Weak Memory Concurrency
in C/C++11 and LLVM

Viktor Vafeiadis

Max Planck Institute for Software Systems (MPI-SWS)

March 2017

Quiz #1. Should these transformations be allowed?

1. CSE over acquiring a lock:

a=x; a=x;
lock(); ~ lock();
b=x; b=a;

2. Load hoisting:

if (¢) t=x;
a=x; a=clt:a;

[x is a global variable; a, b, ¢ are local; t is a fresh temporary.]

Allowing both is clearly wrong!

Consider the transformation sequence:

if (¢) t = x; t = x;
a=X, hoisst a=c?t:a, cse a=clt:a;

lock(); T lock(); 7 ock();

b= x; b= x; b=t

When c is false, x is moved out of the critical region!

So we have to forbid one transfomation.
» C11 forbids load hoisting, allows CSE over lock().
» LLVM allows load hoisting, forbids CSE over lock().

Formal model

Unambiguous specification
» Which are the possible outcomes of a program.
» Which optimizations may the compiler perform.

Typically called a weak memory model (WMM)
» Allows more behaviors than thread interleaving.

Amenable to formal reasoning
» Can prove theorems about the model.
» Objectively compare memory models.

Formal model

Unambiguous specification
» Which are the possible outcomes of a program.
» Which optimizations may the compiler perform.

Typically called a weak memory model (WMM)
» Allows more behaviors than thread interleaving.

Amenable to formal reasoning
» Can prove theorems about the model.
» Objectively compare memory models.

But it is not easy to get right
» The Java memory model is flawed.
» The C/C++11 model is also flawed.

Overview

m WMM desiderata

i 1. Mathematically sane
‘ WMM ’ (e.g., monotone)
perser e | 2 : 2. Not too weak

(good for programmers)

T‘iiM : 3. Not too strong
(good for hardware)
M 4. Admits optimizations
(good for compilers :-)

Overview

o O
m Outline

Y » How to define a weak
‘ WMM ’ memory model?
-------------------- *------------.......- > The C/C++ memory

model (a.k.a. C11)

<

Unfortunate flaws in C11

The OOTA problem

A ‘promising’ solution

iz

Three approaches for defining WMMs

Operational
» Define program semantics with an abstract machine.

Transformational

» Define the model as a sequence of program
transformations over some basic model (e.g., SC).

Axiomatic

» Define the model as a set of consistency constraints on
program executions.

Operational approach

Define program semantics with an abstract machine.
» Works well for most hardware models.
» Very low-level ~ cumbersome to reason about.
» May require elaborate features for PL models.

x86-TSO model (2010) ARMv8 model (2016)
e T SESEIE
read N S | S
write-back i i

Memory ‘ ’ Memory ‘

Transformational approach

Define the model as a sequence of program transformations
over some basic operational model, such as SC.

For example,

TSO = SC + WR-reordering + RaW-elimination

Transformational approach
Define the model as a sequence of program transformations
over some basic operational model, such as SC.

For example,

TSO = SC + WR-reordering + RaW-elimination |

But:
» Applicable only in very few cases.
» Does not work for ARM.

ARM weak

Axiomatic approach

Define the model as a set of consistency constraints on

program executions.

Example: Load-buffering

b=y, /1

X = b;

a=x; /1 ‘
y=4

» Works well for hardware models.
» Followed by C11.

» Problematic for programming
languages because of OOTA
(“out of thin air”) values.

l A AEA 4 l
~
AR
- ~

Wy, 1 Wx, 1

program order

_—

reads from
——————— >

The C11 memory model

» Introduced by the ISO C/C++ 2011 standards.
» Defines the semantics of concurrent memory accesses.

» Adopted by the LLVM IR with some changes.
(The differences are not relevant for this talk.)

The C11 memory model: Atomics

Two types of locations

Ordinary

(Non-Atomic) Atomic

Welcome to the

Races are errors expert mode

11

A spectrum of accesses

Seq. consistent (sc)

full memory fence

/\

Release write (rel) Acquire read (acq)
no fence (x86); lwsync (PPC) no fence (x86); isync (PPC)

—_
Relaxed (rlx)

no fence

Non-atomic (na)

no fence, races are errors

Explicit primitives for fences

An execution in C11: actions and relations (and axioms)

Initially x =y = 0.

x =5; while (y.load(acq) == 0);
y.store(1, release); | print(x);
One possible execution
Wha X, 0 Wna ¥, 0 ~

/ /\ \ \ rf (reads-from)

Waa X,5 (syncwith) Racq y? 0

l : \YSW\A l po (program-order)
Wre1 Y, === 'r\'f\"‘\'\'\' - >Racq Y, 1

hb £ (po U sw)™ Rpa X, 5
P

13

Relaxed behavior: store buffering

Initially x = y = 0.
x.store(1, rix); y.store(1, rlx);
a = y.load(rlx); | b= x.load(rlx);

This can return a = b = 0.

Justification

[x=y=0]

’ 1‘/ ," ‘\\ \w 1 Behavior observed on
rl’lx’ S rl’ly’ x86/Power/ARM
erxyao erx X70

14

Coherence

Programs with a single shared variable behave as under SC.

x.store(1, rix); a = x.load(rlx);
x.store(2, rix); b = x.load(rlx);

The outcome a =2 A b =1 is forbidden.

wrlx X, 1 erx X72

l \\ ”’ l
/’ \\‘

wrlx X7é erxX7]-

15

Coherence

Programs with a single shared variable behave as under SC.

x.store(1, rix); a = x.load(rlx);
x.store(2, rix); b = x.load(rlx);

The outcome a =2 A b =1 is forbidden.

wrlx X, 1 erx X72

l \\ ”’ l
/’ \\‘

wrlx X72 ‘1; """ erxX7]-

» Modification order, mo,, total order of writes to x.
» Reads-before : rb, 2 (rf~1;mo,) N (#)
» Coherence : hb U rf, Umo, U rb, is acyclic for all x.

15

Causality cycles with relaxed accesses

Initially x = y = 0.

if (x.load(rlx) ==1) || if (y.load(rlx) == 1)
y.store(1, rix); x.store(1, rix);

C11 allows the outcome x =y = 1.

l -_ l Relaxed accesses don't
.- e, synchronize

16

No causality cycles with non-atomics

Initially x = y = 0.

if (xy:f D

C11 forbids the outcome x = y = 1.

Non-atomic read axiom:

rf N (_ x NA) C hb

17

Is the

S

C11 memory model definition. ..

. Mathematically sane?
» For example, it is monotone.

. Not too weak?
» Provides useful reasoning principles.

. Not too strong?
» Can be implemented efficiently.

. Actually useful?
» Admits the intended program optimizations.

18

Is the

N

C11 memory model definition. ..

. Mathematically sane?
» For example, it is monotone.

. Not too weak?
» Provides useful reasoning principles.

. Not too strong?
v/ Compilation to x86/Power/ARM.

. Actually useful?
» Admits the intended program optimizations.

18

Is the C11 memory model definition. . .

1. Mathematically sane?
» For example, it is monotone.

2. Not too weak?

~ Reasoning principles for C11 subsets.

3. Not too strong?
v/ Compilation to x86/Power/ARM.

4. Actually useful?
» Admits the intended program optimizations.

18

Is the

N

C11 memory model definition. ..

. Mathematically sane?

X No, it is not monotone.

. Not too weak?

~ Reasoning principles for C11 subsets.

. Not too strong?
v/ Compilation to x86/Power/ARM.

. Actually useful?
» Admits the intended program optimizations.

18

Is the

S

C11 memory model definition. ..

. Mathematically sane?

X No, it is not monotone.

. Not too weak?

~ Reasoning principles for C11 subsets.

. Not too strong?
v/ Compilation to x86/Power/ARM.

. Actually useful?

X No, it disallows intended
program transformations.

18

Is the

I

C11 memory model definition. ..

. Mathematically sane?

X No, it is not monotone. J

. Not too weak?
~ Reasoning principles for C11 subsets. J

. Not too strong?
X Compilation to Power and ARM is broken. J

. Actually useful?

X No, it disallows intended
program transformations.

18

Non-atomic reads of atomic variables are unsound!

Initially, x = 0.
| if (x.load(rlx) == 1)
x.store(1, rix); F— (int) x
The program can get stuck!
Waa X, 0
e N
wrlxX71 """ "erxxa]-
Y
Rpa X, 7

» Reading 0 contradicts coherence.
» Reading 1 contradicts the non-atomic read axiom.

19

Sequentialization is invalid

Initially, a=x =y = 0.

if (x.load(rlx) ==1)
a=1, if (a==1)
y.store(1, rlx);

if (y.load(rlx) ==1)
x.store(1, rix);

The only possible output is:

Recall the non-atomic read axiom:

rf N (_x NA) Chb

Tentative fixes

Remove non-atomic read axiom.
» gives extremely weak guarantees, if any

In addition, forbid (po U rf)-cycles.
» rules out causal loops
» forbids some reorderings
» more costly on ARM /Power

Related to the OOTA problem.. ..
» More in a couple of slides

Monotonicity

“Adding synchronization should not introduce
new behaviors”

Examples:
» Reducing parallelism, G |G~ Ci; G

» Expression evaluation linearization:

X=a+b: ~ fH=atbb=bx=t+t;

v

Adding a memory fence

v

Strengthening the access mode of an operation

v

(Roach motel reorderings)

N
N

C11 semantics for SC accesses is broken! (PLDI'17)

Xse = 1;

a:Xva; //1 H b:yacq; //1 H ysc:]"

C:ysc;//o d:Xsc;//O

» C11 disallows the annotated behavior:

po Wna X, 0 Wnay,0
wscX,l ----- > Racqx,l :A: Rvay71<' _____ wscyal
sw Vo rf v
Rec v, 0 Rec X, 0

» The behavior is, however, allowed on POWER/ARM
following the “trailing sync” compilation scheme.

23

Other problems fixed (POPL'15, POPL'16)

The axiom of SC reads is too weak.
» Makes strengthening unsound.

The axioms of SC fences are too weak.
» They do not guarantee sequential consistency.

The definition of release sequences is too strong.
» Removing (po U rf)-final events is unsound.

The out-of-thin-air problem in C11

» Initially, x =y = 0.
» All accesses are “relaxed”.
[x=y=0]

/N

erx X71 erx Yy, 1
A3 b 4
X=Y: l el l

wrlx y,]- wrlx X, 1

Load-buffering

a=x; /1
y=1

This behavior must be allowed:
Power/ARM allow it program order

_ >

reads from
————————— >

26

The out-of-thin-air problem in C11

Load-buffering + data dependency

y = a; - / \
The behavior should be forbidden: Rre x, 1 Rax Y, 1
Values appear out-of-thin-air! l Yo7 l

wrlx Y, 1 wrlx X, 1

Same execution as before!
C11 allows these behaviors

27

The out-of-thin-air problem in C11

Load-buffering + data dependency

a=x; /1

x =y =0]

/ N\

The behavior should be forbidden: R, x, 1

rlx _y)
Values appear out-of-thin-air! l AN l
Load-buffering + control dependencies /,’ \\
d = X, //1 (1) wrlxy,]- wrlxx,]-
i (a==1) x=1;
y=24

The behavior should be forbidden: Same execution as befo_re! J
DRF guarantee is broken! C11 allows these behaviors

27

The hardware solution

Keep track of syntactic dependencies,
and forbid “dependency cycles”.

Load-buffering + data dependency [X =y = 0]
a=x; /1 . — v / \
y=a e

er?c X, 1 erx .y: 1

l . 7 l
wrlx Yy, 1 wrlx X, 1
dependency

..................... >

28

The hardware solution

Keep track of syntactic dependencies,
and forbid “dependency cycles”.

Load-buffering + data dependency [X =y = 0]

R PR V2RN
y=a '
‘ er?t X, 1 erx _y; 1
| e |
<

J— . "
;;);1+//11_ a X =Y, wrlxy71 wrlxX71

dependency

..................... »>

This approach is not suitable for a programming language:
Compilers do not preserve syntactic dependencies.

28

A ‘promising’ solution to OOTA

We propose a model that satisfies all WMM desiderata, and
covers nearly all features of C11.

» No “out-of-thin-air” values » Efficient h/w mappings

» DRF guarantees » Compiler optimizations

Key idea: Start with an operational interleaving semantics,
but allow threads to promise to write in the future.

Simple operational semantics for C11's relaxed accesses

Store-buffering

x=y=0
x =1 y=1
a=y; /0 b=x; /0

30

Simple operational semantics for C11's relaxed accesses

Store-buffering Memory

Xx=y=0 (x : 0@0)

> x = 1; >y =1; (v : 0@0)
a=y; /0 b=x; /0

T1's view T>'s view

Yy X Yy
0 0 0 0

» Global memory is a pool of messages of the form
(location : value @ timestamp)

» Each thread maintains a thread-local view recording the
last observed timestamp for every location

30

Simple operational semantics for C11's relaxed accesses

Store—buffering Memory T view T.'s view
1 2

x=y=0 (x : 0@0) . 9
x =1; >y=1; (v : 000) X é/ 5 g
»a=y; /O b=x; /0 (x:1le1) 1

» Global memory is a pool of messages of the form
(location : value @ timestamp)

» Each thread maintains a thread-local view recording the
last observed timestamp for every location

30

Simple operational semantics for C11's relaxed accesses

Store-buffering

X—y =0 <X:O@O> Tl)’(svi;/aw Tg)’(svi)(/aw

x=1; y=1; (y : 0eo) X 0 0 K

»a=y;, /0| »b=x; /O (x:1le1) 1 1
(y:1le1)

» Global memory is a pool of messages of the form
(location : value @ timestamp)

» Each thread maintains a thread-local view recording the
last observed timestamp for every location

30

Simple operational semantics for C11's relaxed accesses

Store-buffering

X—y =0 <X:O@O> T1XSV|;W Tgxsv;aw
x =1; y=1 (v : 0eo) X 0 0 X
a=y;, /0| »b=x; /O (x:1le1) 1 1

> (y:1le1)

» Global memory is a pool of messages of the form
(location : value @ timestamp)

» Each thread maintains a thread-local view recording the
last observed timestamp for every location

30

Simple operational semantics for C11's relaxed accesses

Store-buffering

X—y =0 <XZO@O> T1XSV|;W Tgxsv;aw
x =1; y=1 (y : 0eo) X 0 0 X
a=y; /0 b=x; /0 (x:1le1) 1 1

> > (y:le1)

» Global memory is a pool of messages of the form
(location : value @ timestamp)

» Each thread maintains a thread-local view recording the
last observed timestamp for every location

30

Simple operational semantics for C11's relaxed accesses

Store-buffering

Memory

X—y =0 <X:0@0> T1st;aw Tngv;aw
x =1; y=1 (y : 0eo) X 0 0 X
a=y; /0 b=x; /0 (x:le1) 1 1

> > (y:1e1)

Coherence Test

x=0
x =1; X = 2;
a=x; /2 b=x; /1

30

Simple operational semantics for C11's relaxed accesses

Store-buffering

T1's view T>'s view

== (x : 0@0) % v X y
X:].; y:]_; <y:0@0> X 0 0 X
2=y /0 b=x: /0 (x:1le1)) 1

> - (y:1le1)

Coherence Test Memory T1's view T,’s view

x=0 (x : 0@0) X X

> x =1 > x =2 ’ 0

a=x; /2 b=x; /1

30

Simple operational semantics for C11's relaxed accesses

Store-buffering Memory
Xx=y=0 (x : 0@0)

x =1; y=1 (y : 0eo)
a=y; /0 b=x: /0 (x:1le1)
> > (y:1le1)

Coherence Test

Memory
x=0 (x : 0©0)
x=1 > x =2 (x:1le1)

»a—x; /2 b=x; /1

T1's view T>'s view
X Yy X Yy
X o 0 K
1 1

Ti's vi
9 Ul T>'s view
X X
X 0
1

30

Simple operational semantics for C11's relaxed accesses

Store—buffering Memory T view T.'s view
1 2

== (x : 0@0) % v X y
x =1 y =1 (y : 0@0) X 0 0 X
2=y /0 b=x: /0 (x:1le1)) 1

> - (y:1le1)

Coherence Test Memory T1's view T,’s view

| x=0 . (x : 0@0)));— X
x=1; X =2 (x :1e1) X
ba=xi /2| Bb=xi /1 | (o) ! 2

30

Simple operational semantics for C11's relaxed accesses

Store-buffering

Memory

S (x:000) e 5 o
X:].; y:]_; <y:0@0> X 0 0 X
2=y /0 b=x: /0 (x:1le1)) 1

> - (y:1le1)

Coherence Test Memory T1's view T,’s view

x=0 (x : 0@0) X X

x =1 X =2 (x:1le1) X X

a=x; /2| »wb=x; /1 (x :202) § 2
>

30

Simple operational semantics for C11's relaxed accesses

Store-buffering

Memory

S (x:000) e 5 o
X:].; y:]_; <y:0@0> X 0 0 X
2=y /0 b=x: /0 (x:1le1)) 1

> - (y:1le1)

Coherence Test Memory T1's view T,’s view

x=0 (x : 0@0) X X

x =1 X =2 (x:1le1) X X

a=xi /2| b=xi /1 | (i) X 2
> > :

30

Promises

Load-buffering

» To model load-store reordering, we allow “promises”.

» At any point, a thread may promise to write a message in
the future, allowing other threads to read from the
promised message.

31

Promises

: Memory
Load-buffering (x i 0©0> Ti's view T's view
: X Yy X Yy
{y:000) ——5 0 0

» To model load-store reordering, we allow “promises”.

» At any point, a thread may promise to write a message in
the future, allowing other threads to read from the
promised message.

31

Promises

: Memory
Load-buffering (x i 0©0> Ti's view T's view
: X Yy X Yy
{y:000) ——5 0 0
(y:1le1)

» To model load-store reordering, we allow “promises”.

» At any point, a thread may promise to write a message in
the future, allowing other threads to read from the
promised message.

31

Promises

: Memory
Load-buffering (x i 0©0> Ti's view T's view
: Xy X Yy
(y : 0@0) 0o 0 X
{y:1le1) 1

» To model load-store reordering, we allow “promises”.

» At any point, a thread may promise to write a message in
the future, allowing other threads to read from the
promised message.

31

Promises

: Memory
Load-buffering (x i 0©0> Ti's view T's view
: X Yy X Yy
(y : 0@0) 0o XK
)= X=y; (y:1le1) 11
' > (x:1le1)

» To model load-store reordering, we allow “promises”.

» At any point, a thread may promise to write a message in
the future, allowing other threads to read from the
promised message.

31

Promises

Memory

Load-buffering (X _ 0©0>
: 0@0

a=x; /1 o y.)
>y —1 X =y, (y:1le1)
> (x:101)

T1's view T>'s view
X y X y
X o X X
1 1 1

» To model load-store reordering, we allow “promises”.

» At any point, a thread may promise to write a message in
the future, allowing other threads to read from the

promised message.

31

Promises

: Memory
Load-buffering (x i 0©0> Ti's view T's view
) X Yy Xy
(y : 0@0) XX XK
< > (x:1le1)

v

To model load-store reordering, we allow “promises”.

» At any point, a thread may promise to write a message in
the future, allowing other threads to read from the
promised message.

31

Promises

: Memory
(x:Oao) Trsview To'sview
_ .x:y:O (y : 0@0) x Y 4
a=xi /1| _ XX XX
> > (x:1e1)
a=x /1 Must not admit the same
y = at X =Y execution!

31

Promises

Load-buffering

x=y=0
a=x; /1 . — v
y=1 > -
>
a=x; /1 Y — v
y=a -

Key Idea

A thread can only promise if it can
perform the write anyway (even
without having made the promise)

31

Certified promises

Thread-local certification

A thread can promise to write a message, if it can
thread-locally certify that its promise will be fulfilled.

32

Certified promises

Thread-local certification

A thread can promise to write a message, if it can
thread-locally certify that its promise will be fulfilled.

Load-buffering Load buffering + fake dependency

T; may promise y = 1, since it is able to write y = 1 by itself.

Load buffering + dependency

T; may NOT promise y = 1, since

X =y;: it is not able to write y = 1 by itself.

a=x; /1
y=a

32

Quiz #2

Is this behavior possible?

a=x; /1

33

Quiz #2

Is this behavior possible?

a=x: /1
x =1;
No.

Suppose the thread promises x = 1. Then, once a = x reads 1,
the thread view is increased and so the promise cannot be fulfilled.

33

Quiz #3

Is this behavior possible?

a=x; /1

x =1; X=Y

[v=x

34

Quiz #3

Is this behavior possible?

a=x; /1

x =1; X=Y

[v=x

Yes. And the ARM model allows it!

34

Quiz #3

Is this behavior possible?

a=x; /1

x =1; X=Y

[v=x

Yes. And the ARM model allows it!

This behavior can be also explained by sequentialization:

. a=x; /1
a_X'//lHYIX' x=y;

x=1; Hx=yi ~ x=1
y=x

34

Quiz #3

But, note that sequentialization is generally unsound in our model:

a=x; /1 fa::X; /1
. if a = 0then
if a=0then ||y :=x;| x:=y; 1 X :=y;
x:=1; X =5
y =X

Taken from Viktor's lecture slides

The full model

v

Atomic updates (e.g., CAS, fetch-and-add)

Release/acquire fences and accesses

v

v

Release sequences

v

SC fences (no SC accesses)

v

Plain accesses (C11's non-atomics & Java's normal accesses)

To achieve all of this we enrich our timestamps, messages, and
thread views.

Taken from Viktor's lecture slides

Release/acquire accesses

Message-passing

x=y=0
x =1, a:= Yacq; /1
Y =rel 1; b:=x; /1

Taken from Viktor's lecture slides

Release/acquire accesses

Message-passing

x=y=0
» x =1, » a:= Yacq; /1
Y =rel L; b:=x; /1

L CTIETR) T1's view T>'s view
(x : 0e0) Xy Xy

: 0@0
<y > 0 O 0 O

Taken from Viktor's lecture slides

Release/acquire accesses

Message-passing

x=y=0
x =1 » a:= Yacq; /1
> Y = 1 b:=x; /1

L CTIETR) T1's view T>'s view
(x : 0e0) x 9

(y : 0@0) X g/ 5 (})/
(x:1le1))

Taken from Viktor's lecture slides

Release/acquire accesses

Message-passing

x=y=0
x =1 » a:= Yacq; /1
Y i=rel 1; b:=x; /1
>
?)/:erggg T1's view T>'s view
(y : 0@0) ;(ﬁ)(() (})/
(x:1le1) A
(y:1le1 xeo1)

Taken from Viktor's lecture slides

Release/acquire accesses

Message-passing

x =1, 3= Yacq; /1
Y =rel 1; » b:=x; /1
| 2
?f(erg;g T1's view T>'s view
(y : 0@0) ;(ﬁ ; §
(x:1le1) L L
(y:1le1 xe1)

Taken from Viktor's lecture slides

Release/acquire accesses

Message-passing

x =1, 3= Yacq; /1
Y =rel 1; b:=x; /1
| 2 | 2
?f(erg;g T1's view T>'s view
(y : 0@0) ;(ﬁ ; §
(x:1le1) L L
(y:1le1 xe1)

Taken from Viktor's lecture slides

Certification is needed at every step

Key lemma for DRF

Races only on RA under promise-free semantics
= only promise-free behaviors

W i=rel 1;

if Wacq =1 then
z:=1;

else
Y =rel 1,
a=x; /1
if a=1 then
z:=1;

if yacq =1 then
if z=1 then
x =1;

Taken from Viktor's lecture slides

The full model (POPL'17)

We have extended this basic idea to handle:
» Atomic updates (e.g., CAS, fetch-and-add)
» Release/acquire fences and accesses
» Release sequences
» SC fences

» Plain accesses (C11's non-atomics & Java's normal accesses)

Results

» No “out-of-thin-air” values

» DRF guarantees

» Efficient h/w mappings (x86-TSO, Power, ARM)

» Compiler optimizations (incl. reorderings, eliminations)

Summary

Summary
» The need for a WMM.

» C11 is very broken.

» Many of the problems
are locally fixable.

» But ruling out OOTA
requires an entirely
different approach.

» The promising model
may be the solution.

36

Initially, X = Y = 0.

X=1
X =2 e
a=X /3 bo=X: 42
. g=Yi i1
if (a # 2) :

¥ — 1 if (¢)
; X =3
(Coh-CYC)

This example is taken from the paper "Grounding Thin-Air Reads with Event Structures"
by Soham Chakraborty and Viktor Vafeiadis (POPL 2019).

	空白页面

