
Assignment on Lambda Calculus

For your reference, we give the formalization of the untyped λ-calculus in
the appendix at the end of this document.

1. In the untyped λ-calculus, does the following property hold?

For any terms M and N , if M → N , then fv(M) = fv(N).

If it holds, just answer yes; otherwise, please give a counterexample (that
is, instantiate M and N such that M → N but fv(M) ̸= fv(N)).

2. In the untyped λ-calculus, the span of a term is the minimal number
of variables needed to write a term. It turns out that β-reduction can
increase the span of a term. To show this, find a closed term M such that
M →∗ λx. λy. M (x y).

3. In this problem we add “let-bindings” to the untyped λ-calculus.

Syntax (the syntax for Values is unchanged):

(Terms) M ::= . . . | let x = M in M

New reduction rules (note v is a value):

let x = v in M → M [v/x]
(letv)

M1 → M ′
1

let x = M1 in M2 → let x = M ′
1 in M2

(let)

(a) The (letv) rule uses substitution, but since we have extended the
syntax of terms, the definition of substitution should be extended as
well. Give the definition of the substitution M [N/x] when M is in
the form of let-bindings.

(b) Reduce the following term to a normal form.

let c = λn. λm. λf. λx. n f (m f x) in
(let b = λf. λx. f (f x) in

(let a = λf. λx. f x in
(c b a)))

You can choose any reduction strategy. Please do not skip steps.

1

4. In the untyped λ-calculus, we have the following encoding of pairs:

mkPair
def
= λx. λy. λz. z x y

fst
def
= λp. p (λx. λy. x)

snd
def
= λp. p (λx. λy. y)

We would expect a correct encoding to show fst (mkPair z z) reduces to z.
But the following sequence of steps allegedly shows that fst (mkPair z z)
reduces to True:

(λp. p (λx. λy. x)) ((λx. λy. λz. z x y) z z)
→ (λp. p (λx. λy. x)) ((λy. λz. z z y) z)
→ (λp. p (λx. λy. x)) (λz. z z z)
→ (λz. z z z) (λx. λy. x)
→ (λx. λy. x) (λx. λy. x) (λx. λy. x)
→ (λy. (λx. λy. x)) (λx. λy. x)
→ λx. λy. x

(a) The sequence of steps is wrong. Find the wrong step(s).

(b) Show a correct sequence of steps that produces z but is otherwise
very similar to the sequence of steps shown above.

(c) Extend the encoding to include a swap function. Given an encoding
of the pair (v1, v2) as input, swap should return an encoding of the
pair (v2, v1). You should write down a normal form, without using
abbreviations.

2

Appendix

A The Untyped λ-Calculus

Syntax:
(Terms) M ::= x | λx. M | M N

(Values) v ::= λx. M

Reduction rules:

(λx. M) N → M [N/x]
M → M ′

λx. M → λx. M ′

M → M ′

M N → M ′ N
N → N ′

M N → M N ′

Substitution:

x[N/x] = N

y[N/x] = y

(M N)[N ′/x] = (M [N ′/x]) (N [N ′/x])

(λx.M)[N/x] = λx.M

(λy.M)[N/x] = λy. (M [N/x]), where y ̸∈ fv(N)

(λy.M)[N/x] = λz. (M [z/y])[N/x], where y ∈ fv(N) and z fresh

Free variables:

fv(x) = {x} fv(M N) = fv(M) ∪ fv(N) fv(λx.M) = fv(M)− {x}

Zero-or-more steps:

M →0 M ′ iff M = M ′

M →k+1 M ′ iff ∃M ′′. M → M ′′ ∧M ′′ →k M ′

M →∗ M ′ iff ∃k. M →k M ′

Normal form: a term containing no redex.
Closed term: a term containing no free variables.

3

