Separation Logic

Slides modified from Reynolds” mini-course CS 818A3

Review of Hoare Logic

* Method of reasoning mathematically about
Imperative programs
* Programming language
* Assertion language
* Predicate logic rules + soundness
* Specification language
* Hoare logic rules + soundness

* Basis of automated program verification systems

Hoare Logic Rules

(4s)

(sK)

(ple/x]} x == e {p} (piskip{p}

{(plciir} {ricoq} {p A bleiq) {p A =b}caiq)

{pict ; caiq) (sc) (p}if b then c; else c»{q} (cD)
(i A b} ¢ {i]
(Twhile b do ¢ i A =b] ")
inbA(e=x0)]clin(e<xi)] IiIAnb=e=0
(1] while b do ¢ [i A =b] (WHT)
p=g {qjclr} s) (plclqg) qg=r (o)

ipictr)

This Class: Separation Logic

e Extension of Hoare logic for reasoning about
pointers

* Details took 30 years to evolve
e 1970s ~ around 2000

* Very active research area

Overview of Separation Logic

e Low-level programming language
— Extension of simple imperative language

— Commands for allocating, accessing, mutating, and deal-
locating data structures

— Dangling pointer faults (if pointer is dereferenced)

e Program specification and proof
— Extension of Hoare logic
— Separating (independent, spatial) conjunction («) and
implication (—x)

e |Inductive definitions over abstract structures

Early History

e Distinct Nonrepeating Tree Systems
(Burstall 1972)
e Adding Separating Conjunction to Hoare Logic
(Reynolds 1999, with flaws)
e Bunched Implication (Bl) Logics
(O'Hearn and Pym 1999)
e Intuitionistic Separation Logic
(Ishtiag and O'Hearn 2001, Reynolds 2000)
e Classical Separation Logic (Ishtiag and O'Hearn 2001)
e Adding Address Arithmetic (Reynolds 2001)
e Concurrent Separation Logic (O'Hearn and Brookes 2004)

1. Programming Language

he Programming Language

(comm) ¢ == ..
x = cons(ey,...,e,)
dispose(e)
x = |e]

le] =e

States

With address arithmetic (new version):

Values = Integers
Atoms U Addresses C Integers
where Atoms and Addresses are disjoint
nil € Atoms
Storesyy = V. — Values

Heaps = U s, (A — Values)
A C Addresses

Statesy = Storesy, x Heaps
where V is a finite set of variables.

(We assume that all but a finite number of nonnegative integers
are addresses.)

Allocation x :=cons(1,2);
Lookup yi=[x] ;
Mutation [¥-1] :=3;

Deallocation dispose(x + 1)

Store :
Heap :

Store :
Heap :

Store :
Heap :

Store :
Heap :

Store :
Heap :

x: 3, vid
empty

J
x:37,y.4
37.1, 38:2
I

X, 30, A
3 1, 3852
J

x: 37; ¥: 1
g 1, 385
J

X B, 3 L
371

10

Note that:

e Expressions depend only upon the store.
— no side effects or nontermination.
— cons and [—] are parts of commands.

e Allocation is hondeterminate.

Memory Faults

Store : x:3,vy:4

Heap : empty
Allocation x:= cons(1,2) (¥

Slore : x 37 yid

Heap : 37:1, 38:2
Lookup y:=1[x]; |

Store : x:37,y:1

Heap : 37:1, 38:2
Mutation [x 4+ 2] :=3; |

abort

Faults can also be caused by out-of-range lookup or dealloca-
tion.

12

Operational Semantics

h([[e]]fntexp 5) —= N
(x := [e], (s, h)) — (skip, (s{x ~ n}, h))

[€llintexp S € dom(h)
(x := [e]. (s, h)) — abort

[ellintexp s = ¢ ¢ € dom(h)
([e] = €', (s, h)) — (skip, (s, h{t ~ [€ Nintexp S}))

[[e]]fntexp S ¢ dom(h)
([e] := €', (s, h)) — abort

[e1Dintexo S = N1 [€2llintexp S = N2 {€, €+ 1} ndom(h) =0

(x := cons(e1, e2),(s,h)) — (skip, (s{x ~ £}, h{€ ~ ny,£+1 ~> nz}))

2. Assertions

Assertions

Standard predicate calculus:

AN V I — v -

plus:
e emp (empty heap)
The heap is empty.
o cr— ¢ (singleton heap)

The heap contains one cell, at address e with contents ¢'.

® p1 * Po (separating conjunction)
The heap can be split into two disjoint parts such that pq
holds for one part and p- holds for the other.

® p1 —* Po (separating implication)
If the heap Is extended with a disjoint part in which pq holds,
then p» holds for the extended heap.

15

Some Abbreviations

€

& —¥ e

EE—PEH g w 5

E—> €14+

def ,

— = 32/ e— 2’ where 2/ not free in e
def

e = er— e x true
def

en — er—e€e1 x -+ x e+n—1+ ey

def

enp — e—e1 % - xe+n—1—en

iff e—eq,...,en x true

16

Examples of Separating Conjunction

1. x — 3,y asserts that x points to an adjacent
pair of cells containing 3 and y.

2.y — 3,x asserts that y points to an adjacent
pair of cells containing 3 and x.

X— 3
Y
Y—=+3
X

17

Examples of Separating Conjunction

1. x — 3,y asserts that x points to an adjacent
pair of cells containing 3 and y.

2.y — 3,x asserts that y points to an adjacent
pair of cells containing 3 and x.

3. x — 3,y * y — 3,x asserts that situations
(1) and (2) hold for separate parts of the heap.

4. x — 3,y ANy — 3.x asserts that situations
(1) and (2) hold for the same heap, which can
only happen if the values of x and y are the
same.

X— 3
Y
Y—=+3
X

w

3. x— 3,y % y+— 3,xasserts that situations 3] 3Ly
(1) and (2) hold for separate parts of the heap. &an

4. x — 3,y Ay — 3,x asserts that situations
(1) and (2) hold for the same heap, which can
only happen if the values of x and y are the O
same.

5. x — 3,y Ay — 3,x asserts that either
(3) or (4) may hold, and that the heap may
contain additional cells.

19

An Example of Separating Implication

Suppose p holds for

Store : x: v, ... X— 37
Heap: a:3.a+1:4, ... 4r
Then (x — 3,4) — p holds for

Store : x: ., ... K—+
Heap : £
andx— 1,2 % ((x+— 3.,4) — p) holds for

Store : x:a, ... X— 17
Heap: a:l.a+1:2, ... 2

Rest
of
Heap

Rest
of
Heap)

Rest

of
Heap

20

Rest "~ Rest O

BT of 11 of
4 O 2k O
. Heap . Heap |
p x+— 1.2 x ((x— 3,4) — p)

In particular,
{x— 1,2 x (x—3,4) = p)} [x] : =3; [x+ 1] :=4 {p},

and more generally,

{x—=— = % ((x—3,4) = p)} [x] :=3; [x+ 1] :=4 {p}.

21

Next: Formal Semantics of Assertions

Recall States

With address arithmetic (new version):

Values = Integers
Atoms U Addresses C Integers
where Atoms and Addresses are disjoint
nil € Atoms
Storesyy = V. — Values

Heaps = U s, (A — Values)
A C Addresses

Statesy = Storesy, x Heaps
where V is a finite set of variables.

(We assume that all but a finite number of nonnegative integers
are addresses.)

23

Some Notation for Functions
We write
[z1iy1 |- | 2niyn]
for the function with domain {x1, ...,z } that maps each xz; into
yi, and
[flziiya | . [Zniyn]

for the function whose domain is the union of the domain of f
with {x1,...,xzn}, that maps each z; into y; and all other mem-
bers = of the domain of f into f .

24

For heaps, we write
ho L hq

when hg and hq have disjoint domains, and
hgo « hq

to denote the union of heaps with disjoint domains.

25

The Meaning of Assertions

When s is a store, h is a heap, and p Is an assertion whose free
variables belong to the domain of s, we write

s.hFp

to indicate that the state s, h satisfies p, or p is true in s, h, or p
holds in s, h. Then:

s, h E b ift [b]poolexps = true,
s.h E—-piff s,h E pisfalse,
s,hE pgApyp it s,hEpgand s, hFE pq
(and similarly for v, =, <),
s,hEVYv.p it VeelZ. [s|vixz], hEp,
s,hEJu.p it Iz eZ. [s|v.x], hEp,

26

s,h Femp Iff domh = {},
s,h F e e iff domh = {[e]exps} and
h([[ﬁ’-]]exp*—“") — [[E!]]EXDS?
s,h Epg * p1 Iff 3hg,h1. ho L h1 and hg - h1y = h and
s, hg F pgand s, hq F pq,
s, h E pg — pp iff VR. (' L h and s.h' E pg) implies
s,h-h'FE py.

27

When s, h E p holds for all states s, h (such that the domain of s
contains the free variables of p), we say that p Is valid.

When s, h E p holds for some state s, h, we say that p Is satisfi-
able.

28

For Instance
s, hEx— 0 xy—1

Iff Jdhg, h1. hg L hq and ho-hy=h
and s, hg Ex— 0
and s,hq{ Ey+—1

If dhg.h1. hg L hq and ho-hy=nh
and dom hg = {sx} and hg(sx) =0
and domh; = {sy}and hi(sy) =1

Iff sx % sy
and domh = {sx,sy}

and h(sx) = 0and h(sy) =1
Iff sx#=syandh =1[sx:0|sy:1].

29

Some Abbreviations

€

& —¥ e

EE—PEH g w 5

E—> €14+

def ,

— = 32/ e— 2’ where 2/ not free in e
def

e = er— e x true
def

en — er—e€e1 x -+ x e+n—1+ ey

def

enp — e—e1 % - xe+n—1—en

iff e—eq,...,en x true

30

Examples
s,hExr—y

s,h Exr— —
s,hEx<—y
s,h Fx— —
s,hExr—y,z
s,hExr— —, —
s,hEx—y.,z

s,hEXx— —, —

iff domh = {sx} and h(sx) = sy
iff domh = {sx}

iff sx e domh and h(sx) = sy

iff sx € domh

ff h =[sx:sy|sx+1:sz]

iff domh = {sx,sx+ 1}

ff h O [sxisy|sx+ 1:sz]

iff domh O {sx,sx—+4 1}.

31

More Examples of x

Suppose s x and sy are distinct addresses, so that

ho = [sx:0] and hy =[sy:1]

are heaps with disjoint domains. Then

If pis: then s, h E p iff:
X — O h = hqg

y— 1 h = hq

Xx— 0 xy—1 h=hg-hq
X+— 0 x x+— 0 false

X— 0Vyr—1 h = hgor h = hy

32

More Examples of x

Suppose s x and sy are distinct addresses, so that

ho = [sx:0] and hy =[sy:1]

are heaps with disjoint domains. Then
If pis:
X— 0 x (x—O0OVy—1)
(x—O0OVyr—1) * (x—0Vy—1)
X+— 0 xyr—1x%x (x—0Vyr—1)

X — O x true

then s, h E p iff:

h = hg-hq
h = hg - hq
false

ho C h

33

Next: Inference Rules for Assertions

Inference Rules

P1 e P (zero or more premisses)
C (one conclusion)
Inference
Inference Rules Instances
Po Po = pP1i X+ 0 =x X+0=x=x=x+0
P1 x=x-+0
er =e1 = e1 = e X+0=x=x=x+4+0
X+ 0 =x % == =x
A Proof
vt D=

X+0=x=x=x-+0
x =20+ 0. N

A Subtlety

Is sound Iff, for all instances,
B if pis valid, then ¢ is valid, i.e.,

q If p holds In all states, then ¢ holds in all states.

Is sound Iff, for all instances,
p=q p = qlisvald, i.e.,
for all states, if p holds, then ¢ holds.

For example,
P i ik x =0
You. p 9 Vx.x+y=y-+x Vx. x = 0
Is sound, but

p=>Vu.p B4 x=0=wx=0

Is not sound.

36

Inference Rules for « and —x

PO * P1 < P1 * PO
(o * p1) * P2 © po * (P1 * P2)
p * emp < p
(PoVp1) * g (po * @) V(p1 * q)
(PoAp1) x ¢g= (po * ¢) N(p1 * q)
(3z. pg) * p1 < Jz. (pg * p1) Wwhen x not free in pq
(Vx. po) * p1 = Va. (po * p1) when x not free in py

Po = P1 q0 = 41
PO * qo = P1 * (1

(monotonicity)

po * p1 = P2 earriliig) po = (p1 —= p2) (

decurrying)
po = (p1 —* p2) Po * P1 = P2

37

Two Unsound Axiom Schemata

p = p * p (Contraction — unsound)
6.0 i %ex

p* qg=p (Weakening — unsound)
eqd.pixes]l
qg.yr— 2

38

Some Axiom Schemata for +—
1y Neg iy & e h Aoy = ep A eh = ¢
€] — f?:"l *x e — E’."Q = €] F €7
emp < V. ~(z — —)
(e —=e)Ap=(e—¢€) x ((e—€) —xp).

(Regrettably, these are far from complete.)

39

Next

* We will introduce some important/interesting
classes of assertions:

* Pure assertions
 Strictly exact assertions
* Precise assertions

* Intuitionistic assertions

40

Pure Assertions

An assertion p is pure iff, for all stores s and all heaps h and #/,

s, hEpiff s,h" Ep.

A sufficient syntactic criteria Is that an assertion is pure if it does
hot contain emp, —, or —.

41

Axiom Schemata for Purity

po NP1 = pPo * p1

Po * p1 = po /\p1
(pAq) * 7 (p x1)Ag
(po — p1) = (Po = P1)
(ro = p1) = (po —* p1)

when pg or p1 Is pure
when pg and pq are pure
when ¢ is pure

when pg is pure

when pg and pq are pure.

42

Strictly Exact Assertions (Yang)

An assertion is strictly exact iff, for all stores s and all heaps h
and h'.

s,hEpand s, h' Epimpliesh = h'.

43

Strictly Exact Assertions (Yang)

An assertion is strictly exact iff, for all stores s and all heaps h
and h'.

s,hEpand s, h' Epimpliesh = h'.

Examples of Strictly Exact Assertions

e emp.
® c E".‘.f.

e p x g, when p and q are strictly exact.
e p A g, when por q is strictly exact.

e p, when p = ¢ is valid and q Is strictly exact.

44

Proposition 4 When q is strictly exact,

((q * true) Ap) = (q * (¢ = p))

Is valid.

PROOF Suppose s, h F (g * true) Ap, sothats, h E g * true
and s, h E p. Then there are heaps hg and hy such that hg L
hi, ho-h1 = h,and s, hg E q.

To see that s, h1 E g — p, let h’ be any heap such that &’ L hy
and s, h/ E q. Since ¢ is strictly exact, h’ = hg, sothat i/ - hqy =
ho - h1 = h, and thus s, h’ - hq E p.

Thens.hg-h1Eq * (¢ —x p),sothats,hEq * (g — p).
END OF PROOF

45

Proposition 4 When q is strictly exact,

((q * true) Ap) = (q * (¢ = p))

Is valid.

For example, taking ¢ to be the strictly exact assertion ¢ — ¢/
gives the final axiom schema for —:

(e—=eYAp=>(e—€) x ((e—e) —p).

46

Precise Assertions

An assertion ¢ Is precise iff

For all s and h, there is at most one h/ C h such that

s.h Eq.

47

Examples of Precise Assertions

e Strictly exact assertions.

® c+— —,

e p x ¢, when p and ¢ are precise.
e p A g, when por qis precise.

e p, when p = ¢ is valid and ¢ is precise.

e list o e and Jav. list v e.

Examples of Imprecise Assertions

e true
e emp Vx+— 10
e x — 10Vyr— 10

e Ix. x— 10

48

Preciseness and Distributivity

The semi-distributive laws

(PoAp1) *x = (po x @) N(p1 * q)
(Vx. p) * q = V. (p * ¢) when z not free in ¢

are valid for all assertions. But their converses

(po * @) AN(p1 * q) = (Ppo Ap1) * q
Va. (p * q) = (Yz. p) * ¢ when x notfreein ¢
are not. For example, when
s(x) =1 s(y)=2 h=1[1:10]2:20].

the assertion

(x— 10 (x— 10Vy— 20))A(y— 20% (x— 10 Vy— 20))

Is true, but

((x—10Ay— 20) * (x— 10Vy— 20))

Is false. 49

Proposition 5 When q is precise,

(po * @) AN(p1 * q) = (PoAp1) * g

is valid. When q is precise and x Is not free in g,
V. (p * q) = (Vx. p) * ¢

Is valid.

PRoOOF (first law) Suppose s, h E (pg * g) A (p1 * g). Then
there are:

e An hg C h suchthat s,h — hg E pg and s, hg E ¢, and

e An h1 C hsuchthats,h — hy Ep; ands, hq Eq.

Thus, since ¢ is precise,

ho = hq
hi—hg=h—h4q
s,h — hg E pg A\ p1
s,hE (pg Ap1) * q.
END OF PROOF

50

Intuitionistic Assertions

An assertion 7 Is intuitionistic iff, for all stores s and heaps h and
h':

(h C h' and s, h i) implies s. h' E i.

51

Assume i and ¢/ are intuitionistic assertions, and p is any asser-
tion. Then:

e [he following assertions are intuitionistic:

Any pure assertion p o 1
D —k 1 1 —% P
i N\ iV i/
Yv. 1 Jv. 1

and as special cases:

p * true true —x p e — €.

52

Assume ¢ and ¢’ are intuitionistic assertions, and p is any asser-
tion. Then:

e The following inference rules are sound:
(i x)= GAT)
(2 *x p) =1 i = (p —% 1)
p=1 1= p
(p * true) =1 = (true — p).

The last two of these rules, in conjunction with the rules

p= (p % true) (true — p) = p,
which hold for all assertions, imply that
e 1 & (i * true).
o (true —x 1) < 1.

53

Summary

e Assertions

s,h F emp Iiff domh = {},
s,hE e e iff domh = {[e]exps} and
h([[“-f]]exp'f*) — [[fff]]exp-f*:
s,h FE pg * pyp iff hg.hy. hg L h1 and hg - h; = h and
s,hg E pgand s,hy F pyp,
s, h E pg — py iff VA'. (k" L h and s, h’ E pg) implies
s,h-h"F p1.

* Next: Specifications and Inference Rules

3. Specifications and
Inference Rules

Specifications

o {p}c{q} (partial correctness)

Starting in any state in which p holds:
— No execution of ¢ aborts.

— When some execution of ¢ terminates in a final state,
then ¢ holds in the final state.

56

e [plclq] (total correctness)

Starting in any state in which p holds:
— No execution of ¢ aborts.
— Every execution of ¢ terminates.

— When some execution of ¢ terminates in a final state,
then ¢ holds in the final state.

The Differences with Hoare Logic

e Specifications are universally quantified implicitly over both
stores and heaps,

e Specifications are universally quantified implicitly over all
possible executions.

e Any execution (starting in a state satistying p) that gives a
memory fault falsifies both partial and total specifications.

Thus:

e o ¢ Well-specified programs don't go wrong. e e e

Enforcing Record Boundaries

The fact that specifications preclude memory faults acts in con-
cert with the indeterminacy of allocation to prohibit violations of
record boundaries. For example, in

co:x:=cons(l,2);cq1;[x+2]:=7,

no allocation performed by the subcommand ¢y or ¢1 can be
guaranteed to allocate the location x + 2.

It follows that there is no postcondition that makes the specifica-
tion

{true} co;x:=cons(1,2) ;¢c1;[x+2] =7 {7}

valid.

On the Other Hand (Gluing Records)

{X—=— %y —}
if y = x + 1 then skip else
if x=y+ 1 thenx .=y else
(dispose x ; dispose y ; x := cons(1,2))

X = —}

Also valid total correctness spec.

60

Examples of Valid Specifications

{emp} x :=cons(1,2) {x+— 1,2}

(x—1,2}y:=[{x— 1,2 Ay =1}
{x—12Ay=1} [x+1] =3 {x— 1,3Ay=1}
{x+— 1,3ANy=1}disposex {x+1— 3 Ay=1}

Also valid total correctness spec.

61

Hoare’s Inference Rules

The command-specific inference rules ot Hoare logic
remain sound, as do structural rules such as
e Strengthening Precedent
p=q {q}c{r}

e Weakening Consequent

{r} c{q} g=r

{p}c{r}

62

The Failure of the Rule of Constancy
On the other hand,
e Rule of Constancy
{r} c{q}
{pAr}c{anrt,
where no variable occurring free in » is moditied by c.

Is unsound, since, for example
{x—= =} [x] ;=4 {x— 4}
{x—= —-Ay—3}[x]: =4 {x—4Ay— 3}
fails when x =y.

The Frame Rule

Instead, we have the
e Frame Rule (O'Hearn)
{r} c{aq}
{p x r}cl{q x r},
where no variable occurring free in r is modified by c.

The frame rule is the key to “local reasoning” about the heap:

To understand how a program works, it should be pos-
sible for reasoning and specification to be confined to
the cells that the program actually accesses. The value

of any other cell will automatically remain unchanged.
(O'Hearn)

Local Reasoning

e [he set of variables and heap cells that may actually be

used by a command (starting from a given state) is called
its footprint.

o It {p} ¢ {q} isvalid, then p will assert that the heap contains
all the cells in the footprint of ¢ (excluding the cells that are
freshly allocated by ¢).

e |f p asserts that the heap contains only cells in the footprint
of ¢, then {p} ¢ {q} Is a local specification.

e If ¢/ contains ¢, it may have a larger footprint described, say,
by p = r. Then the frame rule is needed to move from

{pt c{qtto{p x r} c{q * r}.

65

The Frame Rule (O'Hearn) (FR)

{p} c{d}
{p x r}c{q x r},
where no variable occurring free in r is modified by c.

For Iinstance,

{list v i} “Reverse List” {list o' j}

{list avi = list v x} “Reverse List” {list a' j = list v x},

(assuming “Reverse List” does not modify x or ~).

66

Soundness of the frame rule is sensitive to
the semantics of programming language

e Suppose dispose X :
* |f heap does not contain location x, then do nothing
* Otherwise, free the location x

Soundness of the frame rule is sensitive to
the semantics of programming language

* Suppose dispose x :
* |f heap does not contain location x, then do nothing
* Otherwise, free the location x

{emp} dispose x {emp}.
Then the frame rule would give
{emp * x+— 10} dispose x {emp * x+— 10},
and therefore
{x+— 10} dispose x {x — 10},

which is patently false.

Why the Frame Rule is Sound

We define:

If, starting in the state s, h, no execution of a com-
mand ¢ aborts, then c is safe at s, h.

lf, starting in the state s, h, every execution of ¢ termi-
nates without aborting, then ¢ must terminate normally
at s. h.

Then our programming language satisfies:

Safety Monotonicity If h C h and ¢ is safe at s, h — h,
then ¢ is safe at s, h. If h C h and ¢ must terminate
normally at s, h — h, then ¢ must terminate normally at

s, h.

The Frame Property If h C h, cis safe at s, h—h, and
some execution of ¢ starting at s, h terminates normally
in the state s’, A/,

s;h—h s, h 2 F
\(_‘: safe j(_
s’ h

then h C A’ and some execution of ¢ starting at s, h — h,
terminates normally in the state ', h’ — h.

s,h—h s, h = .}
: >4
L) r s
:f._, C /::J
) o =
f?" —h S__d K

70

Proposition 11 If the programming language satisfies safety
monotonicity and the frame property, then the frame rule is sound
for both partial and total correctness.

Locality : Safety monotonicity + Frame property

71

Soundness

T PPy Q) -{P} C {Q}

then {P} C{Q} | Traricraar

fprovided R doesn't mention
any variable modified by C

assume k {P} C {Q}
show F {PxR} C {QxR}

72

Soundness of Frame Rule

assume k {P} C {Q} '

show k {PxR} C {QxR} J

Soundness of Frame Rule

assume k {P} C {Q}

I[fo EP xR, then:
(C,o0) does not abort, and (C,o) l 6" > 0" EQ xR

show k {PxR} C {QxR} J

74

Soundness of Frame Rule

assume k {P} C {Q}
“—— ﬁ
o EPx*R

(C,o0) does not abort, and (C,o) l 6" > 0" EQ xR

show k {PxR} C {QxR} J

75

Soundness of Frame Rule

assume k {P} C {Q}
“—— ﬁ
o EPx*R

(C, o) does not abort (C,o)Uo'>0"EQ=+*R

show k {PxR} C {QxR} J

76

Soundness of Frame Rule

assume k {P} C {Q}
- —
o EPx*R
O = 01 Oy

O'1|=P O'2|=R

(C, o) does not abort (C,o)Uo'>0"EQ=+*R

show k {PxR} C {QxR} J

77

Soundness of Frame Rule

assume\

oEPx*R

O = 01 Oy

CATPLLL

(C, 01) does not abort

(C, o) does not abort (C,o)Uo'>0"EQ=+*R

show k {PxR} C {QxR} J

78

Soundness o

assume k {P} C {Q}

" Frame Rule

o ———
oEPx*R

O = 01 Oy

O-1|=P O-2|=R

(C, 01) does not abort

Safety Monotonicity

|

(C, o) does not abo

show E

rt (C,o)Uo'>0"EQ=+*R

{PxR} C {QxR} J

79

Soundness of Frame Rule

assume k {P} C {Q}
- —
o EPx*R
O = 01 Oy

O'1|=P O'2|=R

(C, 01) does not abort

(C,o)Uo'>0"EQ=+*R
show k {PxR} C {QxR} J

80

Soundness of Frame Rule

assume k {P} C {Q}
- —
o EPx*R
O = 01 Oy
O'1|=P O'2|=R

(C,o) U o'

(C, 01) does not abort

o' EQx*R
show k {PxR} C {QxR} J

81

Soundness of Frame Rule

assume k {P} C {Q}
- —
oEPx*R

@ (C, 01) does not abort

O-1|=P O-2|=R

(C,o) U o’ Frame Property
\ O_I — 0_11 . 0_2
(C; 0-1) U O-],.
o' EQx*R

show k {PxR} C {QxR} J

82

Soundness of Frame Rule

(C, 01) does not abort

(C,o) U o'
g = o[- 0y
i @ovol
o' EQx*R

show k {PxR} C {QxR} J

83

Soundness of Frame Rule

assume k {P} C {Q}
- —
o EPx*R
O = 01 Oy

O-1|=P O-2|=R

(C, 01) does not abort

(C,o) U o'
g = o[- 0y
C,o1) l o
o 0 (C,01) U gy
o' EQx*R

show k {PxR} C {QxR} J

84

Soundness of Frame Rule

Proposition 11 If the programming language satisfies safety
monotonicity and the frame property, then the frame rule is sound
for both partial and total correctness.

(comm) ¢ == skip | x =e | cq;cy

if bthenc,; elsec, | whilebdoc
x = cons(eq,...,e,)

dispose(e)

x = |e]

le] =e

(You will need to prove this language satisfies locality in your homework.
For simplicity, you can use x := cons(eq, e,) instead of x := cons(eq, ..., e;).)

Inference Rules for Mutation

The local form (MUL):

{E: — —} [e] ;=€ {E?. —s (:','_’.!},
The global form (MUG):

{(e— =) xr}[e]:i=¢€ {(e—€) x r}.
The backward-reasoning form (MUBR):

{(E: — —) * ((Eﬂ —> Ei!) —k p)} [Ei — {p}

86

Inference Rules for Mutation

The local form (MUL):

(e —} [e] i= ¢ {e €'},

The global form (MUG):

{(e— =) xr}[e]:i=¢€ {(e—€) x r}.
One can derive (MUG) from (MUL) by using the frame rule:
{(e— —) = r}

{e — —})

[E.‘. =g > kT

{e — e/ }

. #
{(f_-‘i — E‘.f) * 'T‘_}_,

87

Inference Rules for Mutation

The local form (MUL):

{er— —} [e] i =€ {e— €'}
The global form (MUG):
{(e— =) xr}[e]:i=¢€ {(e—€) x r}.

To go in the opposite direction it is only necessary to take r to

be emp:
{e — —}
{(e — —) *x emp}
[fif] =¥

{(e = ¢) * emp}

{e— €'}
88

The global form (MUG):
{(e— =) x 1} [e]i=¢ {(e—€) * r}.
The backward-reasoning form (MUBR):
{e—= =) x ((e—¢) —p)} [e] :=¢ {p}.

One can derive (MUBR) from (MUG) by taking rto be (e +— ¢/) —
p and using the law ¢ = (¢ — p) = p:

{le =) * (e &) —p)}

le] := e
{(Ei’. o E’.f) * ((e f"-’-f) —* p) }
{r}.

89

The global form (MUG):

{(e— =) xr}[e] i =€ {(e—€) x r}.
The backward-reasoning form (MUBR):

{(e—= =) * ((e—¢€) —xp)} [e] :=¢ {p}.

One can go in the opposite direction by taking pto be (e +— ¢’) =
randusing(p x r) = (p * (¢g = (g = 17))):

{(e— —) x r}
{(er——) x ((Eit—}»t'if) —k ((EHE!) * 7))}
[Ef] = E‘-f

{(E’.I—T«PEJ’) e st

90

Inference Rules for Deallocation

The local form (DISL):

{e — —} dispose e {emp}.

The global (and backward-reasoning) form (DISBR):

{(e — —) x r} dispose e {r}.

One can derive (DISBR) from (DISL) by using (FR); one can go
In the opposite direction by taking » to be emp.

91

Inference Rules for Allocation and Lookup

These are generalized assignment commands, but they don't
obey the assignment rule, e.qg.

{cons(1,2) = cons(1,2)} x:=cons(1,2) {x = x}
i
syntactically illegal

|
{lyl = y]} x:=1[yl {x=x}

92

Inference Rules for Nonoverwriting Allocation

We abbreviate the sequence ¢;. .. ., e, of expressions by e:
e [he local form (CONSNOL)

{emp} v :=cons(e) {v— €},
where v ¢ FV(e).
e The global form (CONSNOG)

{r}v:=cons(e) {(v—e€) x r},
where v ¢ FV (e, r).
Again, one can derive the global form from the local by using the
frame rule, and the local from the global by taking r to be emp.

93

Inference Rules for General Allocation
e [he local form (CONSL)

{v=1v"ANemp} v:=cons(e) {v— €},

/

where o' is distinct from v, and € denotes /v — o' (i.e.,

each ¢! denotes e; /v — /).
e The global form (CONSG)

{r} v:=cons(e) {I. (v—7<) *x 7'},

where o/ is distinct from v, v' ¢ FV(e, r), € denotes €/v —

v/, and ' denotes r /v — /.

e [he backward-reasoning form (CONSBR)

(Vo (v — &) — p"} v := cons(e) {p},

where v is distinct from v, v" ¢ FV(e.p), and p” denotes

p/v — .

The global form (CONSG)

{r} v:=cons(e) {I. (v—7) x '},

where v/ is distinct from v, v/ ¢ FV (€, r), € denotes /v —
v/, and r’ denotes r /v — V.

Recall Forward Assignment Rule

{p} v:i=e{TV. v=¢€ AP}

where v/ ¢ {v} UFV(e) UFV(p), ¢ ise/v — o/, and p’ is
p/v — v'. The quantifier can be omitted when v does not occur
In e or p.

95

An Instance of (CONSG)

{r} v:=cons(e) {I. (v—7€) x '},

where ' is distinct from v, v' ¢ FV (e, r), € denotes /v —
v/, and r’ denotes r /v — V.
An Instance:

{listvi} i:=cons(3,i) {3Jj. i+ 3,] * listaj}.

96

An Inadequate Local Rule

From (CONSG):

{r} v:=cons(e) {I. (v—7<€) x '},
where ' is distinct from v, v/ ¢ FV (e, r), € denotes e/v —
v/, and r’ denotes r /v — V.

we can derive

{emp} v .= cons(e) {I. (v—)},
where ¢/ is distinct from v and v/ ¢ FV(e).

by taking » to be emp.

An Inadequate Local Rule

{emp} v :=cons(e) {I. (v—)},

where ¢/ is distinct from v and v/ ¢ FV ().

But this rule is too weak. For instance,

{emp} i:=cons(3,i) {Jj.i— 3,j}

gives no information about the second component of the new
record.

An Adequate Local Rule

e The local form (CONSL)

{v="v"Aemp} v:=cons(e) {v+— €},

where @/ is distinct from v, and ¢ denotes €/v — /.

Here the existential quantifier is dropped and ' becomes a vari-
able that is not modified by v := cons(e). For example,

{i=jAemp}i:=cons(3,i) {i— 3,j}

shows that the value of j in the postcondition is value of i before
the assignment.

From (CONSG):

{r} v:=cons(e) {I. (v—7e) x '},
where ' is distinct from v, ' ¢ FV(e,r), € denotes /v —
v/, and ' denotes r /v — V.
we derive (CONSL):

{v =12"ANemp} v:=cons(e) {v— &},

where ' is distinct from v, and € denotes ¢/v — o/

{v="1"ANemp}

v .= cons(e)

(T (v—€") * (V' =V ANemp)}
[F". ((v—e€") AV =) « emp}
{F". (v— &) AV =1}

{31)”. (vi—) AV = 'Uf}

(v~}

100

From (CONSL) to (CONSG)

Existential Quantification (EQ)
{r} c{a}
(Gv.p} < (3v. 9}
{;r } where v is not free in ¢
{F . v=v" A7}
v Ar}
{v=1 A7}
{v ="1"A(emp * 1)}
{(v=1"Nemp) = 7'}
{(v =" Aemp)})
v = cons(e) sk 1/
{(v—7¢) % 1}
(3. (v—¥) * 1’}

s

s Jof

101

The backward-reasoning form (CONSBR)

(Vo (v — &) — p''} v := cons(e) {p},

where v is distinct from v, v/ ¢ FV (e, p), and p” denotes

p/v — V.

The universal quantifier Vv’ in the precondition expresses
the nondeterminism of allocation

The most direct way to see this is by a semantic proof that
the rule is sound

102

Soundness of the Backward Reasoning Rule (CONSBR)

(Vo' (v —€) = p''} v = cons(e) {p},

where o" is distinct from v, v" ¢ FV (e, p), and p” denotes

p/v — .

Suppose the precondition holds in the state s, A, I.e., that
s,h EVY. (W — &) = p".
Then the semantics of universal quantification gives
Ve [s|v":2],hE (v — &) — P,
and the semantics of separating implication gives
Ve, h'.h L hand [s| " 0], E (/" — &) implies
[s|o": 2], h- K Ep",
where the underlined formula is equivalent to

h = [¢: [e1llexps |- [£ +n — 1! [en]exps]- 103

The Soundness of (CONSBR) (continued)

Thus
Ve. (f, ...+ n—1¢domh implies
[s|o": 2], [h]l:[erllexps | --- | €4+ n—1:[enlexps] F p”).

Then, by the substitution law for assertions, since p’’ denotes
p/v — v, we have

[s| " 0], h-h' P ift5 h-R Ep,
where
s=[s|v:0]w: [['UH]]QXD[.S | v 2] =[s|v": 2| v:e].

Moreover, since v/ does not occur free in p, we can simplify
s,h-h"Epto[s|v:l],h-h E p. Thus

ve. (¢,....04+n—1¢domh implies
[s|vil],[h]l[eillexps| - [€+n—1[en]lexps] F p). 104

The Soundness of (CONSBR) (continued)

ve. (6,...,0 +n—1¢domh implies
[s|vie],[h] L [[“—'i’-l]]exp-f‘ | e | ettt ol [[EJ"”']]QXD'S] = p)_

Now execution of the allocation command v := cons(€), starting
In the state s, h, will never abort, and will always termininate in a

state

[s|oil],[h]| el [e1]lexps| - | £+ n—1:[en]exps]

forsome ¢suchthat?...../ +n — 1 ¢ dom h. Thus the condi-
tion displayed above insures that all possible terminating states
satisty the postcondition p.

105

From (CONSG):

{r} v:=cons(e) {I. (v —7&) x '},

where v/ is distinct from v, »' ¢ FV(€,r), € denotes /v —

v/, and ' denotes r /v — v/,

we derive (CONSBR):

(Vo' (v —€) = p''} v i=cons(€) {p},

where o is distinct from v, v/ ¢ FV(E, p), and p” denotes

p/v— .

(Vo' (W e) — P}

v := cons(e€)

{F. (v—7E) x (W' (V" —7E) —p")}

(T (v—¥) * (v—7¥) —p)}

{3v". p} q * (q—=p)=p

{p}.

106

From (CONSBR):

(Vo' (v — €) — p""} v = cons(€) {p},

where v is distinct from v, v/ ¢ FV (&, p), and p” denotes

p/v — ",

we derive (CONSG):

{r}v:=cons(e) {I. (v —7) * 1"},

where ' is distinct from v, +/ ¢ FV(e,r), & denotes ¢ /v —
v/, and r’ denotes r /v — /.

{r}

("}

Vo, (0 > B) —k (0" 1= B) * 1)} r=> (g — (g * 7))
{:\Z/U”. (’U” — €) —x (((’U” —> E’r) * -:l""’)/v’F — L)}

(V. (W= €) = (T (v =) x)}

v .= cons(e)

(3. (v—7¥) * 7'}

107

Inference Rules for Nonoverwriting Lookup

e The local nonoverwriting form (LKNOL)

fer— "} vi=le] {fv=2"A(e—v)},
where v ¢ FV (e).
e The global nonoverwriting form (LKNOG)

{F. (e = V") x p"}vi=[e] {(e— v) * p},

where v ¢ FV(e), v ¢ FV(e) U (FV(p) — {v}), and p"
denotes p/v — v

108

In (LKNOG):

(3. (e = V") x p"} v i=[e] {(e— v) * p},
where v ¢ FV(e), v ¢ FV(e) U (FV(p) — {v}), and p”

denotes p/v — .
there is no restriction preventing +”/ from being the same variable

as v. Thus, as a special case,

{Fv. (e— v) *x p}vi=le] {(e— v) x p},
where v ¢ FV(e). For example, if we take
v tobe |
e tobe i+ 1

(and remember i — 3, j abbreviates (i+— 3) = (i+ 1 — j)), then
we obtain the instance

(3j.i—3,j «listajlj=[i+1] {i— 3,j = listaj}.

p tobe i— 3 x list o],

109

Inference Rules for General Lookup
e [he local form (LKL)

fv=vVA(e—V)}vi=[e] {fv="A(—v)},

where v, v/, and v are distinct, and ¢’ denotes e/v — /.

e [he global form (LKG)

{F". (e — V") % (r/v) - v)}vi=[€]
{T. (¢/ —v) x (/v — v)},
where v, v/, and /" are distinct, v/, v" ¢ FV(e), v € FV(r),
and ¢’ denotes ¢/v — v'.

110

Inference Rules for General Lookup

e The first backward-reasoning form (LKBR1)

(3. (e— V") x ((e—= V") = p")} v:=[e] {p},
where o' ¢ FV(e)U(FV(p)—{v}), and p” denotes p/v — v".

e The second backward-reasoning form (LKBR2)

{3, (e = V") AP} vi=[e] {p},
where v ¢ FV(e)U(FV(p)—{v}), and p” denotes p/v — o”.

111

From (LKL):

{'U — _Uf N ((—_'f — 'U”) } V= [E’.] {'U == 'UH 743 ((‘fﬂ" > 'L’)}?

where v, v/, and v are distinct, and ¢’ denotes e /v — /.

we derive (LKG):

{F". (e — V") * (r/v) — v)} vi=[€]
(3. (' = 0) % (/" — v},
where v, v/, and v are distinct, v/, v" ¢ FV(e), v ¢ FV(r),

and ¢’ denotes e¢/v — /.

@ o) = Gl 5900
(T, 0. (v=V" A(e— V")) * (/o —rt)}
(0= A(ers) « (r/t/ =)
{’U = ' A (e — L-”)}
V.= [Eﬂ]
fv=1v"A(— v)} ,
{(v=2"A(r—v)) * (r/0) —v)} |
{2V, 0" (v=2"A(—v)) * (/0 — v)}
{3, (¢/ = v) *x (/v — v)}.

.
+
-

s o’ v

112

An Instance of (LKG)

(T (e = V") x (r/v) - v)} vi=[e]
{3, (e/ —v) = (r/v — v)},
where v, v/, and v are distinct, «/, v ¢ FV(e), v ¢ FV(r),

and ¢’ denotes e¢/v — v'.

As an example of an instance, If we take

v tobe | .
p e tobe j+1
% ‘lg b i tobe 4 1 T -
T | == — M =k — 1111,
v tobe k |

then we obtain (using the commutivity of)
{Fk.i+1—jxj+1+—k * k+ 1 +— nil}
j=0+1]
{Im.i+1—m s m4+1—j* j+ 1~ nil}.

113

From (LKG):

{F”. (e = V") x (r/v) = v)} vi=[e]
{F. () —) x (r/v) — v)}
where v, v/, and v" are distinct, v/, " ¢ FV(e), v ¢ FV(r),
and ¢’ denotes e/v — /.

we derive (LKL):

fv=vA(e—v")}vi=[e] {v=2"A(— v)},

where v, v/, and v are distinct, and ¢’ denotes ¢/v — v'.

{fv=vA(er— 1*”)'}

{30 v =V AV = V" A (e— D)}

{307, (e— 3") x (v=1"AD" =" A emp)}

{Eiﬁ” (e— ") » (0 =V A" =0 Aemp) /v — v)}

v = [€]

{30, (€ —v) * (3 = AN =" ANemp) /7" — v)}

{37, (€ — v) *x (= Av=12v"Aemp)}

{F'. &' = Av=1"A (€ — v)} (where & denotes ¢ /v — /)
{_L- = g A ((—_i — L)}

114

From (LKG):

{F". (e— V") x (r/v) = v)} vi=[e]
[T, (e —v) x (r/v — v)},
where v, v/, and v’ are distinct, v/, v" ¢ FV(e), v € FV(r),
and ¢’ denotes ¢/v — v'.

we derive (LKBR1):

{F". (e = V") x ((e— V") = p")} v:i=]e] {p},
where v" ¢ FV(e)U(FV(p)—{v}), and p” denotes p/v —

.

{31;”_ (E: T 'UH) *k ((Eﬂ — 'UH) T pﬁ)}

" 5 o [Ef]

{31;"_ (E:" — 'U) & ((E‘-! — 'U) —k p) }

{31}!' p} q * (nf} —k p)zﬂ;

{r}.

115

From (LKBR1):

{3, (e —0") = ((e— ") = p")} v:i=[e] {p},
where v ¢ FV(e)U(FV(p)—{v}), and p’ denotes p/v —
v,

we derive (LKBR2):

(T, (e —= V") AP} vi=[e] {p},
where v/ ¢ FV(e)U(FV(p) —{v}), and p” denotes p/v —

v,

(e = eNAp=(e—¢€) x ((e—e€') —xp)
{3, (e — ") AP}
(T (e — V") x ((e = V") =)}
i [f?i]
{p}.

116

Example:
Gluing records

fx— =+ y——}

if y=x-+ 1 then

x——-,—}
skip
else if x =y + 1 then
{ys =~}
Y=y
else

({x— = *y— -}
dispose x ;

{y— -}

dispose vy ;

{emp}

x .= cons(1, 2))

X = ==}

Another Example: Relative Pointers

{emp}
x .= cons(a,a) ; (CONSNOL)
{x+—a,a}

y := cons(b.b) ; (CONSNOG)
{(x+—a,a) = (y—b,b)}

{x—a,=) x (y—b,—)} (p/v — e = Ju. p)
x4+ 1] :=y —x; (MUG)
{(x—a,y—=x) = (y—b,—)}

ly+ 1] :=x—y; (MUG)

{(x—a,y—x) * (y— b,x—y)}
((cmay =0 * b (=20 = b=y =)
{3o. (x+— 2,0) * (x+or b, —0)}

118

Array Allocation

(comm) :i=--

x .= allocatey

Store :
Heap :

Store :
Heap :

.| (var) := allocate (exp)

x:3,v.4

empty

J

x:37,y.4
37.—,38:—,39: —, 40: —

119

lterated Separating Conjunction

(assert) = .. | Q&P

(vary={exp) (assert)

Let I be the contiguous set
I={v]|e<v< e"}

of integers between the values of e and ¢’. Then @.f:E p(v) is
true Iff the heap can be partitioned into a family of disjoint sub-
heaps, indexed by I, such that p(v) is true for the vth subheap.

120

An Inference Rule

{r} v:=allocate e {(O'T 1i— =) x 1},

1=

where v does not occur free in r or e.

121

Summary

* Non-faulting semantics of Hoare triples

* Local reasoning: just fragment of heap (footprint)

122

Summary
The Frame Rule (O'Hearn) (FR)

{pr} c{q}
{p *r}eiqg o}
where no variable occurring free in r is modified by c.

Proposition 11 If the programming language satisfies safety
monotonicity and the frame property, then the frame rule is sound
for both partial and total correctness.

123

Summary

_ _ _ - (MUL)
{e — —} [e] .= ¢ {e — f-'_f"}
_ _ _ — (DISL)
{e — —} dispose ¢ {emp}
_ _ _ — (CONSL)
{v=1"Nemp} v:=cons(e) {v— €},
where +/ is distinct from v, and € denotes ¢/v — '
(LKL)

fv=vA(e—V")}vi=[e] {v=v"A(e—v)}
where v, v/, and v are distinct, and ¢/ denotes ¢ /v — /.

124

4. Lists and
List Segments

Notation for Sequences

When o and 3 are sequences, we write
e ¢ for the empty sequence.

e [a] for the single-element sequence containing a. (We will
omit the brackets when « is not a sequence.)

e o3 for the composition of « followed by 3.
e o for the reflection of a.
e #a for the length of «.

e «; for the ith component of «.

126

Some Laws for Sequences

e = o cor = o o)y = oG
o — [a]'i' = [a] (ﬂ_..lﬁ-g)'i' = 3T.af

#e=0 #la] =1 #(a-B) = (Fa) + (F5)

a=¢c¢VIa, . a=[a]d a=¢cVId, a a=d"[a].

127

Singly-linked Lists

list v i
| — (Y1 / 8%p) / / Y
O O nil
Is defined by
. . def . :
listei = emp A i = nil
. del —. : : ;
list (a-cx) 1 = Fj. i—a.j * list],
where

e ¢ Is the empty sequence.

e «-/3 Is the concatenation of « followed by 5.

listavi= (i =mnil & o = ¢)

List Reversal

LREV &= nil:

while i = nil do (k := |i
(list ay i} LREV {list ol j}

Loop invariant:

dae, 8. (list ai * list 3) A (:1-';5 — di'p.::'i

1] [

{list ag i}

{list agi * (emp A nil = nil) }
j:=mnil;

{list agi * (emp A j = nil)}

{list vgi * listej}

{Ja, 8. (list i = list 3j) A C’c’g — ﬁud}

130

{3a, 8. (listavi = list B)) A o) = af-3}
while i %= nil do
({Haj a, B. (list (a-a) i = list Bj) A ag = (a-2) -8}
{Ja,, B, k. (i— a,k x listak x list 3j) A a-g = (a«a)'i'«,.{i%}
k:=[i4+1];
{Fa,, 3. (i— a,k = listak = list 3j) A a['j — (a‘a-)'i";}}
[i+1]:=]j;
{Ja,a,B. (i a,j * listak * list 3j) Aaf = (a-a)"-5}
{Fa, o, 8. (list ok = list (a-3) 1) A r:r['j = a-Ii'-a—;Ef}
{Fa, B. (list a k = list 3i) A a-'g — a'j}»
ji=i;i:=k
{3, B. (list i = list 3j) A al'j — a-'i'«ﬁ})
{3a,8. list BjAa) =a'BAa=¢)

{list ol j}

131

Singly-linked Lists

list v 1

| — Y1 / a2 / / On
o= O—

nil

is defined by induction on the length of the sequence « (i.e., by
structural induction on «):

: . def : :
listei = emp A1 = nil

: . def e - : : ;
ist (a-ax) i = Jj. i— a,] * list aj.

This was sufficient for specifying and proving a program for reversing a list,
but for many programs that deal with lists, it is necessary to reason about
parts of lists that we will call list “segments”.

132

Singly-linked List Segments

Iseg v (i,)):
| — Y 1 fﬁ12 Xn,
L ST
s defined by
. .y def . .
lsege(i,j) = emp Ai =]

Iseg a-av (i, k) det dj. i—a,] = lseg a (j. k).

133

Properties

Isega (i.j) < i+ a,]
Iseg -3 (i, k) < 3j. Iseg o (i,)) * Iseg 3 (j. k)
Iseg ov-b (i. k) < Fj. Iseg v (i,j) * j+— b,k
list v i < Iseg v (i, nil).

134

Proof of the Composition Property

Iseg -3 (i, k) < Jj. Iseg o (i,) * Iseg 3 (j, k)
The proot is by induction on the length of «.

When o is empty:

Jj. Iseg e (i,j) * lseg 3 (], k)
<). (emp A1 =) * lseg 3 (], k)
&). (emp * Iseg 3(j, k) AT =]
< i lseg B(, k) AT =
& lseg 3 (i, k)
& lseg e 3 (i, k)

135

Proof of the Composition Property

Iseg -3 (i, k) < Jj. Iseg o (i,) * lIseg 3 (], k)

The prootf is by induction on the length of «.

When a = a-o:
3j. Iseg a-a’ (i,j) * lseg 3(j. k)
< 3L i—a,l = Iseg o’ (1)) = Iseg 3(j. k)
< 3l i—a, |l x Iseg o’ 3(l, k) (induction hypothesis)
& lseg a-a’- 3 (i, k)

136

Emptyness Conditions

For lists, one can derive a law that shows clearly when a list
represents the empty sequence:

listavi= (i=nil & a =¢).

For list segments, however, the situation is more complex. One
can derive

lseg a (i.j) = (i=nil = (a« = e A j=nil))

Iseg o (i,)) = (i#£) = a F €).
But these formulas do not say whether o Is empty wheni = j =
nil.

137

Nontouching List Segments

When
|Seg [11 » & vy (|D.. i-n)_._.

we have

P
(ig— aq.ip) * (i1 — ao,in) x -+ x (i,,_1 > an,in).
Thus g, ..., i,_1 are distinct, but i,, is not constrained, and may
equal any of the ig, ..., i,,_1. In this case, we say that the list
segment is touching.

i

nontouching
list segments « . { touching
cyclic
\

overlapping (forbidden by).

138

Nontouching List Segments (continued)

We can define nontouching list segments inductively by:
ntlseg € (i,) = emp A i = |

ntlseg a-cv (i, k) gy = kAN i+1 #= kA (Fj. i—a, j*ntlseg a (j, k)),

or equivalently, we can define them in terms of Iseg:

ntlseg o (1.) e lseg o (i,j) A 7] — —.

The obvious advantage of knowing that a list segment Is non-
touching Is that it is easy to test whether it is empty:

ntlseg a (i,j)) = (a = e <1 =).

139

Fortunately, there are common situations where list segments
must be nontouching:

list o i = ntlseg o (i, nil)
Iseg v (1,]) * list 3] = ntlseg o (i,)) * list 3]
lseg v (i,j) * j— — = ntlseg v (i,]) * j— —.

140

Preciseness of List Assertions

The assertions
list v i Iseg o (1,]) ntlseq o (i,)
are all precise.. On the other hand, although
Jev. list o | Jov. ntlseq o (i,)
are precise,
Jev. Iseg o (i,])

Is not precise.

141

Proposition 12 (1) 3a. list «v i /s a precise assertion. (2) list «v i
[s a precise assertion.

PROOF (1) We begin with two preliminary properties of the list
predicate:

(a) Suppose [i:i | a:e],h E listai. Then

it | ae]l,hElistaiNha =c¢

[iii | ae],hElistei

[iii | aie],hFemp Ai = nil,

so that h is the empty heap and i = nil.

142

Proposition 12 (1) 3a. list «v i /s a precise assertion. (2) list «v i
[s a precise assertion.

PROOF (1) We begin with two preliminary properties of the list
predicate:

(b) On the other hand, suppose [i:i | a:a-a’], h E list ai. Then

[ii7]| aiaa |aia|d:a/].hFElistaiNa=ad

[iii]aia|d:a’].hElst(aa’)i

[ii]ata| o :a'],hET). i—a,j x listd]

Jdj. [iri|atal|j:g|:a/],hEi— a,] * lista],

so that there are j and A/ such that
iF=mnil h=1[iali+1:5]-F [jij|d:d'],h Elistd],
and by the substitution theorem,

[i:7 | &' 1,k E list avi.

143

To prove (1), we assume s, h, hg, and hy are such that hg,
h1 C h and

s, hg F da. list « | s,h1 F da. list v 1.

We must show that hg = h;.

Since i is the only free variable of the above assertion, we can
assume s Is [i:¢] for some i. Then we can use the semantic
equation for the existential quantifier to show that there are se-
quences ag and a4 such that

[i:i]| a:ag], hg E list avi [i:i]| a:avqp], by FE list aci.

We will complete our proof by showing, by structural induction
on ag:
For all g, avq, 4, h, hg, and hq, if hg, hqy C h and the
statements displayed above hold, then hg = h.

144

For the base case, suppose ag Is empty. Then by (a), hg Is the
empty heap and i = nil.

Moreover, if ;7 were not empty, then by (b) we would have the
contradiction 7« # nil. Thus ay must be empty, so by (a), hq Is
the empty heap, so that hg = h1.

145

For the induction step suppose ag = ag-aq. Then by (b), there
are jo and hg such that

i #nil, hg=[ilag|i+1:jol-hy, [iijo|aiagl,hpE listai.

Moreover, if av; were empty, then by (a) we would have the con-
tradiction ¢ = nil. Thus a; must be a;-« for some a; and of.
Then by (b), there are j; and i such that

i = mnil, hy = [iia1 |i4+1:j51]-h]. [iij1 | a:al], k] Elistai.

Since hg and hq are both subsets of i, they must map i and i+1
into the same value. Thus [i:aqg | i4+1:j0] = [i:a7 | i+1:71],
so that ag = a1 and jg = j1. Then, since

[i:70 | c: {):6]. h’:j Flistai and [iijg | a: c:r&]. h.a_ F list cv i,

the induction hypothesis give h; = R} It follows that hg = h;.

146

Proposition 12 (1) Ja. list v i is a precise assertion. (2) list «v i
Is a precise assertion.

(2) We use the law that p is precise whenever p = ¢ Is valid and
g Is precise. Then, since list i = Jav. list v i Is valid, list «v i is
precise. END OF PROOF

147

Example: Insertion at the Head

{Iseg o (i.})}
k := cons(a,i) ; (CONSNOG)
{k—a,i = Iseg a (i,])}

{3i. k— a,i * Iseg o (i,]))}

{Iseg a-cv (k,j)}

=k (AS)
{Iseg a-cv (i,]) }.

or, more concisely:

{Iseg o (i, k) }
| .= cons(a,i) ; (CONSG)
{Fj.i—a,j = Iseg (j, k) }

{Iseg a-c (i, k) }.

149

Example: Insertion at the End

{Iseg v (i,) * j+— a,k}
| := cons(b, k) ;
{lseg a (i,j) * jr—a.k *

{lseg v (i,)) = jr—a % |-

{lseg v (i,j) * jr—a * |-
[+ 1] ;=1

(CONSNOG)
| — b, k}
- 1— k = | — bk}
-1 — — % |+— bk}
(MUG)

{lseg o (i,j) % jrsa # j+ 1= 1+ [—b,k)

{lseg o (i,j) = jr—a,| x|
{Iseg cv-a (i,1) = | — b, k}
{Iseg cv-a-b (i, k) }.

— b.k}

150

Example: Deletion at the Head

{Iseg a-a (i,k)}

{Jj.i—a,j = Isega (j, k) }

(G it 1] (im—axkega(k))
ji=l+1];

{i+1—jx (i—axlsega(j,k))}
{fi—ax (+1—jxlsega(jk))}
dispose i ;

{i4+1+—j x Isega(j,k)}

dispose i + 1 ;

{Iseg v (j, k) }

| =]

{Iseg o (i, k) }.

(LKNOG)

(DISG)

(DISG)

(AS)

151

Example: Deletion at the End

{lseg v (i,j) = j+—a,k x k+— b,I}

i+ 1]:=1; (MUG)
{Iseg o (i,j) * j—a,| x k— b,l}

dispose k ; (DISG)
dispose k + 1 (DISG)

{Iseg v (i,j) * j+— a,l}
{Iseg v-a (i, 1) }.

Example: List Reversal

LREV &= nil:

while i = nil do (k := |i
(list ay i} LREV {list ol j}

Loop invariant:

dae, 8. (list ai * list 3) A (:1-';5 — a'i'p.::'i

1] [

{list ag i}

{list agi * (emp A nil = nil) }
j:=mnil;

{list agi * (emp A j = nil)}

{list vgi * listej}

{Ja, 8. (list i = list 3j) A C’c’g — ﬁud}

154

Ja, 8. (list i * list 3)) Aal = ol
| 0 _
while i = nil do
({Sa,cr,ﬁ. (list (a-) i * list B)) A af = (a«a)'i';ﬁ}
da,a, B, k. (i—a,k = listak * list 3)) A - (a'a)'i'-ﬁ'
| 0 _
k:=1[i+1],
Fa,a, 3. (i— a, k * listak * list 3j) A ol = (a-a)'-3
_ 0 |
i+ 1] :=j;
{Fa,a, (3. (i—a,j = listak * list dJ) f\rteo (a- n)' 3}
{da, o, B. (list vk x list (a-3) |) f\ao = ala B}
{Jav, 6. (list ak x list 3i) A “‘D = ol G}
ji=i;i:=k
{3, 8. (list i * list 3]) A ag — a-'i';,:‘ﬁ})
o, 8. listBjAal =al Bra=¢
. 0

{list o j}

155

Doubly-Linked List Segments

dlseg o (i,1.]."):

i —aq o N v —jf
CEER
A\ -
s defined by
. g . gy def . s o g .
dlseg € (i, 1., i) 2 empAi= A =]
5 % def _. . & 5 & 5
dlseg a-a (i, 1", k. k") = Jj. i+ a,j. i’ * dlseg a (j, i, k, k).
J
|
| —1 a Y1 Oy —k!
SEC
-\ -

Properties

disega (i,i,j,j') @ ir—a,j,ini=]
dlseg -5 (i, 1, k. k') < 3Fj. . dlseg e (i, 7,].j") = dlseg 3 (j, . k, k')
dlseg a-b (i,1', k, k') < 3}. dlseg o (i, 1", K. }") «k' — b, k,j’.

One can also define a doubly-linked list by

dlist o (i, ') = dlseg o (i, nil, nil. |').

157

Emptyness Conditions

diseg o (i,7,},j/)) = (i=nil = (a = eAj=nil AT =]))
dlseg o (i,1,},))) = (= nil = (a = e AV = nil A i =j))
dlseg o (i,7,},]) = (i#£] = a % €)
dlseg o (i, i"jjﬁjf) = (i" #J" = o 2= €).

(One can also define nontouching segments.)

158

Deleting an Element from a Doubly-Linked List

| () k (h m

| L] _1
1 Qm, b 31 Bn

w<)< fc}*}< @J>< w{.")(nil
nil o -0 ~O 0 - O

{3), 1. dlseg o (i, nil, k,j) = k+— b,1,j = dlseg 3 (I, k, nil, m)}

l:=[k+1];j:=[k+2];

dispose k ; dispose k + 1 ; dispose k + 2 ;
if j = nilthen i:=1 else [+ 1]:=I;
if | = nil then m:=j else [I4+ 2] ;=]

{dlseg -3 (i, nil, nil, m) }

{3j, 1. diseg o (i, mil, k,j) * k= b,1,j = diseg 3 (I, k,nil, m)}
i=[k+1];j:=[k+2];
{dlseg o (i,nil, k,j) = k+— b,l,j = dlseg 3 (I, k,nil, m) }

dispose k ; dispose k + 1 ; dispose k + 2 ;
{dlseg o (i, nil, k, j) = dlseg 3 (I, k, nil, m)}

160

{dIseg o (i, nil, k,j) * dlseg 3 (I, k,nil, m)}
if j = nil then
{i=kAnil =jAa=c¢eAdlseg 3(l,k,nil,m)}
=1
{i=I1Anil =jAa=¢€eAdlseg 3(l, k,nil,m)}
else
{3a’,a,n. (dlseg o’ (i,nil,j.n) * j+~— a,k.n
« dlseg 3 (I, k,nil,m)) A a = o’-a}
[+ 1]:=1;
{3a’,a,n. (dlseg ' (i,nil.j,n) * j+s a.ln
« dlseg 3 (I, k,nil,m)) A a = o’-a}
{dIseg ov (i, nil, |, j) = dlseg 5 (I, k,nil, m)}

161

{diseg o (i, nil, |, j) = dlseg 3 (I, k,nil, m)}
if | = nil then
{dlseg o (i,nil,Lj)) Al=nil Ak =mA 3 = €}
=]
{dlseg o (i,nil, Lj) Al=mnil Aj=m A = €}
else
{Ja, 3 ,n. (dlseg o (i, mil, 1, j) * | — a,n,k
« dlseg 3/ (n,I,nil,m)) A 3 = a5’}
[+ 2] ==}
{3a, 3", n. (dIseg o (i, nil, 1, j) * |+ a,n,]j
« dlseg 3 (n,l,nil, m)) A 3 = a-3'}
{dlseg o (i, nil, |, j) = dlseg 8 (I,]j,nil, m)}
{dlseg -3 (i, nil, nil, m) }

162

Summary

Iseg v (i,):
| — 1| QD orn
L J_
Is defined by
. .y def . .
Iseg € (i,]) - emp N i = |

Iseg a-av (i, k) ger dj. i—a,] = lseg a (j. k).

We can also define trees and DAGs.

Summary of Separation Logic
* Programming language
* Assertion language

 Specification language

Current Research and the Future

* Extending separation logic to cover practical
language features

* various concurrency idioms
* objects

* Building tools to mechanize separation logic
* much work on shape analysis

