assignment rule of Hoare logic

{p[e/x]} x := e {p}
(as)

The most central aspect of imperative languages is reduced to
simple syntactic formula substitution!

Examples:

{y + 1 = 42} x := y + 1 {x = 42}

{42 = 42} x := 42 {x = 42}

{x − y > 3} x := x − y {x > 3}

{x + 1 > 0} x := x + 1 {x > 0}

43 / 191

The assignment rule of Hoare logic

{p[e/x]} x := e {p}
(as)

Many people feel the assignment axiom is “backwards”.

One common erroneous intuition is that it should be

{p} x := e {p[x/e]}

It leads to nonsensical examples like:

{x = 0} x := 1 {x = 0}

44 / 191

The assignment rule of Hoare logic

{p[e/x]} x := e {p}
(as)

Many people feel the assignment axiom is “backwards”.

Another erroneous intuition is that it should be

{p} x := e {p[e/x]}

It leads to nonsensical examples like:

{x = 0} x := 1 {1 = 0}

45 / 191

The assignment rule of Hoare logic

{p[e/x]} x := e {p}
(as)

Many people feel the assignment axiom is “backwards”.

A third kind of erroneous intuition is that it should be

{p}x := e{p ∧ x = e}

It leads to nonsensical examples like:

{x = 5} x := x + 1 {x = 5 ∧ x = x + 1}

46 / 191

A forward assignment rule (due to Floyd)

{p} x := e {∃v. x = e[v/x] ∧ p[v/x]}
(as-fw)

Here v is a fresh variable (i.e. doesn’t equal x or occur in p or e)

Example

{x = 1} x := x + 1 {∃v. x = (x + 1)[v/x] ∧ (x = 1)[v/x]}

Simplifying the postcondition

{x = 1} x := x + 1 {∃v . x = v + 1 ∧ v = 1}

{x = 1} x := x + 1 {x = 2}

Forward rule equivalent to the standard one but harder to use

47 / 191

A forward assignment rule (due to Floyd)

{p} x := e {∃v. x = e[v/x] ∧ p[v/x]}
(as-fw)

Here v is a fresh variable (i.e. doesn’t equal x or occur in p or e)

Example

{x = 1} x := x + 1 {∃v. x = (x + 1)[v/x] ∧ (x = 1)[v/x]}

Simplifying the postcondition

{x = 1} x := x + 1 {∃v . x = v + 1 ∧ v = 1}

{x = 1} x := x + 1 {x = 2}

Forward rule equivalent to the standard one but harder to use

48 / 191

A forward assignment rule (due to Floyd)

{p} x := e {∃v. x = e[v/x] ∧ p[v/x]}
(as-fw)

Here v is a fresh variable (i.e. doesn’t equal x or occur in p or e)

Example

{x = 1} x := x + 1 {∃v. x = (x + 1)[v/x] ∧ (x = 1)[v/x]}

Simplifying the postcondition

{x = 1} x := x + 1 {∃v. x = v + 1 ∧ v = 1}

{x = 1} x := x + 1 {x = 2}

Forward rule equivalent to the standard one but harder to use

49 / 191

Strengthening precondition and weakening postcondition

Strengthening precedent (SP):

p ⇒ q {q}c{r}
{p}c{r}

(sp)

Weakening consequent (WC):

{p}c{q} q ⇒ r
{p}c{r}

(wc)

Note the two hypotheses are different kinds of judgments.

50 / 191

Strengthening precondition and weakening postcondition

Example:
{x = n} x := x + 1 {x = n + 1}

Here n is a logical variable.

Proof:

1. x = n ⇒ x + 1 = n + 1 (Predicate Logic)

2. {x + 1 = n + 1} x := x + 1 {x = n + 1} as

3. {x = n} x := x + 1 {x = n + 1} sp, 1, 2

51 / 191

Strengthening precondition and weakening postcondition

Example:
{r = x} z := 0 {r = x + (y ∗ z)}

1. r = x ⇒ r = x ∧ 0 = 0 (Predicate Logic)

2. {r = x ∧ 0 = 0} z := 0 {r = x ∧ z = 0} as

3. {r = x} z := 0 {r = x ∧ z = 0} sp, 1, 2

4. r = x ∧ z = 0⇒ r = x + (y ∗ z) (Predicate Logic)

5. {r = x} z := 0 {r = x + (y ∗ z)} wc, 3, 4

52 / 191

The consequence rule

The rules (sp) and (wc) are sometimes merged to the consequence
rule.

p ⇒ p′ {p′}c{q′} q′ ⇒ q
{p}c{q}

(conseq)

Note that this rule is not syntax directed.

53 / 191

The sequential composition rule

{p}c1{r} {r}c2{q}
{p}c1 ; c2{q}

(sc)

54 / 191

Example

{x = x0 ∧ y = y0} r := x; x := y; y := r {y = x0 ∧ x = y0}

Proof:

1. {x = x0 ∧ y = y0} r := x {r = x0 ∧ y = y0} as

2. {r = x0 ∧ y = y0} x := y {r = x0 ∧ x = y0} as

3. {r = x0 ∧ x = y0} y := r {y = x0 ∧ x = y0} as

4. {x = x0 ∧ y = y0} r := x; x := y; {r = x0 ∧ x = y0} sc, 1, 2

5. {x = x0 ∧ y = y0} r := x; x := y; y := r {y = x0 ∧ x = y0} sc, 4, 3

55 / 191

Example

{y > 3} x := 2 ∗ y; x := x − y {x ≥ 4}

Proof:

1. {x − y ≥ 4}x := x − y{x ≥ 4} as

2. {2y − y ≥ 4}x := 2 ∗ y{x − y ≥ 4} as

3. y > 3⇒ (2 ∗ y) − y ≥ 4 (Predicate Logic)

4. {y > 3}x := 2 ∗ y{x − y ≥ 4} sp, 2, 3

5. {y > 3} x := 2 ∗ y; x := x − y {x ≥ 4} sc, 1, 4

56 / 191

The skip rule

{p}skip{p}
(sk)

57 / 191

The conditional rule

{p ∧ b}c1{q} {p ∧ ¬b}c2{q}
{p}if b then c1 else c2{q}

(cd)

Example:

{true} if x < y then z := y else z := x {z = max(x, y)}

Proof (next slide)

58 / 191

The conditional rule

{p ∧ b}c1{q} {p ∧ ¬b}c2{q}
{p}if b then c1 else c2{q}

(cd)

Example:

{true} if x < y then z := y else z := x {z = max(x, y)}

Proof (next slide)

59 / 191

The conditional rule – example

1. {y = max(x, y)} z := y {z = max(x, y)} as

2. {x = max(x, y)} z := x {z = max(x, y)} as

3. true ∧ x < y ⇒ y = max(x, y)

4. true ∧ ¬(x < y)⇒ x = max(x, y)

5. {true ∧ x < y} z := y {z = max(x, y)} sp, 1, 3

6. {true ∧ ¬(x < y)} z := x {z = max(x, y)} sp, 2, 4

7. {true} if x < y then z := y else z := x {z = max(x, y)} cd, 5, 6

60 / 191

Review the “tricky-spec” example at the beginning

{true}c{y = max(x, y)}
▶ A suitable program:

▶ if x ≥ y then y := x else skip
▶ Another?

▶ if x ≥ y then x := y else skip
▶ Or even?

▶ y := x

Now let’s prove that these are all correct.

{x = x0 ∧ y = y0}c{y = max(x0, y0)}
Now let’s show that the first program above satisfies this spec.

61 / 191

Review the “tricky-spec” example at the beginning

{true}c{y = max(x, y)}
▶ A suitable program:

▶ if x ≥ y then y := x else skip
▶ Another?

▶ if x ≥ y then x := y else skip
▶ Or even?

▶ y := x

Now let’s prove that these are all correct.

{x = x0 ∧ y = y0}c{y = max(x0, y0)}
Now let’s show that the first program above satisfies this spec.

62 / 191

More rules

{p}c{q} {p′}c{q′}
{p ∧ p′}c{q ∧ q′}

(ca)
{p}c{q} {p′}c{q′}
{p ∨ p′}c{q ∨ q′}

(da)

These rules are useful for splitting a proof into independent bits
▶ prove {p}c{q1 ∧ q2} by separately proving both {p}c{q1} and
{p}c{q2}

Any proof with these rules could be done without using them
▶ i.e. they are theoretically redundant (proof omitted)
▶ however, useful in practice

All the rules till now also hold for total correctness.

63 / 191

The while rule

Partial correctness of while:

{i ∧ b} c {i}
{i} while b do c {i ∧ ¬b}

(whp)

i is called loop invariant .

It says that
▶ if executing c once preserves the truth of i, then

executing c any number of times also preserves the truth of i
▶ after a while command has terminated, the test must be false

64 / 191

Example

{x ≤ 10} while x , 10 do x := x + 1 {x = 10}

Proof:

1. {x + 1 ≤ 10} x := x + 1 {x ≤ 10} as

2. x ≤ 10 ∧ x , 10⇒ x + 1 ≤ 10

3. {x ≤ 10 ∧ x , 10} x := x + 1 {x ≤ 10} sp, 1, 2

4. {x ≤ 10} while x , 10 do x := x + 1 {x ≤ 10 ∧ ¬(x , 10)} whp, 3

5. x ≤ 10 ∧ ¬(x , 10)⇒ x = 10

6. {x ≤ 10} while x , 10 do x := x + 1 {x = 10} wc, 4, 5

65 / 191

Another example

Compute x/y. Store the quotient in z and the remainder in r .

{true}

r := x;

z := 0;

while y ≤ r do

r := r − y;

z := z + 1;

{r < y ∧ x = r + y ∗ z}

Loop invariant:
x = r + y ∗ z

66 / 191

How does one find loop invariant?

{i ∧ b} c {i}
{i} while b do c {i ∧ ¬b}

(whp)

Look at the facts:
▶ invariant i must hold initially
▶ with the negated test ¬b the invariant i must establish the

result
▶ when the test b holds, the body must leave the invariant i

unchanged

Think about how the loop works – the invariant should say that:
▶ what has been done so far together with what remains to be

done
▶ holds at each iteration of the loop
▶ and gives the desired result when the loop terminates

67 / 191

Finding loop invariant – example of factorial

{x = 0 ∧ n > 0 ∧ f = 1}

while x < n do

x := x + 1 ; f := f ∗ x;

{x = n ∧ f = n!}

An invariant is f = x!

But!! At end we need f = n!, but (whp) rule only gives ¬(x < n)

So, invariant needed: f = x! ∧ x ≤ n
▶ At end x ≤ n ∧ ¬(x < n)⇒ x = n

Often need to strengthen invariants to get them to work
▶ typical to add stuff to “carry along” like x ≤ n

68 / 191

Finding loop invariant – example of factorial

{x = 0 ∧ n > 0 ∧ f = 1}

while x < n do

x := x + 1 ; f := f ∗ x;

{x = n ∧ f = n!}

An invariant is f = x!

But!! At end we need f = n!, but (whp) rule only gives ¬(x < n)

So, invariant needed: f = x! ∧ x ≤ n
▶ At end x ≤ n ∧ ¬(x < n)⇒ x = n

Often need to strengthen invariants to get them to work
▶ typical to add stuff to “carry along” like x ≤ n

69 / 191

Finding loop invariant – another factorial

{x = n ∧ n > 0 ∧ f = 1}

while x > 0 do

f := f ∗ x ; x := x − 1;

{x = 0 ∧ f = n!}

Think how the loop works
▶ f stores the result so far
▶ x! is what remains to be computed
▶ n! is the desired result

An invariant is f ∗ x! = n!
▶ “result so far” ∗ “stuff to be done” = “desired result”
▶ decrease in x combines with increase in f to make invariant

70 / 191

Finding loop invariant – another factorial

{x = n ∧ n > 0 ∧ f = 1}

while x > 0 do

f := f ∗ x ; x := x − 1;

{x = 0 ∧ f = n!}

Think how the loop works
▶ f stores the result so far
▶ x! is what remains to be computed
▶ n! is the desired result

An invariant is f ∗ x! = n!
▶ “result so far” ∗ “stuff to be done” = “desired result”
▶ decrease in x combines with increase in f to make invariant

71 / 191

Finding loop invariant – another factorial

{x = n ∧ n > 0 ∧ f = 1}

while x > 0 do

f := f ∗ x ; x := x − 1;

{x = 0 ∧ f = n!}

An invariant is f ∗ x! = n!

But!! At end we need x = 0, but (whp) rule only gives ¬(x > 0)

So, we have to strengthen invariant: (f ∗ x! = n!) ∧ x ≥ 0
▶ At end x ≥ 0 ∧ ¬(x > 0)⇒ x = 0

72 / 191

Proving partial correctness

{true} while x , 10 do skip {x = 10}

Proof:

1. {true ∧ x , 10} skip {true ∧ x , 10} sk

2. true ∧ x , 10⇒ true

3. {true ∧ x , 10} skip {true} wc, 1, 2

4. {true} while x , 10 do skip {true ∧ ¬(x , 10)} whp, 3

5. true ∧ ¬(x , 10)⇒ x = 10

6. {true} while x , 10 do skip {x = 10} wc, 4, 5

73 / 191

Proving partial correctness

Another example:

1. {true} skip {true} sk

2. true ∧ true⇒ true

3. {true ∧ true} skip {true} sp, 1, 2

4. {true} while true do skip {true ∧ ¬true} whp, 3

74 / 191

The while rule for total correctness

The while commands are the only commands in our simple
language that can cause non-termination
▶ they are thus the only kind of command with a non-trivial

termination rule

The idea behind the while rule for total correctness is
▶ to prove while b do c terminates
▶ show that some non-negative metric (e.g. a loop counter)

decreases on each iteration of c
▶ this decreasing metric is called a variant

75 / 191

The while rule for total correctness

[i ∧ b ∧ (e = x0)] c [i ∧ (e < x0)] i ∧ b ⇒ e ≥ 0
[i] while b do c [i ∧ ¬b]

(wht)

Here x0 < fv(c) ∪ fv(e) ∪ fv(i) ∪ fv(b).

x0 is a logical variable. e is the variant of the loop.

Basic idea:
▶ The first premise: the metric is decreased by execution of c.
▶ The second premise: when the metric becomes negative, b is

false, and the loop terminates (invariant i is always satisfied).

76 / 191

The while rules

Partial correctness of while:

{i ∧ b} c {i}
{i} while b do c {i ∧ ¬b}

(whp)

Total correctness of while:

[i ∧ b ∧ (e = x0)] c [i ∧ (e < x0)] i ∧ b ⇒ e ≥ 0
[i] while b do c [i ∧ ¬b]

(wht)

where x0 < fv(c) ∪ fv(e) ∪ fv(i) ∪ fv(b).

This is the major rule that distinguishes the logic for total
correctness from partial correctness.

77 / 191

Proving total correctness

[x ≤ 10] while x , 10 do x := x + 1 [x = 10]

1. {x + 1 ≤ 10 ∧ 10 − (x + 1) < z} x := x + 1 {x ≤ 10 ∧ 10 − x < z} as

2. x ≤ 10 ∧ x , 10 ∧ 10 − x = z ⇒ x + 1 ≤ 10 ∧ 10 − (x + 1) < z

3. {x ≤ 10 ∧ x , 10 ∧ 10 − x = z} x := x + 1 {x ≤ 10 ∧ 10 − x < z} sp

4. x ≤ 10 ∧ x , 10⇒ 10 − x ≥ 0

5. [x ≤ 10] while x , 10 do x := x + 1 [x ≤ 10 ∧ ¬(x , 10)] wht

6. x ≤ 10 ∧ ¬(x , 10)⇒ x = 10

7. [x ≤ 10] while x , 10 do x := x + 1 [x = 10] wc

78 / 191

Termination specifications

Informally, Total correctness = Termination + Partial correctness

This informal equation can be represented by the following rules:

{p} c {q} [p] c [true]
[p] c [q]

[p] c [q]
{p} c {q}

[p] c [q]
[p] c [true]

Besides,

{p} c {q} if c contains no while commands
[p] c [q]

79 / 191

All rules

{p[e/x]} x := e {p}
(as)

{p}skip{p}
(sk)

{p}c1{r} {r}c2{q}
{p}c1 ; c2{q}

(sc)
{p ∧ b}c1{q} {p ∧ ¬b}c2{q}
{p}if b then c1 else c2{q}

(cd)

{i ∧ b} c {i}
{i} while b do c {i ∧ ¬b}

(whp)

[i ∧ b ∧ (e = x0)] c [i ∧ (e < x0)] i ∧ b ⇒ e ≥ 0
[i] while b do c [i ∧ ¬b]

(wht)

p ⇒ q {q}c{r}
{p}c{r}

(sp)
{p}c{q} q ⇒ r

{p}c{r}
(wc)

{p}c{q} {p′}c{q′}
{p ∧ p′}c{q ∧ q′}

(ca)
{p}c{q} {p′}c{q′}
{p ∨ p′}c{q ∨ q′}

(da)

80 / 191

Total correctness of factorial

[x = 0 ∧ n > 0 ∧ f = 1]

while x < n do

x := x + 1 ; f := f ∗ x;

[x = n ∧ f = n!]

Loop invariant:
i def
= (f = x! ∧ x ≤ n)

Loop variant:
e def

= (n − x)

81 / 191

Another factorial

The program:

c def
= f := 1 ; while x > 0 do (f := f ∗ x ; x := x − 1)

The specification:

[x = n] c [x < 0 ∨ f = n!]

Proof: we first prove the following sub-goals:

(G1)[x < 0] c [x < 0]
(G2)[x = n ∧ x ≥ 0] c [f = n!]

Then we apply the (da) and (sp) rules.

82 / 191

Another factorial (G1)

[x < 0]

f := 1;

[x < 0]

while x > 0 do

f := f ∗ x ; x := x − 1;

[x < 0]

83 / 191

Another factorial (G2)

[x = n ∧ x ≥ 0]

f := 1;

while x > 0 do

f := f ∗ x ; x := x − 1;

[f = n!]

84 / 191

Another factorial (G2)

[x = n ∧ x ≥ 0 ∧ f = 1]

while x > 0 do

f := f ∗ x ; x := x − 1;

[f = n!]

Loop invariant: (f ∗ x! = n!) ∧ x ≥ 0

Loop variant: x

85 / 191

Another factorial (G2)

[x = n ∧ x ≥ 0 ∧ f = 1]

while x > 0 do

f := f ∗ x ; x := x − 1;

[f = n!]

Loop invariant: (f ∗ x! = n!) ∧ x ≥ 0

Loop variant: x

86 / 191

Example of division

Can we prove?
[true]

r := x;

z := 0;

while y ≤ r do

r := r − y;

z := z + 1;

[r < y ∧ x = r + y ∗ z]

Loop invariant: x = r + y ∗ z

Loop variant: r

87 / 191

Example of division

[y > 0]

r := x;

z := 0;

while y ≤ r do

r := r − y;

z := z + 1;

[r < y ∧ x = r + y ∗ z]

Loop invariant: (x = r + y ∗ z) ∧ y > 0

Loop variant: r

88 / 191

Summary

We have given:
▶ a notation for specifying what a program does
▶ a way of proving that it meets its specification

Now we look at some ways of organizing proofs that make it easier
for humans to do the verification:
▶ derived rules
▶ annotating programs prior to proofs

Then we see how to automate program verification
▶ the automation mechanizes some of these ideas

89 / 191

Combining multiple proof steps

Proofs involve lots of tedious fiddly small steps

It is tempting to take shortcuts and apply several rules at once
▶ this increases the chance of making mistakes

Example:
▶ by assignment axiom & precondition strengthening

{true}r := x{r = x}

Rather than:
▶ by the assignment axiom

{x = x}r := x{r = x}
▶ by precondition strengthening with true⇒ x = x

{true}r := x{r = x}

90 / 191

Derived rule for assignment

p ⇒ q[e/x]
{p} x := e {q}

Derivation:

1. {q[e/x]} x := e {q} as
2. p ⇒ q[e/x] assumption
3. {p} x := e {q} sp, 1, 2

91 / 191

Derived rule for assignment

p ⇒ q[e/x]
{p} x := e {q}

Example:

1. r = x ⇒ r = x ∧ 0 = 0 predicate logic
2. {r = x} z := 0 {r = x ∧ z = 0} derived assignment

One less step than the original proof:

1. {r = x ∧ 0 = 0} z := 0 {r = x ∧ z = 0} as
2. r = x ⇒ r = x ∧ 0 = 0 predicate logic
3. {r = x} z := 0 {r = x ∧ z = 0} sp, 1, 2

92 / 191

Derived rule for sequenced assignment

{p} c {q[e/x]}
{p} c ; x := e {q}

Intuitively work backwards:
▶ push q “through” x := e, changing it to q[e/x]

Example:

1. {x = x0 ∧ y = y0} r := x {r = x0 ∧ y = y0} as
2. {x = x0 ∧ y = y0} r := x ; x := y {r = x0 ∧ x = y0} sequenced as

93 / 191

Derived while rule for partial correctness

p ⇒ i {i ∧ b} c {i} i ∧ ¬b ⇒ q
{p} while b do c {q}

Example:

1. x ≤ 10 ∧ x , 10⇒ (x + 1) ≤ 10

2. x ≤ 10⇒ x ≤ 10

3. {x ≤ 10 ∧ x , 10} x := x + 1 {x ≤ 10} derived as, 1

4. x ≤ 10 ∧ ¬(x , 10)⇒ x = 10

5. {x ≤ 10} while x , 10 do x := x + 1 {x = 10} derived wh, 2, 3, 4

94 / 191

Derived while rule for total correctness

p ⇒ i
i ∧ b ⇒ e ≥ 0
i ∧ ¬b ⇒ q
[i ∧ b ∧ (e = x0)] c [i ∧ (e < x0)]

[p] while b do c [q]

where x0 < fv(p) ∪ fv(q) ∪ fv(c) ∪ fv(e) ∪ fv(i) ∪ fv(b)

95 / 191

Derived rule for multiple sequential composition

p0 ⇒ q0

{q0}c0{p1} p1 ⇒ q1

. . .

{qn−1}cn−1{pn} pn ⇒ qn

{p0}c0 ; . . . ; cn−1{qn}
(msqn)

Derivation of msq1:

1. p0 ⇒ q0 assumption
2. {q0}c0{p1} assumption
3. {p0}c0{p1} sp, 1, 2
4. p1 ⇒ q1 assumption
5. {p0}c0{q1} wc, 3, 4

msqn derived from msqn−1 and sc.

96 / 191

Derived rule for multiple sequential composition

p0 ⇒ q0

{q0}c0{p1} p1 ⇒ q1

. . .

{qn−1}cn−1{pn} pn ⇒ qn

{p0}c0 ; . . . ; cn−1{qn}
(msqn)

Example:

1. {x = x0 ∧ y = y0} r := x {r = x0 ∧ y = y0} as

2. {r = x0 ∧ y = y0} x := y {r = x0 ∧ x = y0} as

3. {r = x0 ∧ x = y0} y := r {y = x0 ∧ x = y0} as

4. {x = x0 ∧ y = y0} r := x ; x := y ; y := r {y = x0 ∧ x = y0} msq3

97 / 191

Annotations

The sequential composition rule introduces a new assertion r

{p}c1{r} {r}c2{q}
{p}c1 ; c2{q}

(sc)

To apply this rule, one needs to find a suitable assertion r

If c2 is x := e, then the sequenced assignment gives q[e/x] for r

If c2 isn’t an assignment, then need some other way to choose r

Similarly, to use the (whp) rule, must invent an invariant

98 / 191

Annotate first

It is helpful to think up these assertions before you start the proof
and then annotate the program with them
▶ the information is then available when you need it in the proof
▶ this can help avoid you being bogged down in details
▶ the annotation should be true whenever control reaches that

point

99 / 191

Annotate first

For example, the following program could be annotated at the
points p1 and p2 indicated by the arrows:

{true}

r := x;

z := 0;

{r = x ∧ z = 0} ← p1

while y ≤ r do {x = r + y ∗ z} ← p2

r := r − y;

z := z + 1;

{r < y ∧ x = r + y ∗ z}

100 / 191

Summary

We have looked at two ways of organizing proofs that make it
easier for humans to apply them:
▶ deriving “bigger step” rules
▶ annotating programs

Next we see how these techniques can be used to mechanize
program verification

101 / 191

Outline

Program Specifications using Hoare’s Notation

Inference Rules of Hoare Logic

Automated Program Verification

Soundness and Completeness

Discussions

102 / 191

Automated program verification

We will describe the architecture of a simple program verifier

Justified with respect to the rules of Hoare logic

It is clear that
▶ proofs are long and boring, even if the program being verified

is quite simple
▶ lots of fiddly little details to get right, many of which are trivial,

e.g.
(r = x ∧ z = 0)⇒ (x = r + y ∗ z)

103 / 191

Automation

Goal: automate the routine bits of proofs in Hoare logic

Unfortunately, logicians have shown that it is impossible in principle
to design a decision procedure to decide automatically the truth or
falsehood of an arbitrary mathematical formula

This does not mean that one cannot have procedures that will
prove many useful theorems
▶ the non-existence of a general decision procedure merely

shows that one cannot hope to prove everything automatically
▶ in practice, it is quite possible to build a system that will

mechanize the boring and routine aspects of verification

The standard approach to this will be described now

104 / 191

Architecture of a verifier

105 / 191

Architecture of a verifier

Input: Hoare triple, or annotated specification
▶ users may need to insert some intermediate assertions

The system generates a set of purely mathematical formulas
called verification conditions (VCs)

If the verification conditions are provable, then the original
specification can be deduced from the axioms and rules of Hoare
logic

The verification conditions are passed to a theorem prover
program which attempts to prove them automatically
▶ if it fails, advice is sought from the user

106 / 191

Architecture of a verifier
The three steps in proving {p}c{q} with a verifier

1. The program c is annotated by inserting assertions that are
meant to hold at intermediate points
▶ tricky: needs intelligence and good understanding of how the

program works
▶ automating it is an artificial intelligence problem

2. A set of logic formulas called verification conditions (VCs) is
then generated from the annotated specification
▶ this is purely mechanical and easily done by a program

3. The verification conditions are proved
▶ needs automated theorem proving (i.e. artificial intelligence)

To improve automated verification one can try to
▶ reduce the number and complexity of the annotations required
▶ increase the power of the theorem prover
▶ still a research area

107 / 191

Architecture of a verifier
The three steps in proving {p}c{q} with a verifier

1. The program c is annotated by inserting assertions that are
meant to hold at intermediate points
▶ tricky: needs intelligence and good understanding of how the

program works
▶ automating it is an artificial intelligence problem

2. A set of logic formulas called verification conditions (VCs) is
then generated from the annotated specification
▶ this is purely mechanical and easily done by a program

3. The verification conditions are proved
▶ needs automated theorem proving (i.e. artificial intelligence)

To improve automated verification one can try to
▶ reduce the number and complexity of the annotations required
▶ increase the power of the theorem prover
▶ still a research area

108 / 191

Validity of VCs

Step 2 generates VCs. It will be shown that
▶ if one can prove all the verification conditions generated from
{p}c{q}, then ⊢ {p}c{q}

Step 2 converts a verification problem into a conventional
mathematical problem

The process will be illustrated with:

{true}
r := x;
z := 0;
while y ≤ r do

r := r − y ; z := z + 1;
{r < y ∧ x = r + y ∗ z}

109 / 191

Example: Step 1 (annotating assertions)

Step 1 is to insert annotations

{true}

r := x;

z := 0;

{r = x ∧ z = 0} ← p1

while y ≤ r do {x = r + y ∗ z} ← p2

r := r − y;

z := z + 1;

{r < y ∧ x = r + y ∗ z}

The annotations p1 and p2 are assertions which are intended to
hold whenever control reaches them

110 / 191

Example: Step 1 (annotating assertions)

{true}
r := x;
z := 0;
{r = x ∧ z = 0} ← p1

while y ≤ r do {x = r + y ∗ z} ← p2

r := r − y ; z := z + 1;
{r < y ∧ x = r + y ∗ z}

Control only reaches p1 once

Control reaches p2 each time the loop body is executed
▶ whenever this happens, p2 holds, even though the values of r

and z vary
▶ p2 is an invariant of the while command

111 / 191

Example: Steps 2 & 3 (generating and proving VCs)

Step 2 will generate the following four verification conditions

(1) true⇒ x = x ∧ 0 = 0

(2) r = x ∧ z = 0⇒ (x = r + (y ∗ z))

(3) (x = r + (y ∗ z)) ∧ y ≤ r ⇒ (x = (r − y) + (y ∗ (z + 1))

(4) (x = r + (y ∗ z)) ∧ ¬(y ≤ r)⇒ r < y ∧ (x = r + (y ∗ z))

Notice that these are statements of arithmetic
▶ the constructs of our programming language have been

“compiled away”

Step 3 consists in proving the four verification conditions
▶ easy with modern automatic theorem provers

112 / 191

Introduction to Dafny

Dafny is
▶ a programming language with built-in specification constructs;
▶ a program verifier for functional correctness of programs.

https://dafny.org/

113 / 191

https://dafny.org/

Examples in Dafny: pre- and post-conditions

method MultipleReturns(x: int, y: int) returns (more: int, less: int)
requires 0 < y
ensures less < x < more

{

more := x + y;
less := x - y;

}

Result:
Dafny program verifier finished with 2 verified, 0

errors

114 / 191

Examples in Dafny: loop invariant

method test (x: int) returns (r: int)
requires x <= 10
ensures r == 10

{

r := x;
while r < 10

invariant r <= 10
{

r := r + 1;
}

}

Result:
Dafny program verifier finished with 2 verified, 0

errors

115 / 191

Examples in Dafny: loop invariant

method test (x: int) returns (r: int)
requires x <= 10
ensures r == 10

{

r := x;
while r < 10

invariant r < 10
{

r := r + 1;
}

}

Result:
This loop invariant might not hold on entry.

This loop invariant might not be maintained by the

loop.

116 / 191

Dafny proves total correctness

From the tutorial:

Dafny proves that code terminates, i.e. does not loop forever, by
using decreases annotations. For many things, Dafny is able to
guess the right annotations, but sometimes it needs to be made
explicit. In fact, for all of the code we have seen so far, Dafny has
been able to do this proof on its own, which is why we haven’t seen
the decreases annotation explicitly yet.

117 / 191

Examples in Dafny: decreases annotation

method test (x: int) returns (r: int)
requires x <= 10
ensures r == 10

{

r := x;
while r < 10

invariant r <= 10
decreases 10 − r

{

r := r + 1;
}

}

Result:
Dafny program verifier finished with 2 verified, 0

errors

118 / 191

Technical details of a verifier

Next we will explain:

1. Properly annotated commands/specifications.

2. Verification condition generation.

119 / 191

Annotation of commands

An annotated command is a command with assertions embedded
within it

A command is properly annotated if assertions have been inserted
at the following places

(1) before each command ci in the command sequence
c1 ; c2 ; . . . ; cn if ci is not an assignment command

(2) after the word do in while commands

The inserted assertions should express the conditions one expects
to hold whenever control reaches the point at which the assertion
occurs

Can reduce number of annotations using weakest preconditions
(discuss later)

120 / 191

Annotation of specifications

{p}c{q} is properly annotated if c is a properly annotated command

Example: To be properly annotated, assertions should be inserted
at points p1 and p2 of the specification below

{x = n ∧ x ≥ 0}
f := 1;
{p1}

while x > 0 do {p2}

f := f ∗ x ; x := x − 1;
{x = 0 ∧ f = n!}

Suitable assertions would be

p1 : {f = 1 ∧ x = n ∧ x ≥ 0}
p2 : {(f ∗ x! = n!) ∧ x ≥ 0}

121 / 191

Verification condition generation

The algorithm for generating VCs from an annotated specification
{p}c{q} is recursive on the structure of c

We will describe it command by command using rules of the form:
▶ The VCs for C(c1, c2) are

▶ vc1, . . . , vcn
▶ together with the VCs for c1 and those for c2

▶ VC(C(c1, c2)) = {vc1, . . . , vcn} ∪ VC(c1) ∪ VC(c2)

Rules are chosen so that only one VC rule applies in each case
▶ applying them is then purely mechanical
▶ the choice is based on the syntax
▶ VC generation is deterministic

122 / 191

Justification of VCs

This process will be justified by showing that ⊢ {p}c{q} if all the
verification conditions can be proved

We will prove that for any c,
▶ assuming the VCs of {p}c{q} are provable
▶ then ⊢ {p}c{q} can be derived with the logic

Proof by induction on the structure of c
▶ base case: show the result holds for atomic commands, i.e.

skip and assignments
▶ inductive step: show that when c is not an atomic command,

then if the result holds for the constituent commands of c
(induction hypothesis), then it holds also for c

Thus the result holds for all commands

123 / 191

Justification of VCs

This process will be justified by showing that ⊢ {p}c{q} if all the
verification conditions can be proved

We will prove that for any c,
▶ assuming the VCs of {p}c{q} are provable
▶ then ⊢ {p}c{q} can be derived with the logic

Proof by induction on the structure of c
▶ base case: show the result holds for atomic commands, i.e.

skip and assignments
▶ inductive step: show that when c is not an atomic command,

then if the result holds for the constituent commands of c
(induction hypothesis), then it holds also for c

Thus the result holds for all commands

124 / 191

VCs for skip

The single verification condition generated by

{p} skip {q}

is
p ⇒ q

Example: The VC for

{x = 0} skip {x = 0}

is
x = 0⇒ x = 0

(which is clearly true)

125 / 191

Justification of VCs for skip

We must show that
if the VCs of {p} skip {q} are provable, then ⊢ {p} skip {q}

Proof:
▶ Assume p ⇒ q as it is the VC
▶ By (sk) rule and (wc) rule, ⊢ {p} skip {q}

126 / 191

VCs for assignments

The single verification condition generated by

{p} x := e {q}

is
p ⇒ q[e/x]

Example: The VC for

{x = 0} x := x + 1 {x = 1}

is
x = 0⇒ (x + 1) = 1

(which is clearly true)

127 / 191

Justification of VCs for assignments

We must show that
if the VCs of {p} x := e {q} are provable, then ⊢ {p} x := e {q}

Proof:
▶ Assume p ⇒ q[e/x] as it is the VC
▶ By derived assignment rule, ⊢ {p} x := e {q}

128 / 191

VCs for conditionals

The verification conditions generated from

{p}if b then c1 else c2{q}

are the union of

(1) the verification conditions generated by

{p ∧ b}c1{q}

(2) the verification conditions generated by

{p ∧ ¬b}c2{q}

129 / 191

VCs for conditionals

Example: The VCs for

{true} if x < y then z := y else z := x {z = max(x, y)}

are the union of

(1) the VCs generated by

{true ∧ x < y} z := y {z = max(x, y)}

(2) the VCs generated by

{true ∧ ¬(x < y)} z := x {z = max(x, y)}

130 / 191

Justification of VCs for conditionals

We must show that
if the VCs of {p}if b then c1 else c2{q} are provable, then
⊢ {p}if b then c1 else c2{q}

Proof:
▶ Assume the VCs of {p ∧ b}c1{q} and {p ∧ ¬b}c2{q}
▶ The inductive hypotheses tell us that if these VCs are provable

then the corresponding Hoare logic specs are provable
▶ i.e. ⊢ {p ∧ b}c1{q} and ⊢ {p ∧ ¬b}c2{q}
▶ By (cd) rule, ⊢ {p}if b then c1 else c2{q}

131 / 191

Review of properly annotated sequences

If c1 ; . . . ; cn is properly annotated, then it must be one of the forms
▶ c1 ; . . . ; cn−1 ; {r} cn

▶ c1 ; . . . ; cn−1 ; x := e

where c1 ; . . . ; cn−1 is properly annotated

132 / 191

VCs for sequences
▶ The verification conditions generated by

{p}c1 ; . . . ; cn−1 ; {r} cn{q}

(where cn is not an assignment) are the union of
(1) the verification conditions generated by

{p}c1 ; . . . ; cn−1{r}

(2) the verification conditions generated by

{r}cn{q}

▶ The verification conditions generated by

{p}c1 ; . . . ; cn−1 ; x := e{q}

are the verification conditions generated by

{p}c1 ; . . . ; cn−1{q[e/x]}

133 / 191

Example
The VCs for

{x = x0 ∧ y = y0} r := x ; x := y ; y := r {y = x0 ∧ x = y0}

are those generated by

{x = x0 ∧ y = y0} r := x ; x := y {(y = x0 ∧ x = y0)[r/y]}

which simplifies to

{x = x0 ∧ y = y0} r := x ; x := y {r = x0 ∧ x = y0}

The VCs for this are those generated by

{x = x0 ∧ y = y0} r := x {(r = x0 ∧ x = y0)[y/x]}

which simplifies to

{x = x0 ∧ y = y0} r := x {r = x0 ∧ y = y0}

134 / 191

Example continued
The only VC for

{x = x0 ∧ y = y0} r := x {r = x0 ∧ y = y0}

is
(x = x0 ∧ y = y0)⇒ (r = x0 ∧ y = y0)[x/r]

which simplifies to

(x = x0 ∧ y = y0)⇒ (x = x0 ∧ y = y0)

Thus the single VC for

{x = x0 ∧ y = y0} r := x ; x := y ; y := r {y = x0 ∧ x = y0}

is
(x = x0 ∧ y = y0)⇒ (x = x0 ∧ y = y0)

135 / 191

Justification of VCs for sequences (1)

If the VCs for
{p}c1 ; . . . ; cn−1 ; {r} cn{q}

are provable, then the VCs for

{p}c1 ; . . . ; cn−1{r} and {r}cn{q}

must both be provable

Hence by induction hypothesis,

⊢ {p}c1 ; . . . ; cn−1{r} and ⊢ {r}cn{q}

Hence by the (sc) rule

⊢ {p}c1 ; . . . ; cn{q}

136 / 191

Justification of VCs for sequences (2)

If the VCs for
{p}c1 ; . . . ; cn−1 ; x := e{q}

are provable, then the VCs for

{p}c1 ; . . . ; cn−1{q[e/x]}

are also provable

Hence by induction hypothesis,

⊢ {p}c1 ; . . . ; cn−1{q[e/x]}

Hence by the derived sequenced assignment rule

⊢ {p}c1 ; . . . ; cn−1 ; x := e{q}

137 / 191

VCs for while commands (partial correctness)

A properly annotated specification for while has the form

{p} while b do {i} c {q}

The annotation i is the loop invariant

The verification conditions generated by

{p} while b do {i} c {q}

are the union of

(1) p ⇒ i

(2) i ∧ ¬b ⇒ q

(3) the verification conditions generated by {i ∧ b}c{i}

138 / 191

Example
The VCs for

{r = x ∧ z = 0}
while y ≤ r do {x = r + y ∗ z}

r := r − y ; z := z + 1;
{r < y ∧ x = r + y ∗ z}

are the union of

(1) (r = x ∧ z = 0)⇒ (x = r + y ∗ z)

(2) (x = r + y ∗ z) ∧ ¬(y ≤ r)⇒ (r < y ∧ x = r + y ∗ z)

(3) the VCs for

{x = r + y ∗ z ∧ y ≤ r} r := r − y ; z := z + 1 {x = r + y ∗ z}

which consists of the single condition

x = r + y ∗ z ∧ y ≤ r ⇒ x = (r − y) + y ∗ (z + 1)

139 / 191

Justification of VCs for while (partial correctness)
If the VCs for

{p} while b do {i} c {q}

are provable, then

(1) p ⇒ i

(2) i ∧ ¬b ⇒ q

(3) the VCs generated by {i ∧ b}c{i}

are all provable

Hence by induction hypothesis,

⊢ {i ∧ b}c{i}

Hence by the derived while rule

⊢ {p} while b do c {q}

140 / 191

VCs for termination

Verification conditions are easily extended to total correctness

To generate total correctness verification conditions for while
commands, it is necessary to add a variant as an annotation in
addition to an invariant

No other extra annotations are needed for total correctness

VCs for while-free code same as for partial correctness

141 / 191

Annotations for while (total correctness)

A properly annotated total correctness specification of a while
command has the form

[p] while b do {i}[e] c [q]

where i is the invariant and e is the variant

Note that the variant is intended to be a non-negative expression
that decreases each round of the loop

The other annotations, which are enclosed in curly brackets, are
meant to be conditions that are true whenever control reaches
them (as before)

142 / 191

VCs for while (total correctness)

The verification conditions generated by

[p] while b do {i}[e] c [q]

are the union of

(1) p ⇒ i

(2) i ∧ ¬b ⇒ q

(3) i ∧ b ⇒ e ≥ 0

(4) the verification conditions generated by

{i ∧ b ∧ e = x0}c{i ∧ e < x0}

where x0 < fv(p) ∪ fv(q) ∪ fv(c) ∪ fv(e) ∪ fv(i) ∪ fv(b)

143 / 191

Example
The VCs for

[r = x ∧ y > 0 ∧ z = 0]
while y ≤ r do {x = r + y ∗ z ∧ y > 0}[r]

r := r − y ; z := z + 1;
[r < y ∧ x = r + y ∗ z]

are the union of

(1) (r = x ∧ y > 0 ∧ z = 0)⇒ (x = r + y ∗ z ∧ y > 0)

(2) x = r + y ∗ z ∧ y > 0 ∧ ¬(y ≤ r)⇒ (r < y ∧ x = r + y ∗ z)

(3) x = r + y ∗ z ∧ y > 0 ∧ (y ≤ r)⇒ (r ≥ 0)

(4) the VCs for

[x = r + y ∗ z ∧ y > 0 ∧ y ≤ r ∧ r = r0]
r := r − y ; z := z + 1
[x = r + y ∗ z ∧ y > 0 ∧ r < r0]

144 / 191

Example continued

The single VC for

[x = r + y ∗ z ∧ y > 0 ∧ y ≤ r ∧ r = r0]
r := r − y ; z := z + 1
[x = r + y ∗ z ∧ y > 0 ∧ r < r0]

is

x = r + y ∗ z ∧ y > 0 ∧ y ≤ r ∧ r = r0

⇒ x = (r − y) + y ∗ (z + 1) ∧ y > 0 ∧ (r − y) < r0

Note: To prove (r − y) < r0 we need to know y > 0

145 / 191

Summary

Have outlined the design of an automated program verifier

Annotated specifications “compiled to” mathematical statements
▶ if the statements (VCs) can be proved, the program is verified

Human help is required to give the annotations and prove the VCs

The algorithm was justified by an inductive proof

All the techniques introduced earlier are used
▶ derived rules
▶ annotation

146 / 191

Outline

Program Specifications using Hoare’s Notation

Inference Rules of Hoare Logic

Automated Program Verification

Soundness and Completeness

Discussions

147 / 191

Soundness and completeness

The set of inference rules gives us a logic system. This kind of
logic is called a program logic, which is designed specifically for
program verification.

We use ⊢ {p}c{q} to represent that there is a derivation of {p}c{q}
following the rules.

We use |= {p}c{q} to represent the meaning of {p}c{q}.

Soundness of the program logic:
If ⊢ {p}c{q}, we have |= {p}c{q}.
If ⊢ [p]c[q], we have |= [p]c[q].

Completeness of the program logic:
If |= {p}c{q}, we have ⊢ {p}c{q}.
If |= [p]c[q], we have ⊢ [p]c[q].

148 / 191

Soundness and completeness

Hoare logic is both sound and complete, provided that the
underlying logic is!
(Often, the underlying logic is sound but incomplete.)

We will prove this now.

149 / 191

Roadmap

Review of predicate logic
▶ syntax
▶ semantics
▶ soundness and completeness

Formal semantics of Hoare triples
▶ preconditions and postconditions
▶ semantics of commands
▶ soundness of Hoare axioms and rules
▶ completeness and relative completeness

150 / 191

Review of predicate logic

Syntax:

(IntExp) e ::= n | x | e + e | e − e | . . .

(Assn) p, q ::= true | false
| e = e | e < e | e > e | . . . (predicates)
| ¬p | p ∧ p | p ∨ p | p ⇒ p
| ∀x. p | ∃x. p

151 / 191

Review of predicate logic

A more general version:

(IntExp) e ::= n | x | f(e, . . . , e)

(Assn) p, q ::= true | false | P(e, . . . , e)
| ¬p | p ∧ p | p ∨ p | p ⇒ p
| ∀x. p | ∃x. p

But we will use the simpler one.

152 / 191

Semantics of assertions

σ |= true always

σ |= false never

σ |= e1 = e2 iff ⟦e1⟧intexp σ = ⟦e2⟧intexp σ

σ |= ¬p iff ¬(σ |= p)

σ |= p ∧ q iff (σ |= p) ∧ (σ |= q)

σ |= p ∨ q iff (σ |= p) ∨ (σ |= q)

σ |= p ⇒ q iff (σ |= p)⇒ (σ |= q)

σ |= ∀x. p iff ∀n. σ{x { n} |= p

σ |= ∃x. p iff ∃n. σ{x { n} |= p

153 / 191

Validity of assertions

▶ p holds in σ: σ |= p

▶ p is valid: for all σ, p holds in σ. We will write |= p.

▶ p is unsatisfiable: ¬p is valid

154 / 191

Soundness and completeness of predicate logic

Deductive system for predicate logic specifies ⊢ p, i.e. p is provable

Soundness: if ⊢ p then |= p
▶ proof by induction on derivation of ⊢ p

Completeness: if |= p then ⊢ p
▶ Gödel’s incompleteness theorem: there exists no proof

system for arithmetic in which all valid assertions are
systematically derivable

155 / 191

Semantics of Hoare triples

Recall that {p}c{q} is valid, iff
▶ if c is executed in a state initially satisfying p
▶ and if the execution of c terminates
▶ then the final state satisfies q

p and q are predicate logic formula

Will formalize semantics of {p}c{q} to express:
▶ if c is executed in a state σ such that σ |= p
▶ and if the execution of c starting in σ terminates in a state σ′

▶ this is the semantics of c

▶ then σ′ |= q

156 / 191

Review of small-step operational semantics
⟦e⟧intexp σ = n

(x := e, σ) −→ (skip, σ{x { n})

(c0, σ) −→ (c′0, σ
′)

(c0 ; c1, σ) −→ (c′0 ; c1, σ
′) (skip ; c1, σ) −→ (c1, σ)

⟦b⟧boolexp σ = true

(if b then c0 else c1, σ) −→ (c0, σ)

⟦b⟧boolexp σ = false

(if b then c0 else c1, σ) −→ (c1, σ)

⟦b⟧boolexp σ = true

(while b do c, σ) −→ (c ; while b do c, σ)

⟦b⟧boolexp σ = false

(while b do c, σ) −→ (skip, σ)

157 / 191

Semantics of Hoare triples

|= {p}c{q} iff ∀σ,σ′. (σ |= p)∧((c, σ) −→∗ (skip, σ′))⇒ (σ′ |= q)

|= [p]c[q] iff ∀σ. (σ |= p)⇒ ∃σ′. ((c, σ) −→∗ (skip, σ′))∧(σ′ |= q)

158 / 191

Soundness proof (for partial correctness)

Soundness: if ⊢ {p}c{q}, then |= {p}c{q}.

Proof by induction over the derivation of ⊢ {p}c{q}.

▶ base case: show the result holds if the last step of the
derivation is by axioms, i.e. the (sk) and (as) rules

▶ inductive step: show that when the last step of the derivation
is by applying a rule (with judgments as hypotheses), then if
the result holds for the judgments in the hypotheses of the
rule (induction hypothesis), then it holds also for the judgment
in the conclusion

Thus the result holds for all derivations using the logic rules.

You may also think this proof is by induction over the height of the
derivation tree.

159 / 191

Soundness proof (for partial correctness)

Soundness: if ⊢ {p}c{q}, then |= {p}c{q}.

Proof by induction over the derivation of ⊢ {p}c{q}.
▶ base case: show the result holds if the last step of the

derivation is by axioms, i.e. the (sk) and (as) rules
▶ inductive step: show that when the last step of the derivation

is by applying a rule (with judgments as hypotheses), then if
the result holds for the judgments in the hypotheses of the
rule (induction hypothesis), then it holds also for the judgment
in the conclusion

Thus the result holds for all derivations using the logic rules.

You may also think this proof is by induction over the height of the
derivation tree.

160 / 191

Recall the rules of Hoare logic

{p[e/x]} x := e {p}
(as)

{p}skip{p}
(sk)

{p}c1{r} {r}c2{q}
{p}c1 ; c2{q}

(sc)
{p ∧ b}c1{q} {p ∧ ¬b}c2{q}
{p}if b then c1 else c2{q}

(cd)

{i ∧ b} c {i}
{i} while b do c {i ∧ ¬b}

(whp)

p ⇒ q {q}c{r}
{p}c{r}

(sp)
{p}c{q} q ⇒ r

{p}c{r}
(wc)

161 / 191

“Soundness” of individual rules

Lemma (as): |= {p[e/x]} x := e {p}.

Lemma (sk): |= {p}skip{p}.

Lemma (sc): If |= {p}c1{r} and |= {r}c2{q}, then |= {p}c1 ; c2{q}.

Lemma (cd): If |= {p ∧ b}c1{q} and |= {p ∧ ¬b}c2{q}, then
|= {p}if b then c1 else c2{q}.

Lemma (whp): If |= {i ∧ b} c {i}, then |= {i} while b do c {i ∧ ¬b}.

Lemma (sp): If p ⇒ q and |= {q}c{r}, then |= {p}c{r}.

Lemma (wc): If |= {p}c{q} and q ⇒ r , then |= {p}c{r}.

162 / 191

“Soundness” of individual rules

Lemma (as): |= {p[e/x]} x := e {p}.

That is, we need to prove:
For all σ, σ′ and n, if σ |= p[e/x] and (x := e, σ) −→n (skip, σ′),
then σ′ |= p.

Substitution Lemma:
If σ |= p[e/x] and ⟦e⟧intexp σ = n, then σ{x { n} |= p.

163 / 191

“Soundness” of individual rules

Lemma (as): |= {p[e/x]} x := e {p}.

That is, we need to prove:
For all σ, σ′ and n, if σ |= p[e/x] and (x := e, σ) −→n (skip, σ′),
then σ′ |= p.

Substitution Lemma:
If σ |= p[e/x] and ⟦e⟧intexp σ = n, then σ{x { n} |= p.

164 / 191

Review of substitution

x[e/x] = e

y[e/x] = y

(e0 + e1)[e/x] = (e0[e/x])+ (e1[e/x])

(p ∧ q)[e/x] = (p[e/x]) ∧ (q[e/x])

(∀x. p)[e/x] = ∀x. p

(∀y. p)[e/x] = ∀y. (p[e/x]) if y < fv(e)

(∀y. p)[e/x] = ∀z. (p[z/y][e/x]) if y ∈ fv(e) and z fresh

. . .

Examples:

(x < 0 ∧ ∃x. x ≤ y)[y + 1/x] = y + 1 < 0 ∧ ∃x. x ≤ y

(x < 0 ∧ ∃x. x ≤ y)[x + 1/y] = x < 0 ∧ ∃z. z ≤ x + 1

165 / 191

Substitution Lemma

If σ |= p[e/x] and ⟦e⟧intexp σ = n, then σ{x { n} |= p.

Proof: By induction over the structure of p.

166 / 191

“Soundness” of individual rules

Lemma (sc): If |= {p}c1{r} and |= {r}c2{q}, then |= {p}c1 ; c2{q}.

Definition Safen(c, σ, q) iff

for any σ′, if (c, σ) −→n (skip, σ′), then σ′ |= q.

We say Safe(c, σ, q) iff Safen(c, σ, q) holds for all n.

Lemma 1: For any n, c1, c2, σ, r and q, if

1. Safe(c1, σ, r),

2. for any σ2 and m, if σ2 |= r and m < n, then Safem(c2, σ2, q),

then Safen(c1 ; c2, σ, q).

Proof: By induction over n.

167 / 191

“Soundness” of individual rules

Lemma (sc): If |= {p}c1{r} and |= {r}c2{q}, then |= {p}c1 ; c2{q}.

Definition Safen(c, σ, q) iff

for any σ′, if (c, σ) −→n (skip, σ′), then σ′ |= q.

We say Safe(c, σ, q) iff Safen(c, σ, q) holds for all n.

Lemma 1: For any n, c1, c2, σ, r and q, if

1. Safe(c1, σ, r),

2. for any σ2 and m, if σ2 |= r and m < n, then Safem(c2, σ2, q),

then Safen(c1 ; c2, σ, q).

Proof: By induction over n.

168 / 191

“Soundness” of individual rules

Lemma (sc): If |= {p}c1{r} and |= {r}c2{q}, then |= {p}c1 ; c2{q}.

Definition Safen(c, σ, q) iff

for any σ′, if (c, σ) −→n (skip, σ′), then σ′ |= q.

We say Safe(c, σ, q) iff Safen(c, σ, q) holds for all n.

Lemma 1: For any n, c1, c2, σ, r and q, if

1. Safe(c1, σ, r),

2. for any σ2 and m, if σ2 |= r and m < n, then Safem(c2, σ2, q),

then Safen(c1 ; c2, σ, q).

Proof: By induction over n.

169 / 191

“Soundness” of individual rules

Lemma (whp): If |= {i ∧ b} c {i}, then |= {i} while b do c {i ∧ ¬b}.

Lemma 2: For any n, c, b, σ and i, if

1. σ |= i,

2. for all σ1, if σ1 |= i ∧ b, then Safe(c, σ1, i),

then Safen(while b do c, σ, i ∧ ¬b).

Proof: By induction over n. Using Lemma 1.

170 / 191

“Soundness” of individual rules

Lemma (sp): If p ⇒ q and |= {q}c{r}, then |= {p}c{r}.

Lemma 3: For any c, σ, p, q and r , if

1. σ |= p,

2. p ⇒ q,

3. for all σ1, if σ1 |= q, then Safe(c, σ1, r),

then Safe(c, σ, r).

Other rules are similar.

171 / 191

Semantics and soundness based-on big-step semantics

The soundness can also be defined with respect to big-step
semantics. The proof is simpler.

172 / 191

Incompleteness of Hoare logic

Soundness: if ⊢ {p}c{q} then |= {p}c{q}

Completeness: if |= {p}c{q} then ⊢ {p}c{q}
▶ to show this not possible, first observe that for any p,

|= {true}skip{p} ⇔ |= p

⊢ {true}skip{p} ⇔ ⊢ p

thus, if Hoare logic was complete, then contradicting Gödel’s
theorem

▶ alternative proof (using computability theory):
|= {true}c{false} iff c does not halt. But the halting problem is
undecidable.

173 / 191

Relative completeness

Actual reason of incompleteness are rules (sp) and (wc) since they
are based on the validity of implications within predicate logic.

Therefore: separation of proof system (Hoare logic) and assertion
language (predicate logic)

One can show: if an “oracle” is available which decides whether a
given assertion is valid, then all valid partial correctness properties
can be systematically derived

=⇒ Relative completeness

174 / 191

Relative completeness

Theorem [Cook 1978]: Hoare Logic is relatively complete, i.e.,
if |= {p}c{q} then Γ ⊢ {p}c{q} where Γ = {p | (|= p)}

Thus: if we know that a partial correctness property is valid, then
we know that there is a corresponding derivation.

The proof uses the following concept: assume that, e.g.,
{p}c1 ; c2{q} has to be derived. This requires an intermediate
assertion r such that {p}c1{r} and {r}c2{q}. How to find it?

175 / 191

Weakest precondition

Definition: Given command c and assertion q, the weakest
precondition wp(c, q) is an assertion such that

σ |= wp(c, q) ⇔ (∀σ′. (c, σ) −→∗ (skip, σ′)⇒ σ′ |= q)

Corollary: For all p, c and q,

|= {p}c{q} ⇔ |= (p ⇒ wp(c, q))

176 / 191

Weakest precondition
Definition: An assertion language is called expressive if, for every
c and q, the weakest precondition wp(c, q) is an assertion in the
language.

The assertion language we have used is expressive.

Proof.

wp(skip, q) = q

wp(x := e, q) = q[e/x]

wp(c1 ; c2, q) = wp(c1,wp(c2, q))

wp(if b then c1 else c2, q) = (b ∧ wp(c1, q)) ∨ (¬b ∧ wp(c2, q))

For while, tricky encoding in first-order arithmetic using Gödel’s β
function (see Winskel’s book The formal semantics of
programming languages: an introduction)

177 / 191

Relative completeness

Lemma: For every c and q,

⊢ {wp(c, q)}c{q}

Proof by induction over the structure of c.

Proof of Cook’s Completeness Theorem. We have to show:
|= {p}c{q} ⇒ Γ ⊢ {p}c{q} where Γ = {p | (|= p)}.
▶ From the above lemma, we know ⊢ {wp(c, q)}c{q}
▶ Since |= {p}c{q}, we know |= p ⇒ wp(c, q).
▶ Thus p ⇒ wp(c, q) is in Γ.
▶ By the (sp) rule, we have Γ ⊢ {p}c{q}.

178 / 191

Summary

Hoare logic is sound

Hoare logic for our simple language is complete relative to an
oracle
▶ oracle must be able to prove p ⇒ wp(c, q)
▶ wp(c, q) must be expressible in assertion language

The incompleteness of the proof system for simple Hoare logic
stems from the weakness of the proof system of the assertion
language logic, not any weakness of the Hoare logic proof system.

Clarke showed relative completeness fails for complex languages

179 / 191

Outline

Program Specifications using Hoare’s Notation

Inference Rules of Hoare Logic

Automated Program Verification

Soundness and Completeness

Discussions

180 / 191

Formal semantics of a programming language

▶ Operational semantics
▶ Denotational semantics
▶ Axiomatic semantics

181 / 191

Axiomatic semantics

From wikipedia:

Axiomatic semantics is an approach based on mathematical logic
to proving the correctness of computer programs. It is closely
related to Hoare logic.

Axiomatic semantics define the meaning of a command in a
program by describing its effect on assertions about the program
state.

182 / 191

Example (Euclid)

From London et al.’s Proof rules for the programming language
Euclid (1978)

183 / 191

Summary of Hoare Logic

Hoare logic is a deductive proof system for Hoare triples {p}c{q}.

Formal proof is syntactic “symbol pushing”.
▶ The rules say “if you have a string of characters of this form,

you can obtain a new string of characters of this other form”
▶ Even if you don’t know what the strings are intended to mean,

provided the rules are designed properly and you apply them
correctly, you will get correct results (though not necessarily
the desired result)

Hoare logic is compositional.
▶ The structure of a program’s correctness proof mirrors the

structure of the program itself.

184 / 191

Coq Implementations

When encoding a logic into a proof assistant such as Coq, a
choice needs to be made between using a shallow and a deep
embedding.

Deep embedding:

1. define a datatype representing the syntax for your logic

2. give a model of the syntax

3. prove that axioms about your syntax are sound with respect to
the model

Shallow embedding: just start with a model, and prove entailments
between formulas

http://cstheory.stackexchange.com/questions/1370/

shallow-versus-deep-embeddings

185 / 191

http://cstheory.stackexchange.com/questions/1370/shallow-versus-deep-embeddings
http://cstheory.stackexchange.com/questions/1370/shallow-versus-deep-embeddings

From Software Foundations (Hoare.v)

186 / 191

From Software Foundations (Hoare.v)

187 / 191

From Software Foundations (Hoare.v)

188 / 191

From Software Foundations (Hoare.v)

189 / 191

From Software Foundations (HoareAsLogic.v)

190 / 191

From Software Foundations (HoareAsLogic.v)

191 / 191

	Program Specifications using Hoare's Notation
	Inference Rules of Hoare Logic
	Automated Program Verification
	Soundness and Completeness
	Discussions

