The C/C+-+11 memory model

Ori Lahav Viktor Vafeiadis

30 August 2017

Recap

We considered a simplified C11 model:

» Each memory accesses has a mode:
» Reads: rlx or acq
» Writes: rlx or rel
» RMWs: rlx, acq, rel or acq-rel

v

Synchronization:

G.sw = [W®]; G.rf; [R?)

v

Happens-before:
G.hb = (G.po U G.sw) ™"

C11-consistent wrt

v

hbl1oc Urf Umo Urb is acyclic

v

C11-consistent:

complete & Cll-consistent wrt some

The C/C++11 memory model

non- release/
. C relaxed [. C sc
atomic acquire

The full C/C++11 is more general:

>

>

v

v

Non-atomics for non-racy code (the default!)
Four types of fences for fine grained control
SC accesses to ensure sequential consistency if needed

More elaborate definition of sw (“release sequences”)

C11 model through examples

‘t" int a = 0;

int x = 0;
a =42; || if(x == 1){
race print(a);

3

‘a’ int a = 0;

atomic_int x = 0;

‘a’ int a = 0;

atomic_int x = 0;
if (xpx == 1){
print(a);

'I’ int a = 0;

atomic_int x = 0;
a = 42; if(§ﬂx == 1){
f -

fencepe s——"——fenceacq;
Xy = 1

print(a);

The “synchronizes-with" relation

rf
sw wrel -----------
/—\
wrel ----- " .f_ - - ->» Racq sw

F
sw Pt
po po rf_ 3 po
rf .7

-y

Facq

sw 2 (W' U [F="]; po); ££; ([R=2°] U po; [F=29])

Fence modes

acq
acg-rel ——sc
rel

Release sequences (RMW's)

Xelx = 42;
Yrel i =1

b := yacq: /2
c:=xix; /0

a:=FAl(y); 71

SW

wel=--->RMW---->----->RMW---->Rad
rf rf rf rf

s 2 ([W2"] U [F2"]; po); v+ ((R29] U po; [F =244

Release sequences (thread internal)

= 42;
;"’: =1 a:= Yacq /' 2
yrf o 2f b:=xux /0
rix -— [
wrel swW
X
po \A
Wy - mmmmm -----> R
r

sw 2 ([0 poliec U [F="]; po); x5+ ([R°9] U po; [F=79])

C11 “synchronizes-with" relation

na — rlx — acq — sc

W

RMW modes

acq

rix

acq-rel — sc

/
rel

na — rlx — rel — sc

v

Fence modes

acq

o
acq-rel — sc
1~

re

s 2 ([#7); poloe U [F2); po); r£ ™ (IR229] U po; [F22c9))

hb = (po Usw)*

“Catch-fire” semantics

Definition (Race in C11)

Given a Cll-execution graph G, we say that two events a, b Cll-race in G if
the following hold:

> a#b
> loc(a) = loc(b)
> {typ(a), typ(b)} N {W,RMW} 7
> na € {mod(a),mod(b)}
> (a,b) ¢ hb and (b, a) € hb
G is called Cll-racy if some a, b Cll-race in G.

| A\

Definition (Allowed outcome under C11)

An outcome O is allowed for a program P under C11 if there exists an
execution graph G such that:

» G is an execution graph of P

» G is Cll-consistent.

> G has outcome O or G is Cll-racy.

N

C11 consistency

Definition

Let mo be a modification order for an execution graph G.
G is called Cl1-consistent wrt mo if:

> hb|1oc Urf Umo Urb is acyclic (where rb 2 Grf L \ id).
» ..sc... ?

Definition

An execution graph G is Cl1-consistent if the following hold:
» G is complete

» G is Cll-consistent wrt some modification order for G.

10

SC conditions

» The most involved part of the model, due to the possible
mixing of different access modes to the same location.

» Currently (August 2017) under revision.

» [f there is no mixing of SC and non-SC accesses, then
additionally require acyclicity of hb U mogc U rbgc.

Further reading:

» Overhauling SC atomics in C11 and OpenCL. Mark Batty,
Alastair F. Donaldson, John Wickerson, POPL 2016.

» Repairing sequential consistency in C/C++11. Ori Lahav,
Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, Derek
Dreyer, PLDI 2017.

11

http://dl.acm.org/citation.cfm?id=2837637
http://plv.mpi-sws.org/scfix/

(Repaired) SC condition for fences

eco = (rf Umo Urb)™ (extended coherence order)

pscr = [F*]; (hb U hb; eco; hb); [F*] (partial SC order on fences)

Condition on SC fences
pscr is acyclic

Example: SB with fences

x=y=0
Xix =1, Yix =1
fence(sc); fence(sc);

a = Wiix: /0 b:= Xrlx» /0
X behavior disallowed

12

Exercise: ARC

new(v){
a = allocQ);
a.data = v;
a.count = 1;
return a;

}

read(a){
return a.data;

}

a
y

= new(v)
= read(a)
clone(a)
drop(a)

clone(a){

}

FADD (a.count, +1);

drop(a){

}

t = FADD(a.count, -1);
if(t == 1){
free(a);

3

FADD = fetch_and_add

13

Exercise: seqlock

writer(vl,v2) {
local a,b;
do {
a = s;
if(a % 2 ==1)
continue;
b = CAS(s,a,a+l);
} while (—b);

x1 = vi;
X2 = v2;
s =a+ 2;

reader(t1,t2) {
local a,b;
while (1) {
a = s;
if(a % 2 ==1)
continue;
tl = x1;
t2 = x2;
b =s;
if (a==b) return;

14

