Assignment on Mathematical Background

For each of the following statements, is it true? If your answer is yes, just say yes. If your answer is no, give a counterexample.

For instance, this simple statement is not true: $\forall x, y \in \mathbf{B} . x=y$. To give a counterexample, we instantiate x and y so that $x, y \in \mathbf{B}$ but $x \neq y$. So a counterexample can be: let x be true and y be false.

1. Recall $\mathcal{P}(S)$ is the powerset of S. Then,

$$
\forall f . f \in \mathbf{N} \rightarrow \mathbf{N} \Longrightarrow \exists A, B .(A \subseteq \mathbf{N}) \wedge(B \subseteq \mathbf{N}) \wedge(\mathcal{P}(f) \subseteq A \rightarrow B)
$$

2. We define the relation \bowtie between two functions $f, g \in \mathbf{N} \rightarrow \mathbf{N}$ as follows:

$$
f \bowtie g \quad \text { iff } \forall x, y .(f(x)=42) \wedge(g(y)=42) \Longrightarrow(x=y) .
$$

Then \bowtie is transitive, that is,

$$
\forall f, g, h .(f \bowtie g) \wedge(g \bowtie h) \Longrightarrow(f \bowtie h) .
$$

3. Let

$$
H=\bigcup_{S \subseteq} \bigcup^{\operatorname{fin} \mathbf{N}} \text { (}(S \rightarrow \mathbf{N})
$$

Then

$$
\forall h_{1}, h_{2} \cdot\left(h_{1} \in H\right) \wedge\left(h_{2} \in H\right) \Longrightarrow\left(h_{1} \cup h_{2} \in H\right)
$$

4. Again, let $H=\bigcup_{S \subseteq \complement^{\text {fin }} \mathbf{N}}(S \rightarrow \mathbf{N})$. We also define closed (s, h) and $\operatorname{hclosed}(h)$ for $s \in \mathcal{P}(\mathbf{N})$ and $h \in H$ as follows:

$$
\begin{array}{lll}
\operatorname{closed}(s, h) & \text { iff } & \forall l, l^{\prime} .(l \in s) \wedge\left(l^{\prime}=h(l)\right) \Longrightarrow l^{\prime} \in s \\
\operatorname{hclosed}(h) & \text { iff } & \operatorname{closed}(\operatorname{dom}(h), h)
\end{array}
$$

Then

$$
\forall h \in H .(\forall x . \operatorname{hclosed}(h\{x \rightsquigarrow 42\})) \Longrightarrow \operatorname{hclosed}(h) .
$$

