
Assignment on Types

For your reference, we give the formalization of the untyped λ-calculus, the
simply-typed λ-calculus (STLC) and System F in the appendix at the end of
this document.

1. In this problem we add the option types to the simply-typed λ-calculus.
We can use None and Some to construct terms of the option type, just like
None and Some in Coq. You can also think about std::optional in C++.
Intuitively, None represents a dummy element (i.e. there is no meaningful
element), and Some M means that there is a meaningful element M . For
M which has the option type, get M gives us the meaningful element
contained in M .

Syntax:

(Types) τ ::= . . . | option τ

(Terms) M ::= . . . | None | Some M | get M
(Values) v ::= . . . | None | Some v

New reduction rules:

M → M ′

Some M → Some M ′ (some) M → M ′

get M → get M ′ (get-m)

get (Some M) → M
(get-some)

get None → get None
(get-none)

(a) Give 3 appropriate new typing rules, one for each new form of term.
Note that your rules should ensure the preservation and progress
theorems (though you don’t need to show their proofs).

(b) Consider each of the following questions in isolation. Answer yes or
no.

i. Suppose we remove the above (some) rule.
Does the preservation theorem still hold?
Does the progress theorem still hold?

ii. Suppose we add the following rule.

get v → get v
(get-v)

1



Does the preservation theorem still hold?
Does the progress theorem still hold?

iii. Suppose we change the above (get-some) rule to the following
(get-some’) rule.

get (Some v) → v
(get-some’)

Does the preservation theorem still hold?
Does the progress theorem still hold?

iv. Suppose we change the above (get-none) rule to the following
(get-none’) rule.

get None → None
(get-none’)

Does the preservation theorem still hold?
Does the progress theorem still hold?

2. In this problem we consider System F. Show that the type

PairNat
def
= ∀α. (Nat → Nat → α) → α

can be used to represent pairs of numbers, by writing functions

mkPairNat : Nat → Nat → PairNat
fstNat : PairNat → Nat
sndNat : PairNat → Nat

for constructing elements of this type from pairs of numbers and for ac-
cessing their first and second components. Here Nat is the type of Church
numerals.

Hint: In the untyped λ-calculus, we can encode mkPair, fst and snd as
follows:

mkPair
def
= λx. λy. λz. z x y

fst
def
= λp. p (λx. λy. x)

snd
def
= λp. p (λx. λy. y)

3. Use the functions defined in Problem 2 to write a function pred in System
F that computes the predecessor of a Church numeral (returning 0 if its
input is 0).

Hint: Define a function f : PairNat → PairNat that maps the pair (i, j)
into (i+1, i)–that is, it throws away the second component of its argument,
copies the first component to the second, and increments the first. Then n
applications of f to the starting pair (0, 0) yields the pair (n, n− 1), from
which we extract the predecessor of n by projecting the second component.

2



Appendix

A The Untyped λ-Calculus

Syntax:
(Terms) M ::= x | λx. M | M N

(Values) v ::= λx. M

Reduction rules:

(λx. M) N → M [N/x]
M → M ′

λx. M → λx. M ′

M → M ′

M N → M ′ N
N → N ′

M N → M N ′

Substitution:

x[N/x] = N

y[N/x] = y

(M N)[N ′/x] = (M [N ′/x]) (N [N ′/x])

(λx.M)[N/x] = λx.M

(λy.M)[N/x] = λy. (M [N/x]), where y ̸∈ fv(N)

(λy.M)[N/x] = λz. (M [z/y])[N/x], where y ∈ fv(N) and z fresh

Free variables:

fv(x) = {x} fv(M N) = fv(M) ∪ fv(N) fv(λx.M) = fv(M)− {x}

Zero-or-more steps:

M →0 M ′ iff M = M ′

M →k+1 M ′ iff ∃M ′′. M → M ′′ ∧M ′′ →k M ′

M →∗ M ′ iff ∃k. M →k M ′

Normal form: a term containing no redex.
Closed term: a term containing no free variables.

B The Simply-Typed λ-Calculus

Syntax (here T denotes the base type):

(Types) τ ::= T | τ → τ

(Terms) M ::= x | λx : τ. M | M N

(Values) v ::= λx : τ. M

(Contexts) Γ ::= • | Γ, x : τ

3



Reduction rules:

(λx : τ. M) N → M [N/x]
M → M ′

λx : τ. M → λx : τ. M ′

M → M ′

M N → M ′ N
N → N ′

M N → M N ′

Typing rules:

Γ, x : τ ⊢ x : τ

Γ, x : τ ⊢ M : τ ′

Γ ⊢ (λx : τ. M) : τ → τ ′

Γ ⊢ M : τ → τ ′ Γ ⊢ N : τ
Γ ⊢ M N : τ ′

Preservation:

For any M , M ′ and τ , if • ⊢ M : τ and M → M ′, then • ⊢ M ′ : τ .

Progress:

For any M and τ , if • ⊢ M : τ , then either M ∈ Values or ∃M ′. M → M ′.

C System F

Syntax (here T denotes the base type):

(Terms) M ::= x | λx : τ. M | M M | Λα. M | M ⟨τ⟩
(Types) τ ::= α | T | τ → τ | ∀α. τ
(Values) v ::= λx : τ. M | Λα. M

(Contexts) Γ ::= • | Γ, x : τ
(TypeVarContexts) ∆ ::= • | ∆, α

Reduction rules:

(λx : τ. M1)M2 −→ M1[M2/x]

M1 −→ M ′
1

M1 M2 −→ M ′
1 M2

M2 −→ M ′
2

M1 M2 −→ M1 M
′
2

M −→ M ′

λx : τ. M −→ λx : τ. M ′

(Λα. M1) ⟨τ2⟩ −→ M1[τ2/α]

M1 −→ M ′
1

M1 ⟨τ2⟩ −→ M ′
1 ⟨τ2⟩

M −→ M ′

Λα. M −→ Λα. M ′

4



Type well-formedness rules:

∆, α ⊢ α ∆ ⊢ T

∆ ⊢ τ1 ∆ ⊢ τ2

∆ ⊢ τ1 → τ2

∆, α ⊢ τ

∆ ⊢ ∀α. τ

Typing rules:

∆; Γ, x : τ ⊢ x : τ
(T-Var)

∆ ⊢ τ1 ∆;Γ, x : τ1 ⊢ M : τ2

∆;Γ ⊢ (λx : τ1. M) : τ1 → τ2
(T-Abs)

∆;Γ ⊢ M1 : τ → τ ′ ∆;Γ ⊢ M2 : τ

∆;Γ ⊢ M1 M2 : τ ′
(T-App)

∆, α; Γ ⊢ M : τ

∆;Γ ⊢ (Λα. M) : ∀α.τ
(T-TAbs)

∆;Γ ⊢ M1 : ∀α.τ ∆ ⊢ τ2

∆;Γ ⊢ M1 ⟨τ2⟩ : τ [τ2/α]
(T-TApp)

Church numerals:

0
def
= Λα. λf : α → α. λx : α. x

1
def
= Λα. λf : α → α. λx : α. f x

2
def
= Λα. λf : α → α. λx : α. f (f x)

The type of Church numerals:

Nat
def
= ∀α. (α → α) → α → α

5


