Assignment on the Happens-Before Memory Model (HMM)

1. For each program below, tell whether the behavior in question is allowed under the happensbefore memory model (HMM), and explain why.

(a)
Initially,
$$x = 0$$
.
 $r1 = r; || r2 = r;$
 $x = 1; || r2 = r;$
Behavior in question: $r1 = 2, r2 = 1$.
(b)
Initially, $x = y = 0$.
 $x = 1; || r1 = r; || r3 = r;$
 $y = 1; || r2 = r; || r4 = r;$
Behavior in question: $r1 = 1, r2 = 0, r3 = 1, r4 = 0$.
(c)
Initially, $x = y = 0$.
 $r1 = r;$
 $r2 = 1 + r1 * r1 - r1; || r3 = r;$
 $r2 = 1 + r1 * r1 - r1; || r3 = r;$
 $r2 = 1 + r1 * r1 - r1; || r3 = r;$
Behavior in question: $r1 = r2 = 1$.
(d)
Initially, $x = y = z = 0$.
 $r1 = r;$
 $r2 = 1; || do \{ r2 = r; r3 = r; \}$
Behavior in question: $r1 = r3 = 1, r2 = 0$.
(e)
Initially, $x = y = z = w = 0$.
 $r1 = z; || r4 = w;$
 $w = r1; || r3 = r;$
 $r2 = r; || r4 = r;$
 $r3 = r;$
 $r2 = r; || r4 = r;$
 $r3 = r;$
 $r2 = r; || r4 = r;$
 $r3 = r;$
 $r2 = r; || r4 = r;$
 $r3 = r;$
 $r = r;$
 $r = r;$

2. Given two programs C_1 and C_2 , and two memory models M_1 and M_2 , we write $(C_1, M_1) \sqsubseteq (C_2, M_2)$ to say that all the behaviors generated by C_1 under the memory model M_1 can also be generated by C_2 under the memory model M_2 . Here a behavior denotes the values of the registers $r1, r2, \ldots$ when the program terminates. For instance, suppose the initial value of x is 0, then $(r1 = x, SC) \sqsubseteq (r1 = 0, HMM)$ holds. This is because r1 = x under the SC memory model can generate only one behavior r1 = 0, which can also be generated by r1 = 0 under the happens-before memory model (HMM).

In each question below, we will give you C_1 , C_2 , M_1 and M_2 . Your job is to analyze whether $(C_1, M_1) \sqsubseteq (C_2, M_2)$ holds. If it holds, just say yes. Otherwise, please describe a behavior that can be generated by C_1 under M_1 but cannot be generated by C_2 under M_2 , and explain why.

(a) C_1 is the program shown on the left side, C_2 is the program shown on the right side, and both M_1 and M_2 are HMM.

Initially, $x = 0$.		Initially, $x = 0$.	
x = 1;	x = 2;	r1 = x;	r2 = x;
r1 = x;	r2 = x;	x = 1;	x = 2;

(b) Both C_1 and C_2 are the program shown below, M_1 is HMM, and M_2 is SC.

Initially,
$$x = y = 0$$
.
 $x = 1; || x = 2; || while (y < 2) {}$
 $y = x; || y = x; || r1 = x;$

(c) C_1 is the program shown on the left side, C_2 is the program shown on the right side, M_1 is HMM, and M_2 is SC.

Initially, $x = y = 0$.		Initially, $x = y = 0$.	
r1 = x; if (r1 >= 0) y = 1;	r2 = y; x = r2;	y = 1; $\ r^2 = y;$ r1 = x; $\ x = r^2;$	

(d) C_1 is the program shown on the left side, C_2 is the program shown on the right side, M_1 is HMM, and M_2 is SC.

Initially, $x = y = 0$.	Initially, $x = y = 0$.
r1 = x; $y = 1;$	r1 = x; $x = 1;$
r2 = 42; x = 1;	r2 = 42; $y = 1;$
if (r1 == 1)	if (r1 == 1)
r2 = y;	r2 = y;

(e) C_1 is the program shown on the left side, C_2 is the program shown on the right side, M_1 is HMM, and M_2 is SC.

Initially, $x = y = 0$.		Initially, $x = y = 0$.	
r1 = x; r2 = x; if (r1 == r2) y = 1;	r3 = y; x = r3;	r1 = x; r2 = r1; y = 1;	r3 = y; x = r3;