Assignment on Lambda Calculus

For your reference, we give the formalization of the untyped λ -calculus in the appendix at the end of this document.

1. In the untyped λ -calculus, does the following property hold?

For any terms
$$M$$
 and N , if $M \to N$, then $fv(M) = fv(N)$.

If it holds, just answer yes; otherwise, please give a counterexample (that is, instantiate M and N such that $M \to N$ but $fv(M) \neq fv(N)$).

- 2. In the untyped λ -calculus, the *span* of a term is the minimal number of variables needed to write a term. It turns out that β -reduction can increase the span of a term. To show this, find a closed term M such that $M \to^* \lambda x$. λy . M (x y).
- 3. In this problem we add "let-bindings" to the untyped λ -calculus. Syntax (the syntax for Values is unchanged):

(Terms)
$$M ::= \ldots \mid \text{let } x = M \text{ in } M$$

New reduction rules (note v is a value):

$$\overline{\text{let } x = v \text{ in } M \to M[v/x]} \text{ (LETV)}$$

$$\frac{M_1 \to M_1'}{\text{let } x = M_1 \text{ in } M_2 \to \text{let } x = M_1' \text{ in } M_2} \text{ (LET)}$$

- (a) The (LETV) rule uses substitution, but since we have extended the syntax of terms, the definition of substitution should be extended as well. Give the definition of the substitution M[N/x] when M is in the form of let-bindings.
- (b) Reduce the following term to a normal form.

$$\begin{array}{l} \text{let } c = \lambda n. \ \lambda m. \ \lambda f. \ \lambda x. \ n \ f \ (m \ f \ x) \ \text{in} \\ \text{(let } b = \lambda f. \ \lambda x. \ f \ (f \ x) \ \text{in} \\ \text{(let } a = \lambda f. \ \lambda x. \ f \ x \ \text{in} \\ \text{($c \ b \ a$)))} \end{array}$$

You can choose any reduction strategy. Please do not skip steps.

4. In the untyped λ -calculus, we have the following encoding of pairs:

$$\begin{array}{lll} \mathsf{mkPair} & \overset{\mathrm{def}}{=} & \lambda x. \ \lambda y. \ \lambda z. \ z \ x \ y \\ \mathsf{fst} & \overset{\mathrm{def}}{=} & \lambda p. \ p \ (\lambda x. \ \lambda y. \ x) \\ \mathsf{snd} & \overset{\mathrm{def}}{=} & \lambda p. \ p \ (\lambda x. \ \lambda y. \ y) \end{array}$$

We would expect a correct encoding to show fst $(mkPair\ z\ z)$ reduces to z. But the following sequence of steps allegedly shows that fst $(mkPair\ z\ z)$ reduces to True:

- (a) The sequence of steps is wrong. Find the wrong step(s).
- (b) Show a correct sequence of steps that produces z but is otherwise very similar to the sequence of steps shown above.
- (c) Extend the encoding to include a swap function. Given an encoding of the pair (v_1, v_2) as input, swap should return an encoding of the pair (v_2, v_1) . You should write down a normal form, without using abbreviations.

Appendix

A The Untyped λ -Calculus

Syntax:

Reduction rules:

$$\frac{M \to M'}{(\lambda x. \ M) \ N \ \to \ M[N/x]} \qquad \frac{M \to M'}{\lambda x. \ M \ \to \ \lambda x. \ M'}$$

$$\frac{M \to M'}{M \ N \ \to \ M' \ N} \qquad \frac{N \to N'}{M \ N \ \to \ M \ N'}$$

Substitution:

$$\begin{split} x[N/x] &= N \\ y[N/x] &= y \\ (M\,N)[N'/x] &= (M[N'/x])\,(N[N'/x]) \\ (\lambda x.\,M)[N/x] &= \lambda x.\,M \\ (\lambda y.\,M)[N/x] &= \lambda y.\,(M[N/x]), \quad \text{where } y \not\in \mathit{fv}(N) \\ (\lambda y.\,M)[N/x] &= \lambda z.\,(M[z/y])[N/x], \quad \text{where } y \in \mathit{fv}(N) \text{ and } z \text{ fresh} \end{split}$$

Free variables:

$$fv(x) = \{x\}$$
 $fv(MN) = fv(M) \cup fv(N)$ $fv(\lambda x. M) = fv(M) - \{x\}$

Zero-or-more steps:

$$\begin{split} M &\to^0 M' & \text{iff} \quad M = M' \\ M &\to^{k+1} M' & \text{iff} \quad \exists M''. \ M \to M'' \wedge M'' \to^k M' \\ M &\to^* M' & \text{iff} \quad \exists k. \ M \to^k M' \end{split}$$

Normal form: a term containing no redex.

Closed term: a term containing no free variables.