Assignment on Lambda Calculus

For your reference, we give the formalization of the untyped A-calculus in
the appendix at the end of this document.

1. In the untyped A-calculus, does the following property hold?
For any terms M and N, if M — N, then fo(M) = fu(N).

If it holds, just answer yes; otherwise, please give a counterexample (that
is, instantiate M and N such that M — N but fo(M) # fu(N)).

2. In the untyped A-calculus, the span of a term is the minimal number
of variables needed to write a term. It turns out that [-reduction can
increase the span of a term. To show this, find a closed term M such that
M —=* Az, dy. M (z y).

3. In this problem we add “let-bindings” to the untyped A-calculus.

Syntax (the syntax for Values is unchanged):

(Terms) M == ...|letza=MinM

New reduction rules (note v is a value):

let x =vin M — Mv/z] (LETV)

Ml—)M{
let z = M in My — let x = M in My

(LET)

(a) The (LETV) rule uses substitution, but since we have extended the
syntax of terms, the definition of substitution should be extended as
well. Give the definition of the substitution M[N/z] when M is in
the form of let-bindings.

(b) Reduce the following term to a normal form.
let c=An. dm. Af. dz. n f (m f x) in
(letb=Af. Az. f (f =) in
(leta=Af. Ax. f zin
(cba)

You can choose any reduction strategy. Please do not skip steps.



4. In the untyped A-calculus, we have the following encoding of pairs:

mkPair % gz Ay. Az, zzy
fst def Ap. p(Az. Ay. x)
snd def Ap. p(Az. Ay. y)

We would expect a correct encoding to show fst (mkPair z z) reduces to z.
But the following sequence of steps allegedly shows that fst (mkPair z z)
reduces to True:

(Ap. p(Az. My. x)) (Az. Ay. Az. zzy) 2z 2)
= (Ap.p(Az. Ay. x)) (\y. Az. zzy) 2)
= (Ap.p(Az. Ay. x)) (2. z22)
= (Az. zz2) (Az. M\y. x)
= (Az. Ay. z) (Az. Ay ) (A\x. \y. )
= (Ay. (Az. Ay. 2)) Az, \y. )
— Az Ay, x

(a) The sequence of steps is wrong. Find the wrong step(s).

(b) Show a correct sequence of steps that produces z but is otherwise
very similar to the sequence of steps shown above.

(¢) Extend the encoding to include a swap function. Given an encoding
of the pair (v1,v2) as input, swap should return an encoding of the
pair (ve,v1). You should write down a normal form, without using
abbreviations.



Appendix
A The Untyped A-Calculus

Syntax:
(Terms) M = z | Xe.M | M N
(Values) v == Xz. M
Reduction rules:
M — M’
(Az. M) N — M[N/z] Ax. M — Az M’
M — M’ N — N’
MN — M'N MN — MN’
Substitution:
z[N/z] =N
yIN/xl =y
(M N)[N'/z] = (M[N'/x]) (N[N'/x])
(Ax. M)[N/z] = Xx. M
(A\y. M)[N/z] = Ay. (M[N/x]), where y & fu(N)
(Ay. M)[N/z] = Az. (M[z/y])[N/z], where y € fu(IN) and z fresh

Free variables:
fulz) ={z}  fulMN)=fo(M)Ufo(N)  fo(Az. M) = fo(M) — {x}
Zero-or-more steps:
M =0 M’ iff M=M
M =k AN i IMY. M — M A M =% M
M —* M’ iff Ik, M —F M/

Normal form: a term containing no redex.
Closed term: a term containing no free variables.



