# Assignment on Types

For your reference, we give the formalization of the untyped  $\lambda$ -calculus, the simply-typed  $\lambda$ -calculus (STLC) and System F in the appendix at the end of this document.

1. In this problem we add the option types to the simply-typed  $\lambda$ -calculus. We can use None and Some to construct terms of the option type, just like None and Some in Coq. You can also think about  $\mathtt{std}:\mathtt{optional}$  in C++. Intuitively, None represents a dummy element (i.e. there is no meaningful element), and Some M means that there is a meaningful element M. For M which has the option type,  $\mathtt{get}\ M$  gives us the meaningful element contained in M.

Syntax:

$$\begin{array}{lll} \text{(Types)} & \tau & ::= & \dots \mid \text{ option } \tau \\ \text{(Terms)} & M & ::= & \dots \mid \text{None } \mid \text{Some } M \mid \text{get } M \\ \text{(Values)} & v & ::= & \dots \mid \text{None } \mid \text{Some } v \end{array}$$

New reduction rules:

$$\frac{M \to M'}{\mathsf{Some} \ M \to \mathsf{Some} \ M'} \ (\mathsf{SOME}) \qquad \frac{M \to M'}{\mathsf{get} \ M \to \mathsf{get} \ M'} \ (\mathsf{GET-M})$$
 
$$\frac{\mathsf{get} \ (\mathsf{Some} \ M) \to M}{\mathsf{get} \ (\mathsf{Some} \ M) \to M} \ (\mathsf{GET-SOME}) \qquad \frac{\mathsf{get} \ \mathsf{None} \to \mathsf{get} \ \mathsf{None}}{\mathsf{get} \ \mathsf{None} \to \mathsf{get} \ \mathsf{None}} \ (\mathsf{GET-NONE})$$

- (a) Give 3 appropriate new typing rules, one for each new form of term. Note that your rules should ensure the preservation and progress theorems (though you don't need to show their proofs).
- (b) Consider each of the following questions in isolation. Answer yes or no.
  - i. Suppose we remove the above (SOME) rule. Does the preservation theorem still hold? Does the progress theorem still hold?
  - ii. Suppose we add the following rule.

$$\frac{}{\mathsf{get}\ v \to \mathsf{get}\ v}\ \big(\mathsf{GET\text{-}V}\big)$$

Does the preservation theorem still hold? Does the progress theorem still hold?

iii. Suppose we change the above (GET-SOME) rule to the following (GET-SOME') rule.

$$\frac{}{\text{get (Some }v) \to v} \text{ (GET-SOME')}$$

Does the preservation theorem still hold? Does the progress theorem still hold?

iv. Suppose we change the above (GET-NONE) rule to the following (GET-NONE') rule.

$$\frac{}{\mathsf{get}\;\mathsf{None}\to\mathsf{None}}\;\big(\mathrm{GET}\text{-}\mathrm{NONE'}\big)$$

Does the preservation theorem still hold? Does the progress theorem still hold?

2. In this problem we consider System F. Show that the type

PairNat 
$$\stackrel{\text{def}}{=} \forall \alpha. \ (\mathsf{Nat} \to \mathsf{Nat} \to \alpha) \to \alpha$$

can be used to represent pairs of numbers, by writing functions

 $\mathsf{mkPairNat} : \mathsf{Nat} \to \mathsf{Nat} \to \mathsf{PairNat}$ 

 $\begin{array}{l} \mathsf{fstNat} : \mathsf{PairNat} \to \mathsf{Nat} \\ \mathsf{sndNat} : \mathsf{PairNat} \to \mathsf{Nat} \end{array}$ 

for constructing elements of this type from pairs of numbers and for accessing their first and second components. Here Nat is the type of Church numerals.

Hint: In the untyped  $\lambda$ -calculus, we can encode mkPair, fst and snd as follows:

$$\begin{array}{lll} \mathsf{mkPair} & \overset{\mathrm{def}}{=} & \lambda x. \; \lambda y. \; \lambda z. \; z \, x \, y \\ \mathsf{fst} & \overset{\mathrm{def}}{=} & \lambda p. \; p \; (\lambda x. \; \lambda y. \; x) \\ \mathsf{snd} & \overset{\mathrm{def}}{=} & \lambda p. \; p \; (\lambda x. \; \lambda y. \; y) \end{array}$$

3. Use the functions defined in Problem 2 to write a function pred in System F that computes the predecessor of a Church numeral (returning 0 if its input is 0).

Hint: Define a function  $f: \mathsf{PairNat} \to \mathsf{PairNat}$  that maps the pair (i,j) into (i+1,i)—that is, it throws away the second component of its argument, copies the first component to the second, and increments the first. Then n applications of f to the starting pair (0,0) yields the pair (n,n-1), from which we extract the predecessor of n by projecting the second component.

### **Appendix**

#### A The Untyped $\lambda$ -Calculus

Syntax:

Reduction rules:

$$\frac{M \to M'}{(\lambda x. \ M) \ N \ \to \ M[N/x]} \qquad \frac{M \to M'}{\lambda x. \ M \ \to \ \lambda x. \ M'}$$

$$\frac{M \to M'}{M \ N \ \to \ M' \ N} \qquad \frac{N \to N'}{M \ N \ \to \ M \ N'}$$

Substitution:

$$\begin{split} x[N/x] &= N \\ y[N/x] &= y \\ (M\,N)[N'/x] &= (M[N'/x])\,(N[N'/x]) \\ (\lambda x.\,M)[N/x] &= \lambda x.\,M \\ (\lambda y.\,M)[N/x] &= \lambda y.\,(M[N/x]), \quad \text{where } y \not\in \mathit{fv}(N) \\ (\lambda y.\,M)[N/x] &= \lambda z.\,(M[z/y])[N/x], \quad \text{where } y \in \mathit{fv}(N) \text{ and } z \text{ fresh} \end{split}$$

Free variables:

$$fv(x) = \{x\}$$
  $fv(MN) = fv(M) \cup fv(N)$   $fv(\lambda x. M) = fv(M) - \{x\}$ 

Zero-or-more steps:

$$\begin{split} M &\to^0 M' & \text{iff} \quad M = M' \\ M &\to^{k+1} M' & \text{iff} \quad \exists M''. \ M \to M'' \wedge M'' \to^k M' \\ M &\to^* M' & \text{iff} \quad \exists k. \ M \to^k M' \end{split}$$

Normal form: a term containing no redex.

Closed term: a term containing no free variables.

# B The Simply-Typed $\lambda$ -Calculus

Syntax (here  ${\tt T}$  denotes the base type):

$$\begin{array}{lll} \text{(Types)} & \tau & ::= & \mathsf{T} \ | \ \tau \to \tau \\ \\ \text{(Terms)} & M & ::= & x \ | \ \lambda x : \tau. \ M \ | \ M \ N \\ \\ \text{(Values)} & v & ::= & \lambda x : \tau. \ M \\ \\ \text{(Contexts)} & \Gamma & ::= & \bullet \ | \ \Gamma, x : \tau \end{array}$$

Reduction rules:

$$\frac{M \to M'}{(\lambda x : \tau. \ M) \ N \to M[N/x]} \qquad \frac{M \to M'}{\lambda x : \tau. \ M \to \lambda x : \tau. \ M'}$$

$$\frac{M \to M'}{M \ N \to M' \ N} \qquad \frac{N \to N'}{M \ N \to M \ N'}$$

Typing rules:

$$\frac{\Gamma, x : \tau \vdash M : \tau'}{\Gamma, x : \tau \vdash x : \tau} \qquad \frac{\Gamma, x : \tau \vdash M : \tau'}{\Gamma \vdash (\lambda x : \tau. M) : \tau \to \tau'}$$

$$\frac{\Gamma \vdash M : \tau \to \tau' \qquad \Gamma \vdash N : \tau}{\Gamma \vdash M N : \tau'}$$

Preservation:

For any M, M' and  $\tau$ , if  $\bullet \vdash M : \tau$  and  $M \to M'$ , then  $\bullet \vdash M' : \tau$ .

Progress:

For any M and  $\tau$ , if  $\bullet \vdash M : \tau$ , then either  $M \in \mathsf{Values}$  or  $\exists M' \colon M \to M'$ .

### C System F

Syntax (here T denotes the base type):

$$\begin{array}{llll} \text{(Terms)} & M & ::= & x \mid \lambda x : \tau. \ M \mid M \ M \mid \Lambda \alpha. \ M \mid M \ \langle \tau \rangle \\ \text{(Types)} & \tau & ::= & \alpha \mid \mathsf{T} \mid \tau \to \tau \mid \forall \alpha. \ \tau \\ \text{(Values)} & v & ::= & \lambda x : \tau. \ M \mid \Lambda \alpha. \ M \end{array}$$

Reduction rules:

Type well-formedness rules:

$$\frac{\Delta \vdash \tau_1 \qquad \Delta \vdash \tau_2}{\Delta \vdash \alpha} \qquad \frac{\Delta \vdash \tau_1 \qquad \Delta \vdash \tau_2}{\Delta \vdash \tau_1 \rightarrow \tau_2} \qquad \frac{\Delta, \alpha \vdash \tau}{\Delta \vdash \forall \alpha. \ \tau}$$

Typing rules:

$$\frac{\Delta \vdash \tau_{1} \quad \Delta; \Gamma, x : \tau \vdash x : \tau}{\Delta; \Gamma, x : \tau_{1} \vdash M : \tau_{2}} \text{ (T-Abs)}$$

$$\frac{\Delta \vdash \tau_{1} \quad \Delta; \Gamma, x : \tau_{1} \vdash M : \tau_{2}}{\Delta; \Gamma \vdash (\lambda x : \tau_{1}.\ M) : \tau_{1} \to \tau_{2}} \text{ (T-Abs)}$$

$$\frac{\Delta; \Gamma \vdash M_{1} : \tau \to \tau' \quad \Delta; \Gamma \vdash M_{2} : \tau}{\Delta; \Gamma \vdash M_{1} M_{2} : \tau'} \text{ (T-App)}$$

$$\frac{\Delta, \alpha; \Gamma \vdash M : \tau}{\Delta; \Gamma \vdash (\Lambda \alpha.\ M) : \forall \alpha.\tau} \text{ (T-TAbs)}$$

$$\frac{\Delta; \Gamma \vdash M_{1} : \forall \alpha.\tau \quad \Delta \vdash \tau_{2}}{\Delta; \Gamma \vdash M_{1} \langle \tau_{2} \rangle : \tau[\tau_{2}/\alpha]} \text{ (T-TApp)}$$

Church numerals:

$$\begin{array}{ll} 0 & \stackrel{\text{def}}{=} & \Lambda\alpha. \ \lambda f: \alpha \to \alpha. \ \lambda x: \alpha. \ x \\ 1 & \stackrel{\text{def}}{=} & \Lambda\alpha. \ \lambda f: \alpha \to \alpha. \ \lambda x: \alpha. \ f \ x \\ 2 & \stackrel{\text{def}}{=} & \Lambda\alpha. \ \lambda f: \alpha \to \alpha. \ \lambda x: \alpha. \ f \ (f \ x) \end{array}$$

The type of Church numerals:

Nat 
$$\stackrel{\text{def}}{=} \forall \alpha. \ (\alpha \to \alpha) \to \alpha \to \alpha$$