Mathematical Background

Outline

Sets

Relations

Functions

Products

Sums

Outline

Sets

Relations

Functions

Products

Sums

Sets - Basic Notations

$x \in S$	membership
$S \subseteq T$	subset
$S \subset T$	proper subset
$S \subseteq$ fin T	finite subset
$S=T$	equivalence
\emptyset	the empty set
\mathbf{N}	natural numbers
\mathbf{Z}	integers
\mathbf{B}	$\{$ true, false $\}$

Sets - Basic Notations

$S \cap T \quad$ intersection $\quad \stackrel{\text { def }}{=}\{x \mid x \in S$ and $x \in T\}$
$S \cup T$ union
$S-T$ difference
$\mathcal{P}(S)$ powerset
$\stackrel{\text { def }}{=}\{x \mid x \in S$ or $x \in T\}$
$\stackrel{\text { def }}{=}\{x \mid x \in S$ and $x \notin T\}$
[m, n] integer range
$\stackrel{\text { def }}{=}\{T \mid T \subseteq S\}$
$\stackrel{\text { def }}{=}\{x \mid m \leq x \leq n\}$

Generalized Unions of Sets

$$
\begin{array}{ll}
\bigcup \mathcal{S} & \stackrel{\text { def }}{=}\{x \mid \exists T \in \mathcal{S} . x \in T\} \\
\bigcup_{i \in I} S(i) & \stackrel{\text { def }}{=} \bigcup\{S(i) \mid i \in I\} \\
\bigcup_{i=m}^{n} S(i) & \stackrel{\text { def }}{=} \bigcup_{i \in[m, n]} S(i)
\end{array}
$$

Here \mathcal{S} is a set of sets. $S(i)$ is a set whose definition depends on i. For instance, we may have

$$
S(i)=\{x \mid x>i+3\}
$$

Given $i=1,2, \ldots, n$, we know the corresponding $S(i)$.

Generalized Unions of Sets

Example (1)

$$
A \cup B=\bigcup\{A, B\}
$$

Proof?

Example (2)
Let $S(i)=[i, i+1]$ and $I=\left\{j^{2} \mid j \in[1,3]\right\}$, then

$$
\bigcup_{i \in I} S(i)=\{1,2,4,5,9,10\}
$$

Generalized Intersections of Sets

$$
\begin{array}{ll}
\cap \mathcal{S} & \stackrel{\text { def }}{=}\{x \mid \forall T \in \mathcal{S} . x \in T\} \\
\bigcap_{i \in I} S(i) & \stackrel{\text { def }}{=} \cap\{S(i) \mid i \in I\} \\
\bigcap_{i=m}^{n} S(i) & \stackrel{\text { def }}{=} \bigcap_{i \in[m, n]} S(i)
\end{array}
$$

Generalized Unions and Intersections of Empty Sets

From

$$
\begin{aligned}
& \cup \mathcal{S} \stackrel{\text { def }}{=}\{x \mid \exists T \in \mathcal{S} . x \in T\} \\
& \cap \mathcal{S} \stackrel{\text { def }}{=}\{x \mid \forall T \in \mathcal{S} . x \in T\}
\end{aligned}
$$

we know

$$
\begin{aligned}
& \bigcup \emptyset=\emptyset \\
& \bigcap \emptyset \quad \text { meaningless }
\end{aligned}
$$

$\bigcap \emptyset$ is meaningless, since it denotes the paradoxical "set of everything" (see Russell's paradox).

Outline

Sets

Relations

Functions

Products

Sums

Relations

We need to first define the Cartesian product of two sets A and B :
$A \times B=\{(x, y) \mid x \in A$ and $y \in B\}$
Here (x, y) is called a pair.
Projections over pairs:
$\pi_{0}(x, y)=x$ and $\pi_{1}(x, y)=y$.
Then, ρ is a relation from A to B if $\rho \subseteq A \times B$.
Or, written as $\rho \in \mathcal{P}(A \times B)$.

Relations

ρ is a relation from A to B if $\rho \subseteq A \times B$, or $\rho \in \mathcal{P}(A \times B)$.
ρ is a relation on S if $\rho \subseteq S \times S$.
We say ρ relates x and y if $(x, y) \in \rho$. Sometimes we write it as $x \rho y$.
ρ is an identity relation if $\forall(x, y) \in \rho . x=y$.

Relations - Basic Notations

the identity on $S \quad \mathrm{Id}_{S} \quad \stackrel{\text { def }}{=}\{(x, x) \mid x \in S\}$
the domain of $\rho \operatorname{dom}(\rho) \stackrel{\text { def }}{=}\{x \mid \exists y \cdot(x, y) \in \rho\}$ the range of $\rho \quad \operatorname{ran}(\rho) \stackrel{\text { def }}{=}\{y \mid \exists x .(x, y) \in \rho\}$
composition of ρ and $\rho^{\prime} \quad \rho^{\prime} \circ \rho \stackrel{\text { def }}{=}$

$$
\left\{(x, z) \mid \exists y \cdot(x, y) \in \rho \wedge(y, z) \in \rho^{\prime}\right\}
$$

$$
\text { inverse of } \rho \quad \rho^{-1} \quad \stackrel{\text { def }}{=}\{(y, x) \mid(x, y) \in \rho\}
$$

Relations - Properties and Examples

$$
\begin{gathered}
\left(\rho_{3} \circ \rho_{2}\right) \circ \rho_{1}=\rho_{3} \circ\left(\rho_{2} \circ \rho_{1}\right) \\
\rho \circ \operatorname{ld}_{S}=\rho=\operatorname{Id}_{T} \circ \rho, \quad \text { if } \rho \subseteq S \times T \\
\operatorname{dom}\left(\operatorname{Id}_{S}\right)=S=\operatorname{ran}\left(\operatorname{Id}_{S}\right) \\
\operatorname{Id}_{T} \circ \operatorname{ld}_{S}=\operatorname{ld} T \cap S \\
\operatorname{ld}_{S}{ }^{-1}=\operatorname{Id}_{S} \\
\left(\rho^{-1}\right)^{-1}=\rho \\
\left(\rho_{2} \circ \rho_{1}\right)^{-1}=\rho_{1}{ }^{-1} \circ \rho_{2}-1 \\
\rho \circ \emptyset=\emptyset=\emptyset \circ \rho \\
\operatorname{Id} \emptyset \emptyset=\emptyset=\emptyset \\
\operatorname{dom}(\rho)=\emptyset \Longleftrightarrow \rho=\emptyset
\end{gathered}
$$

Relations - Properties and Examples

$$
\begin{aligned}
< & \subseteq \\
<\cup \operatorname{ld}_{\mathrm{N}} & =\leq \\
\leq \cap \geq & =\mathrm{Id}_{\mathrm{N}} \\
<\cap \geq & =\emptyset \\
<0 \leq & =< \\
\leq 0 \leq & =\leq \\
\geq & =\leq^{-1}
\end{aligned}
$$

Equivalence Relations

ρ is an equivalence relation on S if it is reflexive, symmetric and transitive.

Reflexivity: $\operatorname{ld}_{S} \subseteq \rho$
Symmetry: $\rho^{-1}=\rho$
Transitivity: $\rho \circ \rho \subseteq \rho$

Outline

```
Sets
```


Relations

Functions

Products

Sums

Functions

A function f from A to B is a special relation from A to B. A relation ρ is a function if, for all x, y and $y^{\prime},(x, y) \in \rho$ and $\left(x, y^{\prime}\right) \in \rho$ imply $y=y^{\prime}$.

Function application $f(x)$ can also be written as $f x$. Below we only consider total functions: $\operatorname{dom}(f)=A$.

Functions

\emptyset and Id_{S} are functions.
If f and g are functions, then $g \circ f$ is a function.

$$
(g \circ f) x=g(f x)
$$

If f is a function, f^{-1} is not necessarily a function. (f^{-1} is a function if f is an injection.)

Functions - Injection, Surjection and Bijection

Injective and non-surjective:

Bijective:

Surjective and non-injective:

Non-injective and non-surjective:

Functions - Denoted by Typed Lambda Expressions

$\lambda x \in S$. E denotes the function f with domain S such that $f(x)=E$ for all $x \in S$.

Example
$\lambda x \in \mathbf{N} . x+3$ denotes the function $\{(x, x+3) \mid x \in \mathbf{N}\}$.

Functions - Variation

Variation of a function at a single argument:

$$
f\{x \rightsquigarrow n\} \stackrel{\text { def }}{=} \lambda z . \begin{cases}f z & \text { if } z \neq x \\ n & \text { if } z=x\end{cases}
$$

Note that x does not have to be in $\operatorname{dom}(f)$.

$$
\begin{aligned}
& \operatorname{dom}(f\{x \rightsquigarrow n\})=\operatorname{dom}(f) \cup\{x\} \\
& \operatorname{ran}(f\{x \rightsquigarrow n\})=\operatorname{ran}\left(f-\left\{\left(x, n^{\prime}\right) \mid\left(x, n^{\prime}\right) \in f\right\}\right) \cup\{n\}
\end{aligned}
$$

Example
$(\lambda x \in[0 . .2] . x+1)\{2 \rightsquigarrow 7\}=\{(0,1),(1,2),(2,7)\}$
$(\lambda x \in[0 . .1] . x+1)\{2 \rightsquigarrow 7\}=\{(0,1),(1,2),(2,7)\}$

Function Types

We use $A \rightarrow B$ to represent the set of all functions from A to B.
\rightarrow is right associative. That is,

$$
\begin{gathered}
A \rightarrow B \rightarrow C=A \rightarrow(B \rightarrow C) . \\
\text { If } f \in A \rightarrow B \rightarrow C, a \in A \text { and } b \in B \text {, then } f a b=(f(a)) b \in C .
\end{gathered}
$$

Functions with multiple arguments

$$
\begin{aligned}
& f \in A_{1} \times A_{2} \times \cdots \times A_{n} \rightarrow A \\
& f=\lambda x \in A_{1} \times A_{2} \times \cdots \times A_{n} . E \\
& f\left(a_{1}, a_{2}, \ldots, a_{n}\right)
\end{aligned}
$$

Currying it gives us a function

$$
\begin{aligned}
& g \in A_{1} \rightarrow A_{2} \rightarrow \cdots \rightarrow A_{n} \rightarrow A \\
& g=\lambda x_{1} \in A_{1} \cdot \lambda x_{2} \in A_{2} \ldots \lambda x_{n} \in A_{n} . E \\
& g a_{1} a_{2} \ldots a_{n}
\end{aligned}
$$

Outline

Sets

Relations

Functions

Products

Sums

Cartesian Products

Recall $A \times B=\{(x, y) \mid x \in A$ and $y \in B\}$.
Projections over pairs: $\pi_{0}(x, y)=x$ and $\pi_{1}(x, y)=y$.
Generalize to n sets:
$S_{0} \times S_{1} \times \cdots \times S_{n-1}=\left\{\left(x_{0}, \ldots, x_{n-1}\right) \mid \forall i \in[0, n-1] . x_{i} \in S_{i}\right\}$ We say $\left(x_{0}, \ldots, x_{n-1}\right)$ is an n-tuple.

Then we have $\pi_{i}\left(x_{0}, \ldots, x_{n-1}\right)=x_{i}$.

Tuples as Functions

We can view a pair (x, y) as a function

$$
\lambda i \in \text { 2. } \begin{cases}x & \text { if } i=0 \\ y & \text { if } i=1\end{cases}
$$

where $2=\{0,1\}$.

$$
A \times B \stackrel{\operatorname{def}}{=}\{f \mid \operatorname{dom}(f)=\mathbf{2}, \text { and } f 0 \in A \text { and } f 1 \in B\}
$$

(We re-define $A \times B$ in this way, in order to generalize \times later. Functions and relations are still defined based on the old definitions of \times.)

Tuples as Functions

Similarly, we can view an n-tuple $\left(x_{0}, \ldots, x_{n-1}\right)$ as a function

$$
\lambda i \in \mathbf{n} . \begin{cases}x_{0} & \text { if } i=0 \\ \ldots & \ldots \\ x_{n-1} & \text { if } i=n-1\end{cases}
$$

where $\mathbf{n}=\{0,1, \ldots, n-1\}$.

$$
S_{0} \times \cdots \times S_{n-1} \stackrel{\text { def }}{=}\left\{f \mid \operatorname{dom}(f)=\mathbf{n}, \text { and } \forall i \in \mathbf{n} . f i \in S_{i}\right\}
$$

Generalized Products

From

$$
S_{0} \times \cdots \times S_{n-1} \stackrel{\text { def }}{=}\left\{f \mid \operatorname{dom}(f)=\mathbf{n}, \text { and } \forall i \in \mathbf{n} . f i \in S_{i}\right\}
$$

we can generalize $S_{0} \times \cdots \times S_{n-1}$ to an infinite number of sets.

$$
\begin{aligned}
& \prod_{i \in I} S(i) \stackrel{\text { def }}{=}\{f \mid \operatorname{dom}(f)=I, \text { and } \forall i \in I . f i \in S(i)\} \\
& \prod_{i=m}^{n} S(i) \stackrel{\text { def }}{=} \prod_{i \in[m, n]} S(i)
\end{aligned}
$$

Generalized Products

Let θ is a function from a set of indices to a set of sets, i.e., θ is an indexed family of sets. We can define $\Pi \theta$ as follows.

$$
\Pi \theta \stackrel{\text { def }}{=}\{f \mid \operatorname{dom}(f)=\operatorname{dom}(\theta), \text { and } \forall i \in \operatorname{dom}(\theta) . f i \in \theta i\}
$$

Example
Let $\theta=\lambda i \in I . S(i)$. Then

$$
\Pi \theta=\prod_{i \in I} S(i)
$$

Generalized Products - Examples

$$
\Pi \theta \stackrel{\operatorname{def}}{=}\{f \mid \operatorname{dom}(f)=\operatorname{dom}(\theta) \text {, and } \forall i \in \operatorname{dom}(\theta) . f i \in \theta i\}
$$

Example (1)

Let $\theta=\lambda i \in$ 2.B. Then

$$
\begin{aligned}
\Pi \theta=\{ & \{(0, \text { true }),(1, \text { true })\}, \\
& \{(0, \text { true }),(1, \text { false })\}, \\
& \{(0, \text { false }),(1, \text { true })\}, \\
& \{(0, \text { false }),(1, \text { false })\}\}
\end{aligned}
$$

That is, $\Pi \theta=\mathbf{B} \times \mathbf{B}$.
(Here $\mathbf{B} \times \mathbf{B}$ uses the new definition of \times. If we use its old definition, we will see an elegant correspondence between $\Pi \theta$ and $\mathbf{B} \times \mathbf{B}$.)

Generalized Products - Examples

$$
\Pi \theta \stackrel{\text { def }}{=}\{f \mid \operatorname{dom}(f)=\operatorname{dom}(\theta) \text {, and } \forall i \in \operatorname{dom}(\theta) . f i \in \theta i\}
$$

Example (2)
$\Pi \emptyset=\{\emptyset\}$.
Example (3)
If $\exists i \in \operatorname{dom}(\theta) . \theta i=\emptyset$, then $\Pi \theta=\emptyset$.

Exponentiation

Recall $\prod_{x \in T} S(x)=\Pi \lambda x \in T . S(x)$.
We write S^{T} for $\prod_{x \in T} S$ if S is independent of x.

$$
\begin{aligned}
S^{T} & =\prod_{x \in T} S=\Pi \lambda x \in T . S \\
& =\{f \mid \operatorname{dom}(f)=T, \text { and } \forall x \in T . f x \in S\}=(T \rightarrow S)
\end{aligned}
$$

Recall that $T \rightarrow S$ is the set of all functions from T to S.

Exponentiation - Example

We sometimes use 2^{S} for powerset $\mathcal{P}(S)$. Why?

Exponentiation - Example

We sometimes use 2^{S} for powerset $\mathcal{P}(S)$. Why?

$$
\mathbf{2}^{S}=(S \rightarrow \mathbf{2})
$$

For any subset T of S, we can define

$$
f=\lambda x \in S . \begin{cases}1 & \text { if } x \in T \\ 0 & \text { if } x \in S-T\end{cases}
$$

Then $f \in(S \rightarrow \mathbf{2})$.
On the other hand, for any $f \in(S \rightarrow \mathbf{2})$, we can construct a subset of S.

Outline

Sets

Relations

Functions

Products

Sums

Sums (or Disjoint Unions)

Example

Let $A=\{1,2,3\}$ and $B=\{2,3\}$.
To define the disjoint union of A and B, we need to index the elements according to which set they originated in:

$$
\begin{aligned}
A^{\prime} & =\{(0,1),(0,2),(0,3)\} \\
B^{\prime} & =\{(1,2),(1,3)\} \\
A+B & =A^{\prime} \cup B^{\prime}
\end{aligned}
$$

Sums (or Disjoint Unions)

$$
A+B \stackrel{\text { def }}{=}\{(i, x) \mid i=0 \text { and } x \in A, \text { or } i=1 \text { and } x \in B\}
$$

Injection operations:

$$
\begin{aligned}
& \iota_{A+B}^{0} \in A \rightarrow A+B \\
& \iota_{A+B}^{1} \in B \rightarrow A+B
\end{aligned}
$$

The sum can be generalized to n sets:

$$
S_{0}+S_{1}+\cdots+S_{n-1} \stackrel{\text { def }}{=}\left\{(i, x) \mid i \in \mathbf{n} \text { and } x \in S_{i}\right\}
$$

Generalized Sums (or Disjoint Unions)

It can also be generalized to an infinite number of sets.

$$
\begin{aligned}
& \sum_{i \in I} S(i) \stackrel{\text { def }}{=}\{(i, x) \mid i \in I \text { and } x \in S(i)\} \\
& \sum_{i=m}^{n} S(i) \stackrel{\text { def }}{=} \sum_{i \in[m, n]} S(i)
\end{aligned}
$$

The sum of θ is

$$
\Sigma \theta \stackrel{\text { def }}{=}\{(i, x) \mid i \in \operatorname{dom}(\theta) \text { and } x \in \theta i\}
$$

So

$$
\sum_{i \in I} S(i)=\Sigma \lambda i \in I . S(i)
$$

Generalized Sums (or Disjoint Unions) - Examples

$$
\Sigma \theta \stackrel{\text { def }}{=}\{(i, x) \mid i \in \operatorname{dom}(\theta) \text { and } x \in \theta i\}
$$

Example (1)

$$
\sum_{i \in \mathbf{n}} S(i)=\Sigma \lambda i \in \mathbf{n} \cdot S(i)=\{(i, x) \mid i \in \mathbf{n} \text { and } x \in S(i)\}
$$

Example (2)
Let $\theta=\lambda i \in$ 2.B. Then

$$
\Sigma \theta=\{(0, \text { true }),(0, \text { false }),(1, \text { true }),(1, \text { false })\}
$$

That is, $\Sigma \theta=\mathbf{2} \times \mathbf{B}$.

Generalized Sums (or Disjoint Unions) - Examples

$$
\Sigma \theta \stackrel{\text { def }}{=}\{(i, x) \mid i \in \operatorname{dom}(\theta) \text { and } x \in \theta i\}
$$

Example (3)
$\Sigma \emptyset=\emptyset$.
Example (4)
If $\forall i \in \operatorname{dom}(\theta) \cdot \theta i=\emptyset$, then $\Sigma \theta=\emptyset$.
Example (5)
Let $\theta=\lambda i \in \mathbf{2}$. $\left\{\begin{array}{ll}\mathbf{B} & \text { if } i=0 \\ \emptyset & \text { if } i=1\end{array}\right.$,
then $\Sigma \theta=\{(0$, true $),(0$, false $)\}$.

More on Generalized Sums (or Disjoint Unions)

$$
\begin{aligned}
\Sigma \theta & \stackrel{\text { def }}{=}\{(i, x) \mid i \in \operatorname{dom}(\theta) \text { and } x \in \theta i\} \\
\sum_{x \in T} S(x) & \stackrel{\text { def }}{=} \Sigma \lambda x \in T . S(x)
\end{aligned}
$$

We can prove $\sum_{x \in T} S=T \times S$ if S is independent of x.

$$
\begin{aligned}
\sum_{x \in T} S & =\Sigma \lambda x \in T . S \\
& =\{(x, y) \mid x \in T \text { and } y \in S\}=(T \times S)
\end{aligned}
$$

